

Single Inverter Gate

www.sot23.com.tw

General Descrition

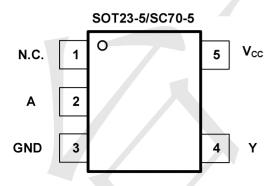
The Operating Voltage Range of the single inverter is 1.65-V to 5.5-V.

The NC7SZ04 device contains one inverter and performs the Boolean function $Y=\overline{A}$. The CMOS device has high output drive while maintaining low static power dissipation over a broad V_{CC} operating range.

Features

- Low Power Consumption, 10-µA Max Icc
- Supports 5-V V_{CC} Operation
- Inputs Accept Voltages to 5.5 V
- Max tpd of 3.3 ns at 3.3 V
- ±24-mA Output Drive at 3.3 V
- Ioff Supports Partial-Power-Down Mode
- Typical $V_{OHV} > 2 V$ at $V_{CC} = 3.3 V$, $T_A = 25$ °C
- Typical V_{OLP} < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C

This device is fully specified for partial-power-down applications using l_{off} . The l_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.


Applications

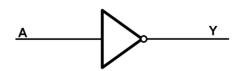
- AV Receivers
- Audio Docks: Portable
- Blu-ray Players and Home Theater
- Embedded PC
- MP3 Player/Recorder (Portable Audio)
- Personal Digital Assistant (PDA)
- Power: Telecom/Server AC/DC Supply
- Solid State Drive (SSD): Client and Enterprise
- TV: LCD/Digital and High-Definition (HDTV)
- Tablet: Enterprise
- Video Analytics: Server
- Wireless Headset, Keyboard, and Mouse

Ordering Information

ORDER NUMBER	PACKAGE DESCRIPTION	PACKAGE OPTION
NC7SZ04M5X	SOT23-5	Tape and Reel,3000
NC7SZ04P5X	SOT353	Tape and Reel,3000

Pin Configuration

Marking


NC7SZ04M5X Marking:7Z04D NC7SZ04P5X Marking:Z04C

NC7SZ04 Single Inverter Gate

www.sot23.com.tw

Logic Diagram

Function Table

INPUT(A)	OUTPUT(Y)
Н	L
L	Н

Note: H: high voltage level; L: low voltage level.

ESD Ratings

		E	VALUE	UNIT
	V(ESD) Electrostatic discharge	4K	V	
		Electrostatic discharge	Charge device model (CDM)	2K

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAI	MIN	MAX	UNIT	
Vcc	Supply	voltage	1.65	5.5	V
Vı	Input	voltage	0	5.5	V
Vo	Output	voltage	0	Vcc	V
		V _{CC} =1.65V		-4	
		V _{CC} =2.3V		-8	
I _{OH}	High-level output current	V _{CC} =3V		-16	mA
				-24	
		V _{CC} =4.5V		-32	
		V _{CC} =1.65V		4	
		V _{CC} =2.3V		8	1
I _{OL}	Low-level output current)/ -3)/		16	mA
		V _{CC} =3V		24	
		V _{CC} =4.5V		32	
T _A	Operating free-	-air temperature	-40	125	$^{\circ}$

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Single Inverter Gate

www.sot23.com.tw

Electrical Characteristics

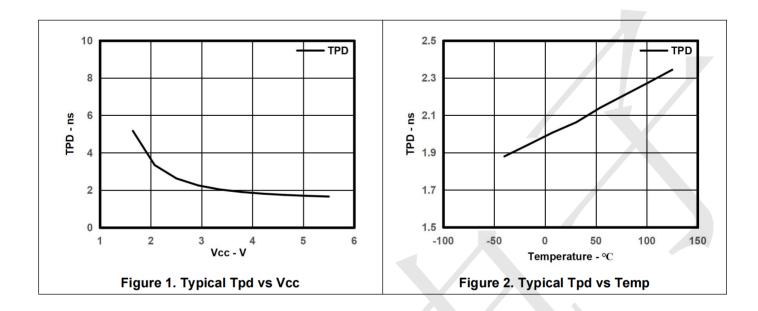
Vcc=5.0V or 3.3V, FULL=-40°C to +125°C, Typical values are at TA = +25°C. (unless otherwise noted)

	ACTED	TEST CONDITIONS VCC		_4	0°C to 85	°C	-40	0°C to 125	5°C	UNIT	
PARAMETER		TEST CONDITIONS	VCC	MIN	TYP	MAX	MIN	TYP	MAX		
		I _{OH} = - 100 μA	1.65 V to 5.5 V	V _{CC} -0.1			V _{CC} -0.1				
		I _{OH} = -4 mA	1.65 V	1.2			1.2				
		I _{OH} = -8 mA	2.3 V	1.9			1.9			V	
V	OH	I _{OH} = - 16 mA	2)/	2.4			2.4			\ \	
		I _{OH} = -24 mA	3 V	2.3			2.3				
		I _{OH} = -32 mA	4.5 V	3.8			3.8				
		I _{OL} = 100 μA	1.65 V to 5.5 V			0.1			0.1		
		I _{OL} = 4 mA	1.65 V			0.45			0.45		
		I _{OL} = 8 mA	2.3 V			0.3			0.3		
V	OL	I _{OL} = 16 mA	3 V			0.4			0.4	V	
		I _{OL} = 24 mA				0.55			0.55	1	
		I _{OL} = 32 mA	4.5 V			0.55			0.55		
I _I	A input	V _I = 5.5 V or GND	0 to 5.5 V			±5			±5	μA	
Ic	off	V_1 or $V_0 = 5.5 \text{ V}$	0			±10			±10	μA	
lo	c	V _I = 5.5 V or GND, I _O = 0	1.65 V to 5.5 V			10			10	μA	
ΔΙ	СС	One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GND	3 V to 5.5 V			500			500	μA	
C) _i	V _I = V _{CC} or GND	3.3 V		5			5		pF	

Electrical specifications(continued)

Vcc=5.0V or 3.3V, FULL=-40°C to +125°C, Typical values are at TA = +25°C. (unless otherwise noted)

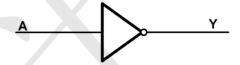
						-40°C t	o 125°C				
PARAMETER	FROM (INPUT)	TO (OUTPUT)		1.8 V 15 V		2.5 V .2 V		3.3 V .3 V		= 5 V .5 V	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	Α	Y	3.9	8.0	1.4	3.5	1	3.3	1	3.0	ns


T_A=25°C

	DADAMETED	TECT COMPITIONS	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	V _{CC} = 5 V	LINUT
	PARAMETER	TEST CONDITIONS	TYP	TYP	TYP	TYP	UNIT
C _{pd}	Power dissipation capacitance	f= 10 MHz	17	18	25	30	pF

Single Inverter Gate

www.sot23.com.tw



Detailed Description

1 Overview

This device is fully specified for partial-power-down applications using loff. The loff circuitry disables the outputs, preventing damaging current back flow through the device when it is powered down.

2 Functional Block Diagram

3 Feature Description

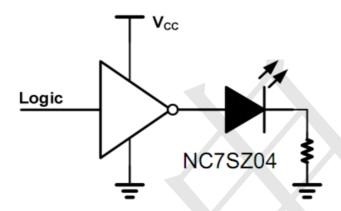
The device is designed for 1.65V to 5.5V VCC operation and it allows down voltage translation from 5V to 3.3V, or 3.3V to 1.8V. Input signals to this device can be driven above the supply voltage so long as they remain below the maximum input voltage value. l_{off} feature allows voltages on the inputs and outputs, when VCC is 0 V.

4 Device Functional Modes

Table 9-1 Function Table

Table 3-11 diletion Table						
INPUT A	OUTPUT Y					
H	L					
	Н					

NC7SZ04 Single Inverter Gate

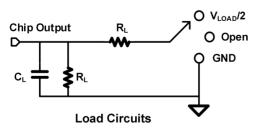

www.sot23.com.tw

Application note

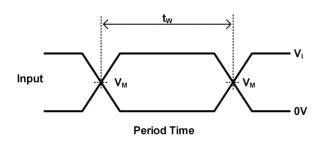
1 Application Information

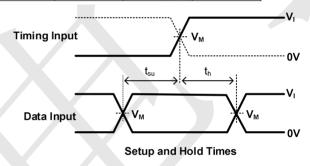
The NC7SZ04 is a high drive CMOS device that can be used for implementing inversion logic with a high output drive, such as an LED application. It can produce 24 mA of drive current at 3.3 V making it Ideal for driving multiple outputs and good for high-speed applications up to 100 Mhz. The inputs are 5.5 V tolerant allowing it to translate down to VCC.

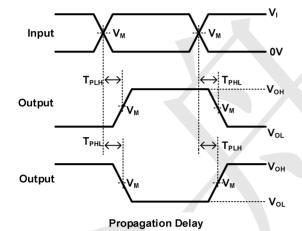
2 Typical Application

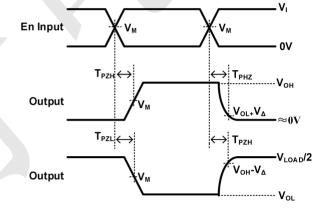


Single Inverter Gate


Parameter Measurement Information


www.sot23.com.tw




TEST	S1	
T _{PHL} /T _{PLH}	OPEN	
T _{PLZ} /T _{PZL}	VLOAD	
T _{PHZ} /T _{PZH}	GND	

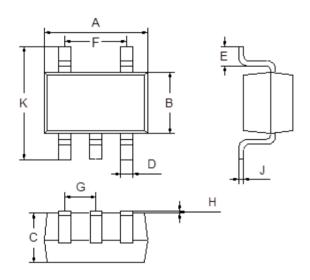
V _{CC}	INPUTS		V _M	V _{LAOD}	CL	RL	V_{Δ}
V CC	Vı	T _r /T _f	VM VLAOD		V LAOD OL		VΔ
1.8V±0.15V	V _{CC}	≤2ns	V _{CC} /2	2×V _{CC}	30pF	1kΩ	0.15V
2.5V±0.15V	V _{CC}	≤2ns	V _{CC} /2	2×V _{CC}	30pF	500Ω	0.15V
3.3V±0.15V	3V	≤2.5ns	1.5V	6V	50pF	500Ω	0.3V
5V±0.15V	V _{CC}	≤2.5ns	V _{CC} /2	2×V _{CC}	50pF	500Ω	0.3V

for Output and Inverted Output

Enable and Disable Times Low-And High-Level Enabling

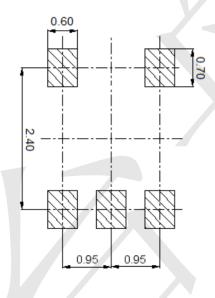
Notes: A. C includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the F. t_{PZL} and t_{PZH} are the same as t_{en}. output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z = 50.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all device.



Single Inverter Gate

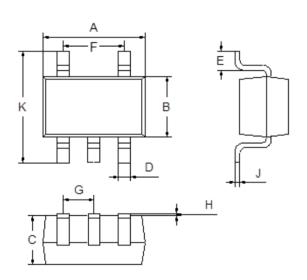
www.sot23.com.tw


Package Outline Dimensions (Unit: mm)

SOT23-5

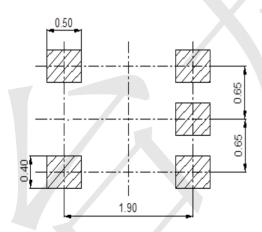
Dimension	Min.	Max.
Α	2.80	3.00
В	1.50	1.70
С	1.00	1.20
D	0.35	0.45
E	0.35	0.55
F	1.80	2.00
G	0.90	1.00
Н	0.02	0.10
J	0.10	0.20
K	2.60	3.00

Mounting Pad Layout (Unit: mm)



Single Inverter Gate

www.sot23.com.tw


Package Outline Dimensions (Unit: mm)

SOT353

Dimension	Min.	Max.
Α	2.00	2.20
В	1.15	1.35
С	0.85	1.05
D	0.15	0.35
E	0.25	0.40
F	1.20	1.40
G	0.60	0.70
Н	0.02	0.10
J	0.05	0.15
K	2.20	2.40

Mounting Pad Layout (Unit: mm)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by TECH PUBLIC manufacturer:

Other Similar products are found below:

NLV17SG32DFT2G CD4068BE NL17SG86DFT2G NLX1G11AMUTCG NLX1G97MUTCG 74LS38 74LVC1G08Z-7 CD4025BE
NLV17SZ00DFT2G NLV17SZ126DFT2G NLV27WZ17DFT2G NLV74HC02ADR2G 74HC32S14-13 74LS133 74LVC1G32Z-7
74LVC1G86Z-7 NLV74HC14ADR2G NLV74HC20ADR2G NLVVHC1G09DFT1G NLX2G86MUTCG 74LVC2G32RA3-7
74LVC2G00HD4-7 NL17SG02P5T5G 74LVC2G86HK3-7 NLVVHC1G14DFT2G NLX1G99DMUTWG NLVVHC1G00DFT2G
NLV7SZ57DFT2G NLV74VHC04DTR2G NLV27WZ00USG NLU1G86CMUTCG NLU1G08CMUTCG NL17SZ32P5T5G
NL17SZ00P5T5G NL17SH02P5T5G 74AUP2G00RA3-7 NLVVHC1GT00DFT2G NLV74HC02ADTR2G NLX1G332CMUTCG
NLVHCT132ADTR2G NL17SG86P5T5G NL17SZ05P5T5G NLV74VHC00DTR2G NLVVHC1G02DFT1G NLV74HC86ADR2G
74LVC2G86RA3-7 NL17SZ38DBVT1G NLV18SZ00DFT2G NLVVHC1G07DFT1G NLVVHC1G02DFT2G