

20uA IQ, 300mA Low- Dropout Linear Regulator

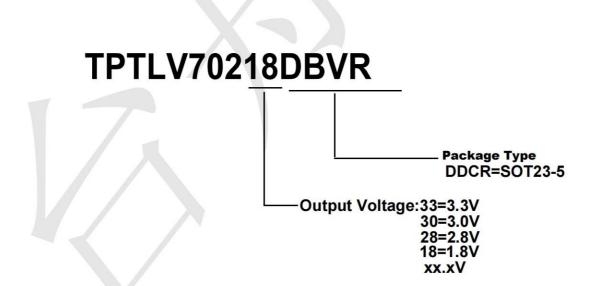
Applications

CDM/GSM mobile phone

Audio/Video equipment

PDAs /MP3

www.sot23.com.tw

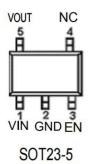

Features

- Input Voltage Range : 1.2V to 5.5V
- 20 μA Ground Current (I_Q) at no Load
- PSRR = 75dB at 1kHz
- ±1.5% Output Accuracy
- Low (0.1µA) Shutdown Current
- Dropout Voltage : 0.17V at 300mA when $V_{OUT} \ge 3V$
- Support Fixed Output Voltage 0.8V, 1.0V, 1.05V, 1.1V, 1.2V, 1.25V, 1.3V, 1.5V, 1.8V, 1.85V, 2V, 2.5V, 2.8V, 2.85V, 3V, 3.1V, 3.3V, 3.45V
- Current Limit Protection
- Over Temperature Protection
- Output Active Discharge Function
- SOT23-5 Packages

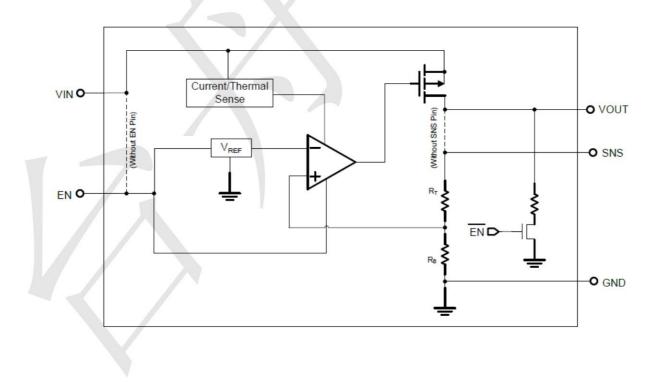
General Description

This production is a low-dropout (LDO) voltage regulator with enable function that operates from a 1.2V to 5.5V supply. It provides up to 300mA of output current in miniaturized packaging. The feature of 20μ A low quiescent current and 0.5μ A shutdown current are ideal for the battery application with long service life. The other features include current limit function, over temperature protection and output discharge function.

Ordering Information



20uA Ig, 300mA Low- Dropout Linear Regulator


www.sot23.com.tw

Pin Configuration

Pin No **Pin Name Pin Function** VIN Input of Supply Voltage. 1 2 GND Ground 3 Enable Control Input. EN NC No Internal Connection. 4 5 VOUT Output of the Regulator

BLOCK DIAGRAM

20uA Ig, 300mA Low- Dropout Linear Regulator

www.sot23.com.tw

ABSOLUTE MAXIMUM RATINGS

VIN Pin to GND Pin Voltage		-0.3V to 6.5V
VOUT Pin and EN Pin to GND Pin Voltage		0.3V to 6V
VOUT Pin to VIN Pin Voltage		6V to 0.3V
Storage Temperature Range		-60°C~150°C
Lead Temperature (Soldering, 10 sec)		260°C
Junction Temperature		150°C
Operating Ambient Temperature Range T _A		40°C~85°C
Thermal Resistance Junction to Case, R0Jc		
Thermal Resistance Junction to Ambient, $R\theta_{JA}$	SOT23-5 SOT23-5	

Electrical Characteristics (T =25°C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Fixed Output Voltage Range	Vout		0.8		3.45	V
DC Output Accuracy		I _{LOAD} = 1mA	_2		2	%
	x	$0.8V \leq V_{OUT} < 1.05V$		0.7	0.97	
		$1.05V \leq V_{OUT} < 1.2V$	-	0.5	0.92	
		$1.2V \leq V_{OUT} < 1.5V$		0.4	0.57	
		$1.5V \leq V_{OUT} < 1.8V$		0.3	0.47	
Dropout Voltage (I _{LOAD} = 300mA) (Note 5)	VDROP	$1.8V \leq V_{OUT} < 2.1V$		0.24	0.33	V
(ILOAD - SUUTIA) (NOTE S)		$2.1V \leq V_{OUT} < 2.5V$		0.21	0.3	
		$2.5V \leq V_{OUT} < 2.8V$		0.18	0.25	
		$2.8V \leq V_{OUT} < 3V$	8771	0.16	0.23	
		$3V \leq V_{OUT}$		0.15	0.2	
Dropout Voltage (I _{LOAD} = 200mA) (Note 6)	VDROP	$1.8V \le V_{OUT} < 2.1V$		0.16	0.2	V
V _{CC} Consumption Current	IQ	$eq:load_load_load_load_load_load_load_load_$		20		μA

(V_{OUT} + 1 < V_{IN} < 5.5V, T_A = 25°C, unless otherwise specified)

20uA IQ,300mA Low- Dropout Linear Regulator

www.sot23.com.tw

Paramet	er	Symbol	Test Conditions		Min	Тур	Max	Unit								
Shutdown GND Cu (Note 7)	rrent		V _{EN} = 0V			0.1	0.5	μA								
Shutdown Leakage (Note 7)	Current		V _{EN} = 0V, V _{OUT}	= 0V	/	0.1	0.5	μA								
EN Input Current		IEN	V _{EN} = 5.5V				0.1	μA								
				$1.2V \leq V_{IN} < 1.5V$		0.3	0.6	%								
Line Regulation		ΔLINE	ILOAD = 1mA	$1.5V \leq V_{IN} < 1.8V$		0.15	0.3									
				$1.8V \le V_{IN} \le 5.5V$		0.13	0.35	1								
Load Regulation		ALOAD	1mA < I _{LOAD} < 300mA		-	0.5	1	%								
Power Supply Reje	ction Ratio	PSRR	V _{IN} = 3V, I _{LOAD} = 50mA, Cout = 1μF, Vout = 2.5V, f = 1kHz			75	-	dB								
			Cout = 1μ F, $I_{LOAD} = 150$ mA, Vout = $0.8V$ Vout = $1.2V$			38	-									
Output Voltage Noi						46										
Output Voltage Noi	se		100kHz, Vout = 1.8V	BW = 10Hz to Vout = 1.8V 100kHz, Vout = 3.3V		48		μVrms								
			$V_{IN} = V_{OUT} + 1V$			<mark>51</mark>	1									
Output Current Lim	it	I _{LIM}	V _{OUT} = 90% of V _{OUT(NOM)}		350	600	1	mA								
Enable Threshold	H-Level	VENH	V _{IN} = 5V		0.5	0.7	0.9	v								
Voltage	L-Level	VENL	V _{IN} = 5V		0.4	0.65	0.85	v								
Thermal Shutdown Temperature			I_{LOAD} = 30mA, $V_{IN} \ge 1.5V$		I_{LOAD} = 30mA, $V_{IN} \ge 1.5V$		I_{LOAD} = 30mA, $V_{IN} \ge 1.5V$		SD I _{LOAD} = 30mA, V _{IN} ≥ 1.5V		$T_{SD} \qquad I_{LOAD} = 30 mA, V_{IN} \ge 1.5 V$			150		°C
Thermal Shutdown	Hysteresis	ΔT_{SD}				20		°C								
Discharge Resistar	nce		EN = 0V, V _{OUT} =	0.1V		80		Ω								

20uA IQ, 300mA Low- Dropout Linear Regulator

www.sot23.com.tw

TYPICAL APPLICATION

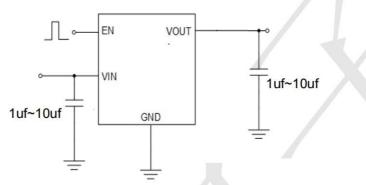
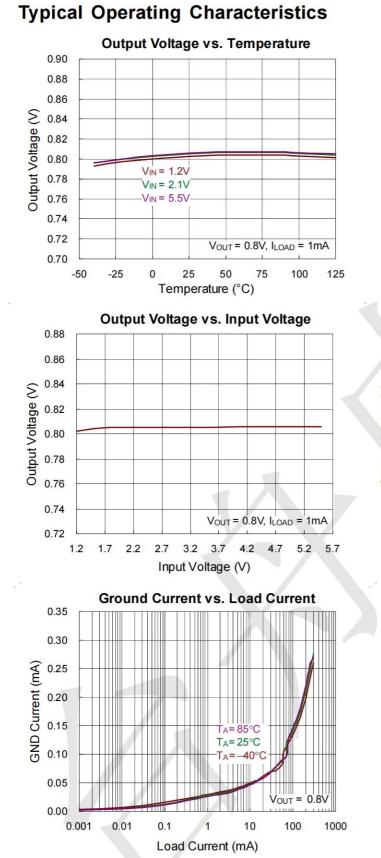
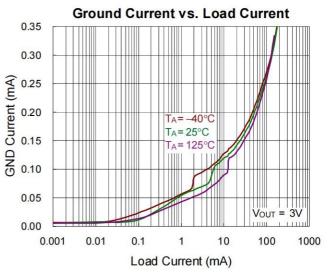
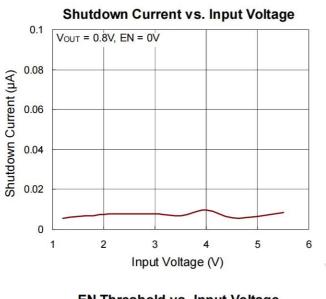



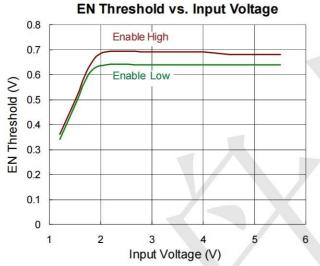
Figure 2: Application circuit of Fixed VOUT LDO with enable function


20uA IQ,300mA Low- Dropout Linear Regulator

www.sot23.com.tw

Output Voltage vs. Temperature 3.40 3.38 3.36 $V_{IN} = 3.8V$ VIN = 4.5V $V_{IN} = 5.5V$ 3.24 3.22 VOUT = 3.3V, ILOAD = 1mA 3.20 0 25 -25 50 75 100 125 -50 Temperature (°C)


Output Voltage vs. Load Current 1.00 0.95 0.90 Output Voltage (V) 0.85 0.80 $V_{IN} = 3V$ 0.75 $V_{IN} = 5V$ 0.70 0.65 0.60 0.55 ILOAD = 0mA to 300mA 0.50 150 200 250 0 50 100 300 Load Current (mA)



20uA IQ,300mA Low- Dropout Linear Regulator

www.sot23.com.tw

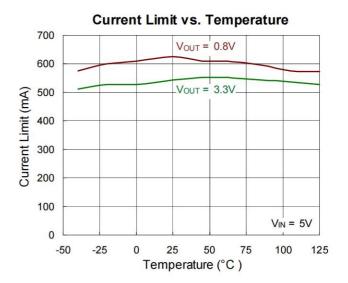
Dropout Voltage vs. Temperature 0.22 Vout = 2.85V 0.20 $I_{LOAD} = 300 \text{mA}$ 0.18 0.16 Dropout Voltage (V) 0.14 LOAD = 200mA 0.12 0.10 0.08 ILOAD = 100mA 0.06 0.04 LOAD = 10mA 0.02 0.00

25

Temperature (°C)

50

75


0

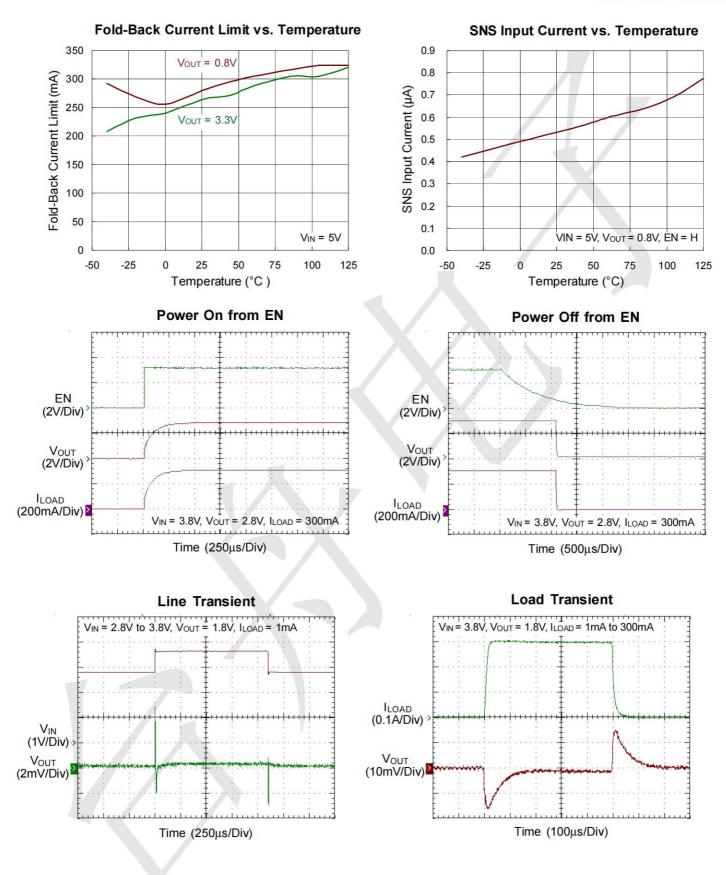
-25

-50

Shutdown Leakage Current vs. Temperature 0.10 VOUT = 0.8V, EN = 0V Shutdown Leakage Current (µA) 0.08 0.06 0.04 VIN = 1.8V 0.02 $V_{IN} = 5.5V$ 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C)

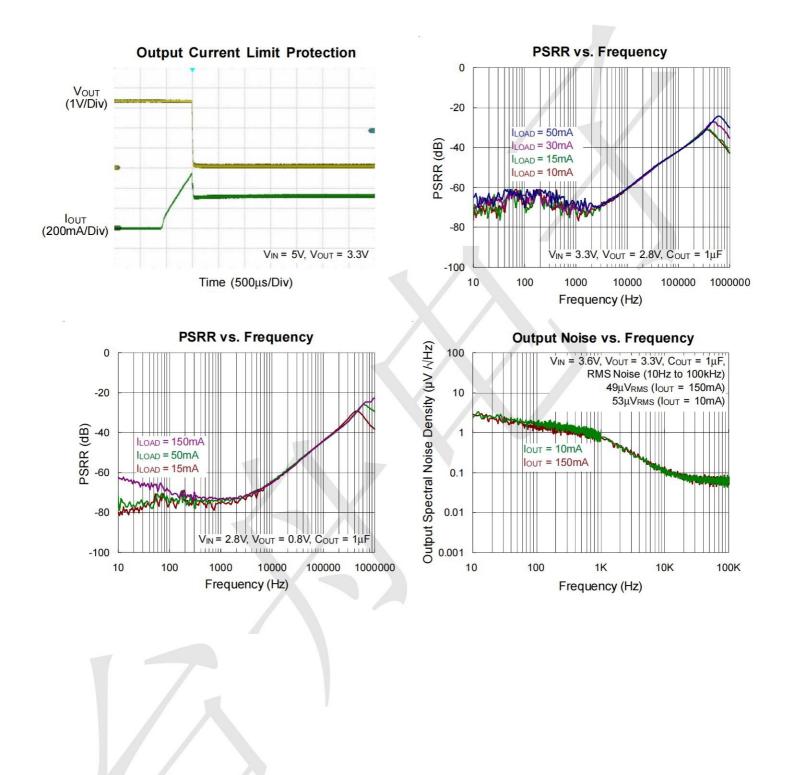
EN Threshold vs. Temperature 0.68 Enable High 0.67 () 0.66 0.65 0.64 0.63 Enable Low 0.62 $V_{IN} = 5.5V$ 0.61 -50 -25 0 25 50 75 100 125 Temperature (°C)

7


125

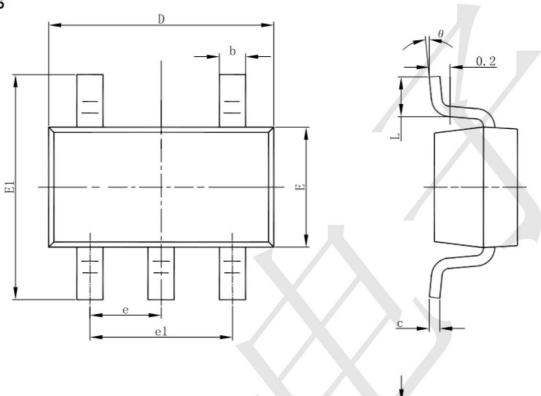
100

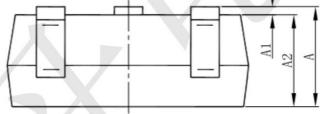
20uA IQ,300mA Low- Dropout Linear Regulator


www.sot23.com.tw

20uA Ig, 300mA Low- Dropout Linear Regulator

www.sot23.com.tw




20uA IQ,300mA Low- Dropout Linear Regulator

www.sot23.com.tw

Package informantion SOT23-5

Cumb a l	Dimensions In	Millimeters	Dimensions	In Inches	
Symbol Min		Max	Min	Max	
A	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(BSC)	0.037(BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by TECH PUBLIC manufacturer:

Other Similar products are found below :

LV56831P-E LV5684PVD-XH MCDTSA6-2R L7815ACV-DG PQ3DZ53U LV56801P-E TLE42794G L78L05CZ/1SX L78LR05DL-MA-E 636416C 714954EB BA033LBSG2-TR LV5680P-E L78M15CV-DG TLS202B1MBV33HTSA1 L79M05T-E TLS202A1MBVHTSA1 L78LR05D-MA-E NCV317MBTG NTE7227 LV5680NPVC-XH LT1054CN8 MP2018GZD-5-Z MP2018GZD-33-Z MIC5281-3.3YMM MC78L06BP-AP TA48LS05F(TE85L,F) TA78L12F(TE12L,F) TC47BR5003ECT TCR2LN12,LF(S TCR2LN28,LF(S TCR2LN30,LF(S TCR3DF295,LM(CT TCR3DF40,LM(CT BA178M20CP-E2 L78M12ABDT LM7812SX/NOPB LR645N3-G-P003 LR645N3-G-P013 ZXTR2005P5-13 SCD7812BTG TCR3DF335,LM(CT ZXTR2012K-13 TLE42994E V33 ZXTR2008K-13 ZXTR2005K-13 L88R05DL-E ADP3300ARTZ-2.7RL7 LM120K-15/883 IFX54441LDVXUMA1