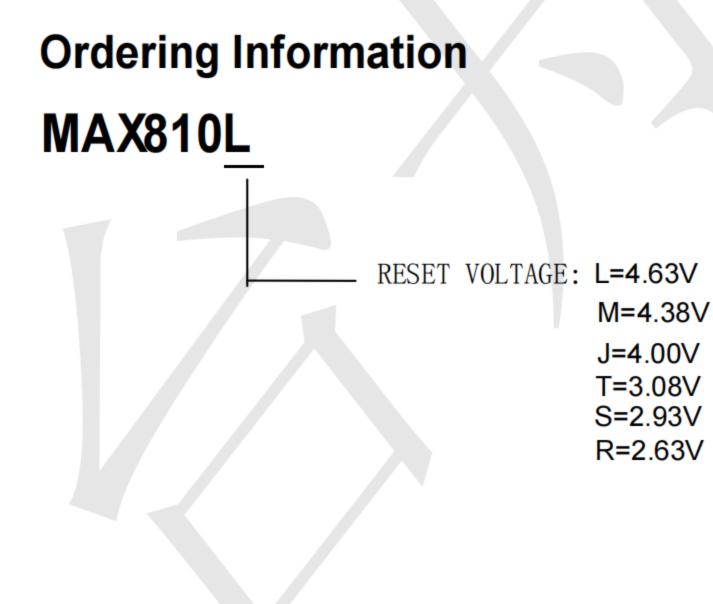


Microprocessor Reset Circuit

www.sot23.com.tw

FEATURES

- High Accurate ±2%
- Precision monitoring of +3V, +3.3V, and +5V
 Power supply voltage
- Fully specified over temperature
- Available in three output configurations
- Push-Pull <u>RESET</u> low output (MAX809)
- Push-Pull (RESET) high output (MAX810)
- 200ms typ. Power-on reset pulse width
- 25µs supply current
- Guaranteed reset valid to V_{CC}=+1V
- Power supply transient immunity


The MAX809/810 series are used for microprocessor (μ P) supervisory circuits to monitor the power supplies in μ P and digital systems. They provide excellent circuit reliability and low cost by eliminating external components and adjustments when used with +5V, +3.3V, +3.0V, +2.5V powered circuits.

APPLICATION

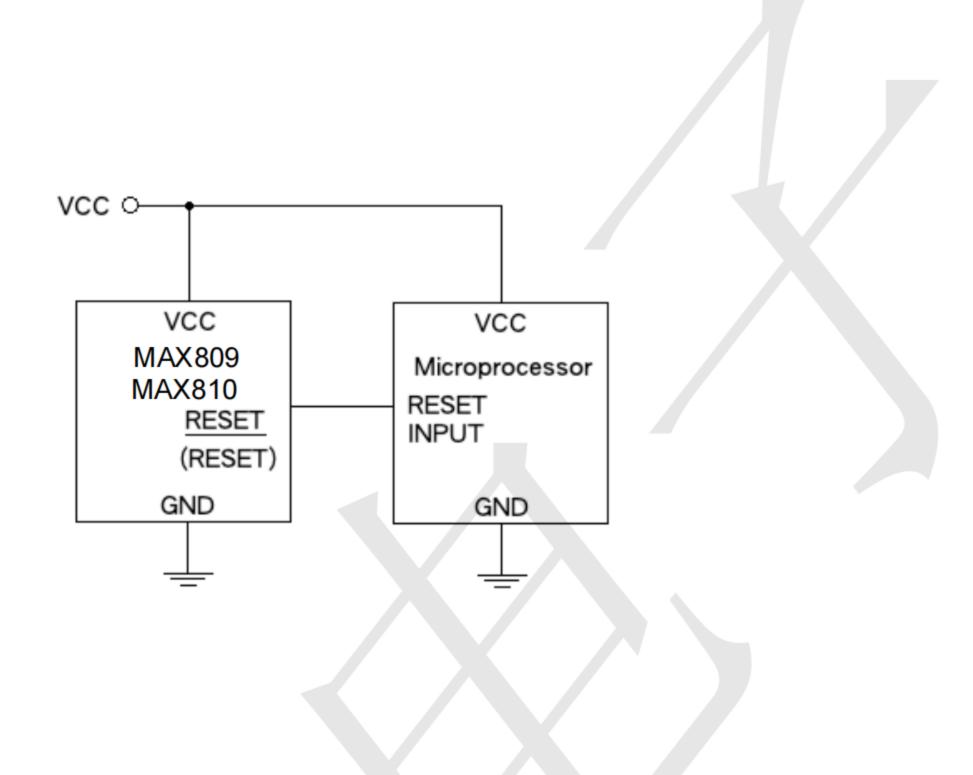
- Battery-operated systems and controllers
- Intelligent instruments
- Critical µP and µC power monitoring
- Portable / Battery powered equipment
- Automotive

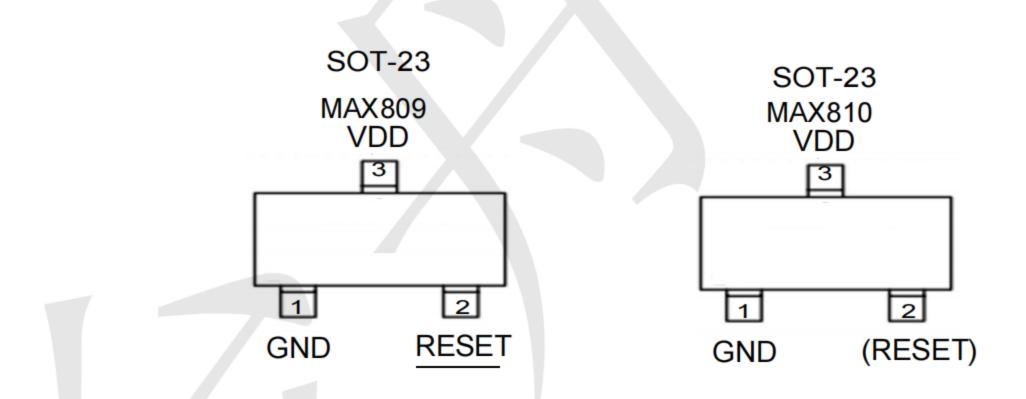
RESET output, while the MAX810 has an active high RESET output The reset comparator is designed to ignore fast transients on V_{CC} , and the outputs are guaranteed to be in the correct logic state for V_{CC} down to 1.0V. Low supply current makes MAX809/810 serie s ideal for use in portable equipment.

These circuits perform a single function: they assert a reset signal whenever the V_{CC} supply voltage declines below a preset threshold, keeping it asserted for at least 200ms after V_{CC} has risen above the reset threshold. Reset thresholds suitable for operation with a variety of supply voltages are available. MAX809/810 series have push pull outputs. MAX809 series has an active low

1

Marking:


MAX809L: AAAA MAX810L: AGAA MAX809M: ABAA MAX809M: ABAA MAX809J: ABAA MAX809J: CWAA MAX809J: CWAA MAX809T: ACAA MAX809T: AJAA MAX809S: ADAA MAX810S: AKAA MAX810S: AKAA MAX810R: ALAA


Microprocessor Reset Circuit

www.sot23.com.tw

TYPICAL APPLICATIN CIRCUIT

Pin Definition

Microprocessor Reset Circuit


www.sot23.com.tw

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	LIMIT	T UNIT	
Terminal Voltage (with respect to GND)	V _{cc}	GND - 0.3 to GND +6.5	V	
RESET & (RESET) push-pull	V _{RESET}	GND - 0.3 to V _{CC} +0.3	V	
Input Current, V _{CC}	I _{cc}	20	mA	
Output Current, <u>RESET</u> , (RESET)	Ι _ο	5	mA	
Power Dissipation	P _D	(T _J -T _A)/R _{θJA}	mVV	
Operating Junction Temperature Range	T _{J.OPR}	-40 ~ +125	°C	
Storage Temperature Range	T _{STG}	-65 ~ +150	°C	
Lead Soldering Temperature (260°C)	T _{LEAD}	10	S ·	

THERMAL PERFORMANCE

PARAMETER	SYMBOL	MAXIMUM	UNIT
Thermal Resistance from Junction to Case	R _{0JC}	110	°C/W
Thermal Resistance from Junction to Ambient (Note 1)	R _{0JA}	250	°C/W

Microprocessor Reset Circuit

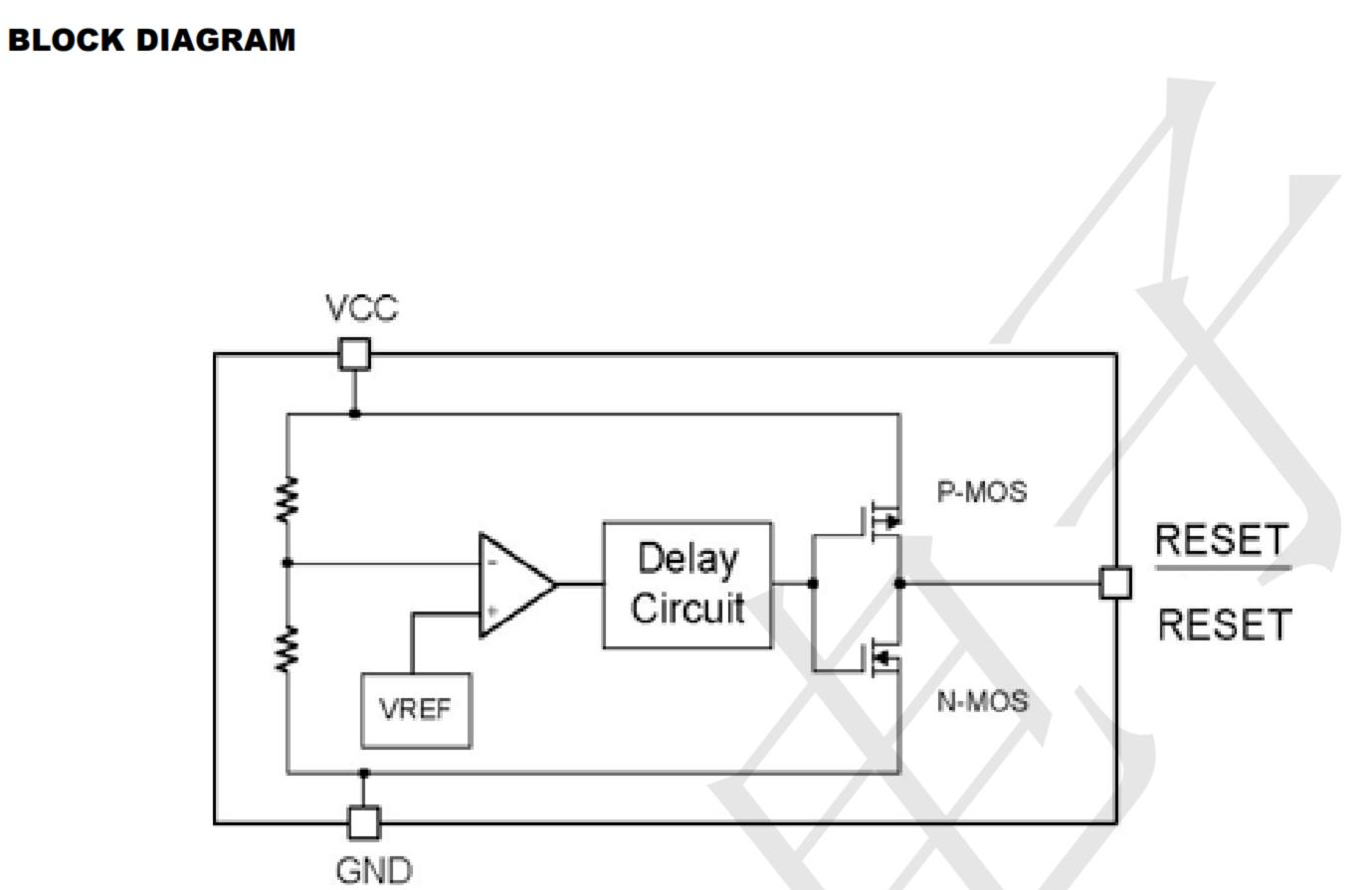
www.sot23.com.tw

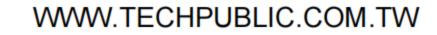
ELECTRICAL CHARACTERISTICS ($V_{CC} = 5V$, $T_A = 25^{\circ}C$ unless otherwise noted)

PARAMETER	CONDITIONS	SYMBOL	MIN	ТҮР	MAX	UNIT
Input Supply Voltage	$T_{A}=-40^{\circ}C \sim +85^{\circ}C$	V _{cc}	1.0		6	V
Supply Current	$V_{CC}=V_{TH}+1V$	I _{CC}		25	35	μA
	MAX809/810L		4.54	4.63	4.71	
	MAX809/810M		4.29	4.38	4.46	
	MAX809/810J		3.92	4.00	4.08	
Reset Threshold	MAX809/810T	V _{TH}	3.02	3.08	3.15	V
	MAX809/810S		2.87	2.93	3.00	
	MAX809/810R		2.57	2.63	2.69	
Reset Threshold Temperature Coefficient	T _A =0~+85°C	V _{THT}		50		ppm/°C
Set-up Time	$V_{\rm CC} = 0 \sim (V_{\rm TH} - 100 {\rm mV})$	T _{SET}	1			μs
V _{CC} to Reset Delay	V _{CC} = V _{TH} ~ (V _{TH} - 100mV)	T _{RD}		20		μs
Reset Active Timeout Period	T _A =0~+85°C	T _{DELAY}	140	200	260	ms
<u>RESET</u> Output (MAX809) Voltage Low	1.8V <v<sub>CC<v<sub>TH(MAX), I_{SINK} =1.2mA 1.2V<v<sub>CC<1.8V, I_{SINK} =50µA</v<sub></v<sub></v<sub>	V _{OL}			0.3	V
<u>RESET</u> Output (MAX809) Voltage High	$V_{CC} > V_{TH(MAX)},$ $I_{SOURCE} = 500 \mu A$	V _{OH}	0.8 V _{CC}			V
(RESET) Output (MAX810) Voltage Low		V _{OL}			0.3	V

ELECTRICAL CHARACTERISTICS (V_{CC} = 5V, T_A = 25°C unless otherwise noted)

PARAMETER	CONDITIONS	SYMBOL	MIN	ТҮР	MAX	UNIT
(RESET) Output (MAX810)	1.8V <v<sub>CC<v<sub>TH(MAX),</v<sub></v<sub>					
Voltage High	I _{SOURCE} =500μA	- V _{OH}	0.8 V _{CC}			V
	1.2V <v<sub>CC<1.8V,</v<sub>					
	I _{SOURCE} =150μA					
Hysteresis at V _{CC}	Input Voltage	V _{HVS}		40		mV


Note :


1. $R_{\theta JA}$ is measured the PCB copper area of approximately $1in^2$ (Multi-layer). Needs to connect to V_{SS} pin.

Microprocessor Reset Circuit

www.sot23.com.tw

www.sot23.com.tw

Microprocessor Reset Circuit

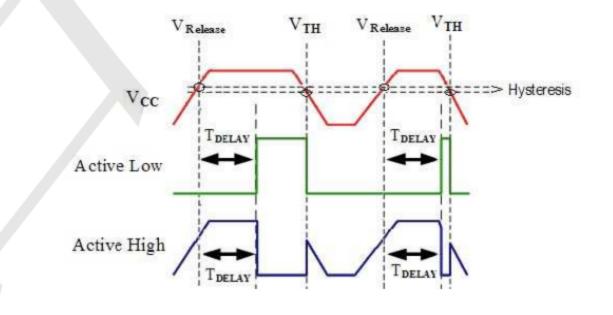
APPLICATION INFORMATION

Negative-Going V_{CC} transients in addition to issuing a reset to the μ P during power-up, power-down, and brownout conditions, the MAX809/810 are relatively immune to short-duration negative-going V_{CC} transients (glitches). The MAX809/810 does not generate a reset pulse. The graph was generated using a negative going pulse applied to V_{CC}, starting 0.5V above the actual reset threshold and ending below it by the magnitude indicated (reset comparator overdrive). The graph indicates the maximum pulse width a negative going V_{CC} transient can have without causing a reset pulse. As the magnitude of the transient increases (goes farther below the reset threshold), the maximum allowable pulse width decreases. Typically, a V_{CC} transient that goes 100mV below the reset threshold and lasts 20 μ S or less will not cause a reset pulse. A 0.1 μ F bypass capacitor mounted as close as possible to the V_{CC} pin provides additional transient immunity.

FUNCTION DESCRIPTION

A microprocessor's reset input starts the μ P in a known state. The MAX809/810 assert reset to prevent codeexecution errors during power-up, power-down, or brownout conditions. They assert a reset signal whenever the V_{CC} supply voltage declines below a preset threshold, keeping it asserted for at least 140ms after V_{CC} has risen above the reset threshold. The MAX809/810 have a push-pull output stage.

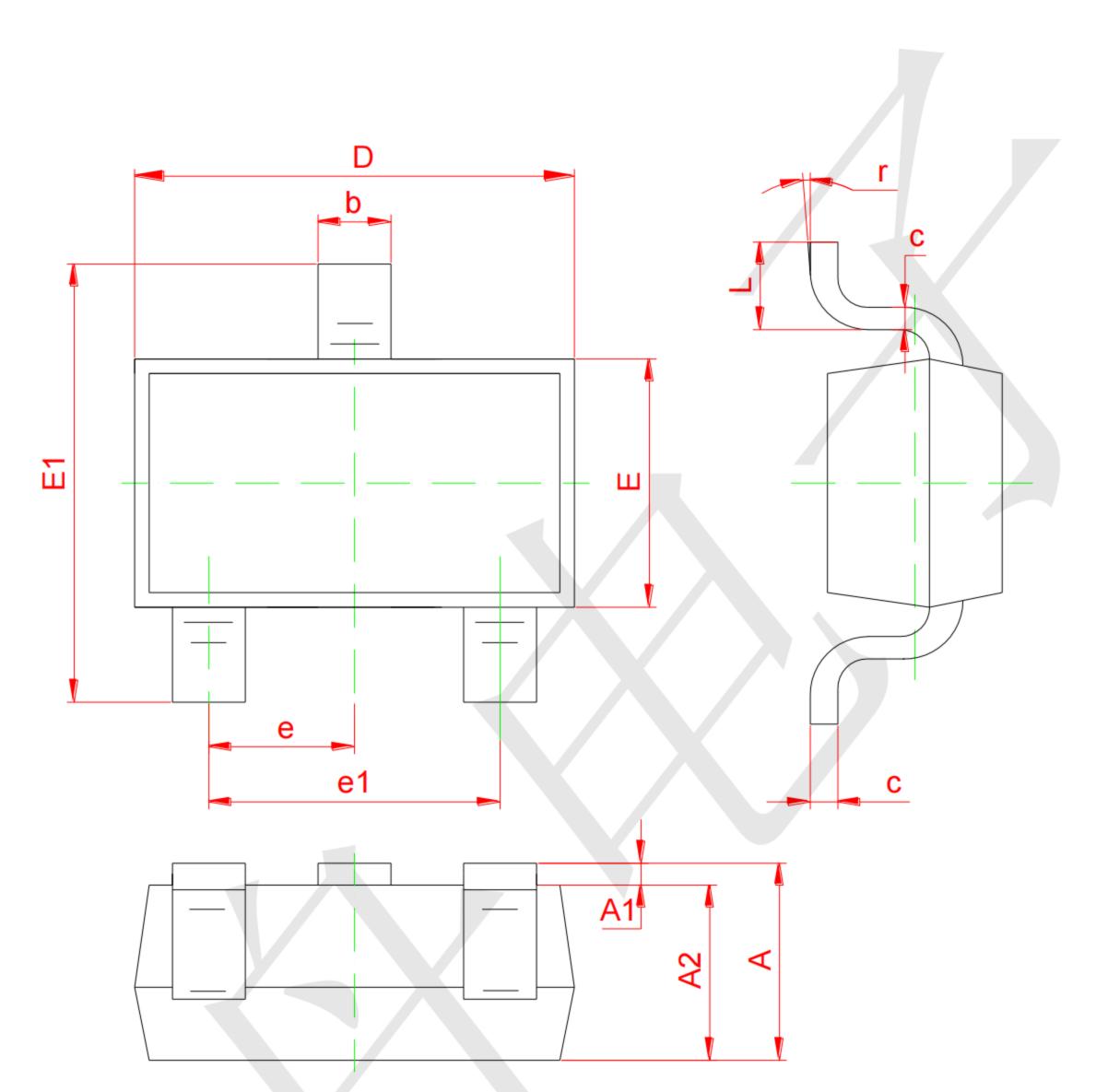
ENSURING A VALID RESET OUTPUT DOWN TO V_{cc}=0


RESET is guaranteed to be a logic low for $V_{CC} > 1.0V$. Once V_{CC} exceeds the reset threshold, an internal timer keeps RESET low for the reset timeout period; after this interval, RESET goes high. If a brownout condition occurs (V_{CC} dips below the reset threshold), RESET goes low. Any time V_{CC} goes below the reset threshold, the internal times reset to zero and DECET goes low. The interval times starts often V_{CC} goes below the reset threshold, the internal times reset to zero and DECET goes low.

timer resets to zero, and RESET goes low. The internal timer starts after V_{CC} returns above the reset threshold, and RESET remains low for the reset timeout period. When V_{CC} falls below 1V, the MAX809/810 reset output no lo nger sinks current - it becomes an open circuit. Therefore, high impedance CMOS logic input connected to reset can drift to undetermined voltages. This present no problem in most applications since most μ P and other circuitry is inoperative with V_{CC} below 1V. However, in applications where reset must be valid down to 0V, adding a pull down resistor to reset causes and stray leakage currents to flow to ground, holding reset low (Figure 2.) R1's value is not critical; 100K is large enough not to load reset and small enough to pull RESET to ground. For the MAX809/810 if reset is required to remain valid for V_{CC} <1V.

BENEFITS OF HIGHLY ACCURATE RESET THRESHOLD

Most μ P supervisor ICs has reset threshold voltages between 5% and 10% below the value of nominal supply voltages. This ensures a reset will not occur within 5% of the nominal supply, but will occur when the supply is 10% below nominal. When using ICs rated at only the nominal supply ±5%, this leaves a zone of uncertainty where the supply is between 5% and 10% low, and where the reset many or may not be asserted.


TIMMING DIAGRAM

Microprocessor Reset Circuit

www.sot23.com.tw

Package informantion

Symbol	Dimensions In Millimeters			
	Min	Max		
A1	0.02	0.1		
A2	1.0	1.0Typical		
b	0.4	0.4Typical		
C	0.1	0.1Typical		
D	2.70	3.10		
E	1.10	1.50		
E1	2.20	2.60		
e1	1.80	2.00		
L	0.35	0.48		

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Supervisory Circuits category:

Click to view products by TECH PUBLIC manufacturer:

Other Similar products are found below :

 CAT1161LI-25-G
 CAT853STBI-T3
 DS1232L
 NCV302HSN45T1G
 STM6710FWB7F
 S-1000N28-I4T1U
 S-1000N23-I4T1U
 S-1000N19

 I4T1U
 PT7M6133NLTA3EX
 PT7M6127NLTA3EX
 ISL88708IB829Z
 ISL88011IH526Z-TK
 ISL88013IH529Z-TK
 ISL88705IP846Z

 ISL88706IP831Z
 ISL88708IB844Z
 ISL88708IP831Z
 TCM811MERCTR
 X40420S14-A
 X40430S14-A
 X40430S14I-A

 X40430S14I-B
 X40431S14-B
 X40431S14-C
 X40431S14I-A
 X40430S14I-A
 X40430S14I-A

 X40430S14I-B
 X40431S14-B
 X40431S14-C
 X40431S14I-A
 X40431S14I-C
 X40430S14I-A

 X40430S14I-B
 X40431S14-B
 X40431S14-C
 X40431S14I-A
 X40431S14I-C
 X40430S14I-A

 X40430S14I-B
 X40431S14-B
 X40431S14-C
 X40431S14I-A
 X40431S14I-C
 X40430S14I-A

 X40430S14I-B
 X40431S11-A
 X40431S14I-A
 X40431S14I-C
 X40430S14I-A
 X40430S14I-A

 X40430S8-2.7T1
 X40433S8IZT1
 X4043S8T1
 X4045PI
 X4045PI-2.7
 X4045S8-2.7T1
 X4045S8IZ
 X4045S8T1

 X4163P
 X4163PI-2.7
 X4163PI-2.7
 X4165PI-2.7
 X4165PI-2.7
 X4165PI-2.7

</tbo