Table of Contents

KILOVAC WD Series, DIN Rail or Screw Mounted Protective Relays Introduction 11-2
KILOVAC WD25 Paralleling Relays 11-3
KILOVAC WD2759 Over/Undervoltage Relays 11-4, 11-5
KILOVAC WD32 Reverse Power Relays 11-6, 11-7
KILOVAC WD47 Phase Sequence Relays 11-8
KILOVAC WD5051 10 and 30 Overcurrent Relays 11-9, 11-10
KILOVAC WD81OU Over/Underfrequency Relays 11-11
Voltage Sensitive Relays
WUV/WOV DC Series 11-12
WUV/WOV Series 11-13
WUVT/WOVT Series 11-14
WOUV DC Series, Over/Undervoltage 11-15
WOUVT Series, Over/Undervoltage 11-16
250 Series, Over/Undervoltage 11-17
D100X Series, Close Differential 11-18
D101X Series, 3 Phase Adjustable, Close Differential 11-19
Reverse Power Relay
700 Series w/ Adjustable Time Delay 11-20
Phase Failure Relay
1000 Series 11-21
Phase Sequence Relay 900 Series 11-22
Current Balance Relay
WCB Series 11-23
Current Sensitive Relays
WC1 \& WCT1 Series, Overcurrent 11-24
WC3 \& WCT3 Series, Overcurrent 11-25
Current Differential Relay
WCD Series 11-26
Paralleling Relays
1800 Series 11-27
Selection Guide 11-27
Frequency Sensitive Relays
WOF \& WUF Series 11-28
WOUF Series, Over/Underfrequency 11-29
20-000 Series 11-30
25-000 Series 11-31
20-050-19 Series (Voltage/Frequency) 11-32
Ground Fault Relays
WGD Series - Floating Ground 11-33
WC1G Series - Grounded 11-34
Additional Relays $.11-35-11-43$

Catalog 5-1773450-5	Dimensions are shown for	Dimensions are in millimeters	USA: +1 800 5226752
Revised 3-13	reference purposes only.	unless otherwise specified.	Asia Pacific: +8604008206015
	Specifications subject		UK: +44800267666
www.te.com	to change.		

KILOVAC WD Series, DIN Rail or Screw Mounted Protective Relays

Product Facts

■ WD25 Paralleling (Synch Check) Relays
■ WD2759 Over/undervoltage Relays
■ WD32 Reverse Power Relays
■ WD47 Phase Sequence Relays
■ WD5051 Single- or ThreePhase Overcurrent Relays

■ WD810U Over/Underfrequency Relays
■ File E58048, DIN EN50022-35

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

The WD series offers several different models of protective relays in a common package that is suitable for either DIN rail or screw mounting. These flexible, multifunction devices offer user selectable voltages, sense currents and frequencies. Adjustable time delays are standard. This allows a single part number to be suitable for multiple applications, thereby reducing inventory costs.

Specifications Common to

 All ModelsPower Consumption -
2.5VA, maximum.

Contact Ratings -

5 amps, resistive, at 120VAC.
5 amps, resistive, at 30VDC.
Isolation from Control to Sense Inputs - $2,500 \mathrm{VAC}$.
Mechanical Life -
10 million operations.
Shock - 10g.
Vibration - 0.062 (1.57) double amplitude at $10-55 \mathrm{~Hz}$.
Terminals - M 3.5 screws.
Maximum Wire Size - 2×24 AWG
(2.5mm²) solid to DIN 46288 or 2×16 AWG ($1.5 \mathrm{~mm}^{2}$) stranded w/end sleeves. Operating Temperature Range -$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Enclosure - Plastic case (not sealed).
Mounting Options - Snap mounts on standard DIN rail (DIN-EN 50022-35) or panel mounts with M4, M5, \#8 or \#10 screws.
Weight — 14.4 oz. (400g) approximately.

Installation and Maintenance

 InformationInstallation - To mount the WD series protective relay on a DIN rail, hook the top edge of the cutout on the base of the case over one edge of the DIN rail, then press the opposite side of the cutout containing the release clip over the opposite side of the DIN rail. To remove or reposition the relay, lever the release clip and move the relay as required. WD series relays should be installed in a dry location where the ambient temperature will be within the operating temperature range.

Outline Dimensions

KILOVAC WD25 Paralleling Relays

Product Facts
 - Function 25
 ■ ANSI/IEEE C37.90-1978

WD25 Operation

WD25 paralleling relays are used to ensure that two circuits are synchronized. When voltage, phase relationship and frequency are within the selected synchronizing limits, the output relay will energize. The WD25 paralleling relay allows for a generator to be brought online without damage or system disturbance. WD25 series with a "dead bus" feature will energize for a synchronized condition or an "on line" generator, "dead bus" condition. This "dead bus" feature allows the generator to energize a dead bus. The "double dead bus" feature permits paralleling of two buses when: (a) both the line voltages are equal and in phase, or (b) when either bus is "hot" and the other bus is "dead."

WD25 Specifications

 Nominal Operating Range -$120,208,277$ or 480 VAC, selectable. Maximum Sensing Range 575VAC.
Nominal Frequency Range -$40-400 \mathrm{~Hz}$.

Contact Form - 2 form C (DPDT).

WD25 Calibration

The calibration marks on the faceplate are provided only as guides. Proper calibration requires using an accurate voltmeter. Use the following procedure to calibrate the WD25:

1. Remove the cover.
2. Adjust the SYNC VOLTAGE control fully counterclockwise (CCW). Apply nominal voltage to the LINE B (bus) sensing terminals.
3. Apply the maximum desired synchronization voltage to the LINE A (generator) terminals. This voltage should be in phase with LINE B (bus) voltage and have the same frequency.
4. Slowly adjust the SYNC VOLTAGE control clockwise (CW) until the relay energizes.

Sense Voltage

Voltage (nominal)	120	208	277	480
Synch Voltage (\% of nom.)	$6-30 \%\left(\approx 4^{\circ}-20^{\circ}\right.$ electrical degree)			
Dead Bus Voltage (\% of nom.)	$10-70 \%$ (Dead Bus)			

Control Voltage

Model WD25	-0×1	-0×2	-0×3
Input Voltage (VDC)	18 to 54	13.5 to 32	100 to 200
Input Voltage (VAC)	-	-	100 to 140

WD25 Controls

WD25 Connections

WD25 Typical Hookup

NOTE: For single dead bus option, connect the generator to $1 \& 3$ and the bus to 5 \& 7 .

KILOVAC WD2759 Over/Undervoltage Relays

Product Facts
- Function 27/59
■ ANSI/IEEE C37.90-1978

WD2759 Operation

WD2759 AC voltage sensing relays provide voltage monitoring and protection in AC systems from 50 to 400 Hz . Sensing voltages, number of phases, over and undervoltage setpoint, and time delays are user configured. WD2759 voltage relays operate when the externally adjustable trip point is reached. An external time delay control is provided with an adjustment of .5 to 10 seconds. This time delay may be used to prevent false tripping when there are slight variations in the voltage supply. On overvoltage (OV) the output relay energizes when the input signal exceeds the trip point. On undervoltage (UV) the output relay energizes when the input signal goes below the trip point. A green LED indicates power to the relay. Red LED lights indicate the state of the undervoltage and overvoltage trips.

Sense Voltage

Voltage (nominal)	120	208	277	480
UV Adjustment Range	$72-120$	$125-208$	$166-277$	$288-480$
OV Adjustment Range	$120-168$	$208-291$	$277-388$	$480-672$

Control Voltage

Model WD2759	-001	-002	-003
Input Voltage (VDC)	18 to 54	13.5 to 32	100 to 200
Input Voltage (VAC)	-	-	100 to 140

WD2759 Specifications

Nominal Operating Range -
120, 208, 277 or 480 VAC, selectable.

Maximum Sensing Range -

 700VAC.
Nominal Frequency Range -

 $50-400 \mathrm{~Hz}$Contact Form - 1 form C (SPDT) for undervoltage and 1 form C (SPDT) for overvoltage.
Time Delay Adjustment 0.5 to 10 sec

WD2759 Calibration

The calibration marks on the faceplate have a maximum error of 10% and are provided only as guides. Proper calibration requires using an accurate voltmeter in parallel with the input signal. Use the following procedure to calibrate your relay.
OVER VOLTAGE

1. Remove cover.
2. Adjust the TRIP SET control fully clockwise (CW) and the TIME DELAY control fully counterclockwise (CCW).
3. Apply the desired trip voltage to the relay.
4. Slowly adjust the TRIP SET control CCW until the relay trips.
5. Remove the applied voltage (do not change the voltage level) and set the TIME DELAY control to the desired time delay.
6. Apply the trip voltage to the relay and measure the time to trip.
7. Adjust the TIME DELAY and repeat steps 4 and 5 until you have the desired time delay.

UNDER VOLTAGE

1. Remove cover.
2. Adjust the TRIP SET control fully CCW and the TIME DELAY control fully CCW.
3. Decrease the applied sensing voltage from the nominal value until the desired tripping voltage is reached
4. Slowly adjust the TRIP SET control CW until the relay trips.
5. Set the TIME DELAY control to the desired time delay and apply nominal voltage to the relay.
6. Step down the applied voltage from nominal to a level jest below the trip level set in Step 3 and measure the time delay.
7. Adjust the TIME DELAY and repeat steps 4 and 5 until the desired time delay is achieved.

Ordering Information

Typical Part Number \quad WD 2759 -002

1. Basic Series:

WD = DIN mount Protective Relay.

2. Type:

2759 = Over/Undervoltage Relay.
3. Control Voltage:
$001=18$ to 54 VDC
$002=13.5$ to 32 VDC
$003=100-200 \mathrm{VDC}$ or $100-140 \mathrm{VAC}$.
Our authorized distributors are more likely to stock these items.
WD2759-003

KILOVAC WD2759 Over/Undervoltage Relays (Continued)
WD2759 Controls

WD2759 Connections

WD2759 Typical Hookup

KILOVAC WD32 Reverse Power Relays

Product Facts

■ Function 32

WD32 Operation

WD32 reverse power relays are used to monitor the direction of power from AC generators. This is accomplished by measuring I cos q. If current from the generator is reversed and exceeds the adjustable setting, the relay will trip. A 0.5 to 20 second time delay is provided. A correct setting of the trip point and time delay will prevent motorizing the generator and prevent tripping during transients that occur while synchronizing. A POWER LED indicates the condition of the power supply and a REVERSE POWER TRIP LED indicates the output status of the relay.

WD32 Specifications

Nominal Operating Range 120 to 480 VAC, 1 or 3 phase.
Maximum Sensing Range 575VAC.
Nominal Sensing Current - 5A. Nominal Frequency Range -WD32-00X - 40-400 Hz.; WD32-01X - 60 Hz .
Contact Form - 2 form C (DPDT).
Time Delay Adjustment 0.5 to 20 sec .

Sense Current - Reverse Power Trip: 0.2 to 1.0 A (4-20\% of nominal sense current).

Control Voltage

Model WD32	-001	-002	-003
Input Voltage (VDC)	18 to 54	13.5 to 32	100 to 200
Input Voltage (VAC)	-	\sim	100 to 140

WD32 Calibration

The calibration marks on the faceplate have a maximum error of 10% and are provided only as guides. Proper calibration requires using an accurate Current Meter in series with the input current. Use the following procedure to calibrate your relay.
REVERSE POWER

1. Remove cover.
2. Adjust the TRIP SET control fully clockwise (CW) and the TIME DELAY control fully counterclockwise (CCW)
3. Apply the desired trip current to the relay. NOTE: for the Reverse Power (WD32-00X) a resistive load must be used and for the Reverse kVAR (WD32-01X) an inductive load must be used.
4. Slowly adjust the TRIP SET control CCW until the relay trips.
5. Remove the applied Current and set the TIME DELAY control to the desired time delay.
6. Re-apply the Current (10% more than the trip current) to the relay and measure the time to trip.
7. Adjust the TIME DELAY and repeat steps 4 and 5 until you have the desired time delay.

Ordering Information

4. Control Voltage:

$1=18$ to 54 VDC
$2=13.5$ to 32 VDC
$3=100-200 \mathrm{VDC}$ or 100-140VAC.

Our authorized distributors are more likely to stock these items.

WD32-003
WD32-011

KILOVAC WD32 Reverse Power Relays (Continued)

WD32 Controls

WD32 Connections

WD32 Typical Hookup

BI-DIRECTIONAL AC OR DC INPUT

BI-DIRECTIONAL AC OR DC INPUT

BI-DIRECTIONAL AC OR DC INPUT

KILOVAC WD47 Phase Sequence Relays

Product Facts

- Function 47

■ ANSI/IEEE C37.90-1978

WD47 Operation

WD47 phase sequence relays are designed to monitor the correct phase rotation and loss of phase of three phase ac systems from 50 to 400 Hz . An incorrect phase sequence or loss of any phase will cause the WD47 to pickup. When the phase sequence is corrected or the lost phase is restored the contacts dropout. Red LED's light to indicate a fault condition. A green LED indicates power to the relay. The WD47 is often used to detect reverse phase rotation or loss of phase to generators, busses, motors, and transformers.

WD47 Specifications Nominal Operating Range 120 to 480 VAC
Maximum Sensing Range 575VAC.
Nominal Frequency Range -$40-400 \mathrm{~Hz}$.
Contact Form - 2 form C (DPDT).
WD47 Calibration
The WD47 has no adjustments and no calibration is necessary. Proper operation may be verified as follows:

1. Apply a nominal, three-phase input with the correct phase sequence. The output relay should dropout and the green LED should light.
2. Apply a nominal, three-phase input with an incorrect phase sequence. The output relay should pickup and the red LED should light.
3. Apply only one or two phases with the correct phase sequence. The output relay should pickup and the red LED should light.

Ordering Information

Our authorized distributors are more likely to stock these items.
WD47-001

Control Voltage

Model WD47	-001	-002	-003
Input Voltage (VDC)	18 to 54	13.5 to 32	100 to 200
Input Voltage (VAC)	-	-	100 to 140

WD47 Controls

WD47 Connections

WD47 Typical Hookup

BI-DIRECTIONAL AC OR DC INPUT

KILOVAC WD5051 10 and 30 Overcurrent Relays

Product Facts

■ Function 5051

WD5051 Operation

WD5051 AC current sensing relays provide current monitoring and protection in AC systems from 50 to 400 Hz. Nominal Sensing Current, Instantaneous Over Current setpoint, Time Over Current setpoint, and Time Over Current time delay are user configured. WD5051 current relays operate when the externally adjustable trip point is reached. An external time over current time delay control is provided with an adjustment of .5 to 20 seconds. This time delay may be used to prevent false tripping when there are slight variations in the sensed current. With control power applied, the Instantaneous Over Current (IOC) contacts pick-up when the input signal exceeds the IOC trip setpoint. Similarly, with control power applied, the Time Over Current (TOC) contacts pick-up after the preset time delay when the Sense Current rises above the TOC trip setpoint. The IOC contacts may also be configured to function as an under current relay. A green LED indicates power to the relay. Red LED lights indicate the state of the IOC and TOC trips.

Sense Current

Current (nominal)	1	3	6	8
IOC	0.2 to 1.2	0.6 to 3.6	1.2 to 7.2	1.6 to 9.6
TOC	0.2 to 1.2	0.6 to 3.6	1.2 to 7.2	1.6 to 9.6

Control Voltage

Model WD5051	-001	-002	-003
Input Voltage (VDC)	18 to 54	13.5 to 32	100 to 200
Input Voltage (VAC)	-	-	100 to 140

WD5051 Specifications

Sense Current Full Scale - 1, 3, 6
or 8 A , selectable.
Maximum Sensing Current -
10A continuous; 30A for 10 sec.; 60 A for 2.5 sec .; 100 A for 0.9 sec. .
Nominal Frequency Range -$50-400 \mathrm{~Hz}$.
Contact Form - 1 form C (SPDT) for IOC and 1 form C (SPDT) for TOC. TOC Time Delay Adjustment 0.5 to 20 sec .

IOC Operate Time (max.) 0.2 sec .

WD5051 Calibration

The calibration marks on the faceplate are provided only as guides. Proper calibration requires using an accurate ammeter in series with the current source. Use the following procedure to calibrate your relay:
OVERCURRENT

1. Remover the cover.
2. Adjust the TRIP SET control fully clockwise (CW) and the TIME DELAY control (TOC only) fully counterclockwise (CCW).
3. Apply the desired trip current to the relay.
4. Slowly adjust the TRIP SET control CCW until the relay trips.
5. Remove the applied current (do not change the current level). Set the TIME DELAY (TOC only) control to the desired time delay.

Ordering Information

Our authorized distributors are more likely to stock these items.
WD5051-001
WD5051-003
WD5051-3-001

Dimensions are shown for reference purposes only. Specifications subject to change.

KILOVAC WD5051 10 and 30 Overcurrent Relays (Continued)
WD5051 Controls

WD5051 Connections

WD5051
Single Phase Model

D5051-3
Three Phase Model

WD5051 Typical Hookup
WD5051
Single Phase Model

CONTROL
BI-DIRECTIONAL AC OR DC INPUT

WD5051-3
Three Phase Model

BI-DIRECTIONAL AC OR DC INPUT

KILOVAC WD810U Over/Underfrequency Relays

Product Facts

- Function 8100

■ ANSI/IEEE C37.90-1978

WD810U Operation

WD81OU frequency relays are used to provide frequency monitoring and protection to generators, buses, power supplies, and other equipment. The relay operates at voltages from 120 to 480 Vac and at nominal frequencies of 50, 60, and 400 Hz . External controls include nominal frequency selection, under frequency (UF) trip set, over frequency (OF) trip set, UF time delay, and OF time delay. A green LED indicates power to the relay. Red LED's indicate the status of the UF and OF trips
WD810U Specifications Nominal Operating Frequency 50,60 or 400 Hz ., selectable.

Maximum Frequency @ 400 Hz .

Nominal - 1000 Hz .
Nominal Sensing Voltage -20-480VAC.
Maximum Sensing Voltage 575VAC.
Contact Form - 1 form C (SPDT) for underfrequency and 1 form C (SPDT) for overfrequency.
Time Delay Adjustment - 0.5 to 10 sec.

WD810U Calibration

The calibration marks on the faceplate are provided only as guides. Proper calibration requires using an accurate frequency meter in parallel with the input signal.
UNDER FREQUENCY

1. Remove the cover.
2. Set the SENSE FREQUENCY to the nominal system frequency. Adjust the Under Frequency TRIP SET fully clockwise (CW) and the TIME DELAY control fully counterclockwise (CCW)
3. Apply the desired trip frequency to the relay.
4. Slowly adjust the TRIP SET control CCW until the relay trips.
5. Set the TIME DELAY control to the desired time delay and apply nominal frequency to the relay.
6. Step down the applied frequency from nominal to just below the trip level set in Step 4 and measure the time delay.
7. Adjust the TIME DELAY and repeat steps 5 and 6 until the desired time delay is set.
OVER FREQUENCY
8. Remove the cover.
9. Set the SENSE FREQUENCY to the nominal system frequency. Adjust the OF TRIP SET and TIME DELAY controls fully counterclockwise (CCW).
10. Apply the desired trip frequency to the relay.
11. Slowly adjust the TRIP SET control clockwise (CW) until the relay trips.
12. Set the TIME DELAY control to the desired time delay and apply nominal frequency to the relay.
13. Step down the applied frequency from nominal to just below the trip level set in Step 4 and measure the time delay.
14. Adjust the TIME DELAY and repeat steps 5 and 6 until the desired time delay is set.

Ordering Information

Sense Frequency

Frequency (nominal)	50	60	400
UF Adjustment Range	$40-50$	$48-60$	$360-400$
OF Adjustment Range	$50-60$	$60-72$	$400-480$

Control Voltage

Model WD81OU	-001	-002	-003
Input Voltage (VDC)	18 to 54	13.5 to 32	100 to 200
Input Voltage (VAC)	-	-	100 to 140

WD810U Controls

WD810U Connections

WD810U Typical Hookup

CONTROL
BI-DIRECTIONAL AC OR DC INPUT

None at present.

Dimensions are shown for reference purposes only. Specifications subject to change.

WUV/WOV DC Series

Product Facts
 ■ ANSI/IEEE C37.90-1978

Undervoltage Models

The relay is energized at normal voltage, N.C. contacts will open and N.O. contacts will close. The relay will de-energize when the voltage drops below the U/V set point.

Overvoltage Models

The relay is de-energized at normal voltage, N.C. contacts are closed and N.O. contacts are open. The relay will energize, when the voltage rises above the O/V set point.

Product Specifications

Nominal Voltage - 12 VDC to 560 VDC
Drop-out Point (u/v models) -
70-100\% of nominal voltage, screwdriver adjustable
Pick-Up Point (o/v models) -
100-125\% of nominal voltage, screwdriver adjustable
Output Contacts - One set N.O. One set N.C.

Contact Ratings -

5 amp resistive at 120 VAC or 28 VDC
Operating Temperature Range -$-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Temperature Effects - Less than 1% voltage drift over the temperature range

Power Consumption -

12 to 60 VDC models - 1 W max. 120 to 305 VDC models - 2 W max 405 to 470 VDC models - 3 W max. 560 VDC model - 4 W max.
Time Delay - A short duration delay is provided to prevent nuisance tripping due to momentary dips or surges in voltage. The drop-out delay, following a voltage fault is 75 to 100 milliseconds.

Notes:

1. Remove black screws for access to the O/V and U/V trip adjustment.
2. Clockwise rotation of the adjustment potentiometer will raise the voltage trip point.
3. The adjustments are by means of a single turn potentiometer. Use a small screwdriver and do not force beyond the limit stops.

Ordering Information

Sample Part Number	WOV-12DC -A
Type:	
WOV - Overvoltage	
WUV - Undervoltage	
Line Voltage VDC	,
12DC 125DC	
18DC 240DC	
24DC 250DC	
28DC 305DC	
32DC 405DC	
48DC 430DC	
60DC 470DC	
120DC 560DC	
Options:	

Blank - Standard
A $=2$ Form A Contacts
B $=2$ Form B Contacts
H = 125 VDC Contacts
$P=$ Transient Protection

Time Curves DC Overvoltage Relays

Transient Protection - All voltage relays will withstand momentary voltage surges of twice the nominal rated input voltage (standard).
Option "P" provides additional transient protection which complies with the requirements of ANSI//EEE C37.90-1978
Consult factory for additional models.

Catalog 5-1773450-5 Revised 3-13 www.te.com	Dimensions are shown for reference purposes only. Specifications subject	Dimensions are in millimeters unless otherwise specified.	USA: +1 8005226752 Asia Pacific: +86 04008206015 UK: +44 800267666	For additional support numbers please visit www.te.com

WUV/WOV Series

Product Facts
 - Function 27/59
 ■ ANSI/IEEE C37.90-1978
 ■ UL File No. E58048
 ■ CSA File No. LR61158

Voltage sensitive relays are available for both $A C$ and DC applications for over/undervoltage protection. Combination over/undervoltage relays provide bandpass capabilities. AC relays are either single or three-phase type. Three phase models are designed to sense the average of the three phases or the highest single phase. Voltage trip points are screwdriver adjustable, and operation is time-delayed so that momentary voltage transients will not cause nuisance tripping.

Note: Dimensions in inches. Multiply values by 25.4 for dimensions in mm .

Product Specifications

Nominal Voltage - 120 VAC to 575
VAC
Phase - Single or Three
Line Frequency - $50-400 \mathrm{~Hz}$
Pick-up to Drop-out Differential 2.5\% maximum

Drop-out Point (u/v models) -70-100\% of nominal voltage, screwdriver adjustable
Pick-Up Point (o/v models) -100-125\% of nominal voltage, screwdriver adjustable
Output Contacts - One set N.O., One set N.C.

Contact Ratings -

5 amp resistive at 120 VAC or 28 VDC Operating Temperature Range -$-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Power Consumption -
2 VA maximum
Time Delay - $150-300 \mathrm{~ms}$ (UV Model)
Minimum Life - 500,000 operations

Notes:

1. Remove black screw for access to the voltage trip adjustment.
2. Clockwise rotation of the adjustment potentiometer will raise the voltage trip point.

Three Phase

Ordering Information

Sample Part Number	WUV -1
Type:	
WUV - Undervoltage	
WOV - Overvoltage	

No. Phases
1 = Single
3 = Three
Line Voltage VAC
120416
208440
220460
230480
$240 \quad 525$
380575
Options
P - Transient Protection
A - Two Normally Open Contacts
B - Two Normally Closed Contacts
H-125VDC, 3A Contacts

Transient Protection - All voltage
relays will withstand momentary voltage surges of twice the nominal rated input voltage (standard).
Option "P" provides additional transient protection which complies with the requirements of ANSI//EEE C37.90-1978
Consult factory for additional models.

WUVT/WOVT Series

Product Facts
 - Function 27/59
 ■ ANSI/IEEE C37.90-1978
 ■ UL File No. E58048
 ■ CSA File No. LR61158

Undervoltage Models

The relay is energized at normal voltage, N.C. contacts will open and N.O. contacts will close. The relay will de-energize when the voltage drops and remains below the U/V set point for the duration of the set time delay.

Overvoltage Models

The relay is de-energized at normal voltages, N.C. contacts are closed and N.O. contacts are open. The relay will energize, when the voltage rises and remains above the O / V set point for the duration of the set time delay.

Note: Dimensions in inches. Multiply values by 25.4 for dimensions in mm .

Single Phase

Ordering Information

$$
\begin{aligned}
& \text { Type: } \\
& \text { WUVT - Undervoltage } \\
& \text { WOVT - Overvoltage } \\
& \text { No. Phases } \\
& 1=\text { Single } \\
& 3=\text { Three (line to line) }
\end{aligned}
$$

Line Voltage VAC

100240
115380

120416
150440
200460
208480
220525
230575
Options:
Blank - Standard
A $=2$ Form A Contacts
B $=2$ Form B Contacts
$\mathrm{H}=125 \mathrm{VDC} 3 \mathrm{~A}$ Contacts
P = Transient Protection

Product Specifications

Nominal Voltage - 100 VAC to 575
VAC
Phase - Single or Three
Line Frequency - $50-400 \mathrm{~Hz}$
Pick-up to Drop-out Differential 1\% typical
Drop-out Point (u/v models) -70-100\% of nominal voltage, screwdriver adjustable
Pick-Up Point (o/v models) -100-125\% of nominal voltage, screwdriver adjustable
Output Contacts - One set N.O., One set N.C.

Contact Ratings -

5 amp resistive at 120 VAC or 28 VDC
Operating Temperature Range -
$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Power Consumption -
3 VA maximum
Time Delay - 0.5 to 20 seconds, screwdriver adjustable
Voltage Reset - The reset is automatic when voltage returns to normal.

Notes:

1. Remove black screws for access to the voltage and time delay adjustment potentiometer
2. Clockwise rotation of the voltage adjust potentiometer will raise the voltage trip point.
3. Clockwise rotation of the time adjust potentiometer will increase the time delay (Pick-up time for O/V models, drop-out time for U/V models).
4. The adjustments are single turn potentiometers, use a small screwdriver and do not force beyond the limit stops.
5. On U/V models, when the voltage falls to approximately 33% of nominal or below, the relay will drop out in 0.150 to 0.300 sec onds, regardless of the time delay setting.

Transient Protection - All voltage relays will withstand momentary voltage surges of twice the nominal rated input voltage (standard).
Option "P" provides additional transient protection which complies with the requirements of ANSI/IEEE C37.90-1978
Consult factory for additional models.

WOUV DC Series, Over/Undervoltage

Product Facts
 ANSI/IEEE C37.90-1978

The relay will energize at normal voltage conditions. The normally open contacts will close, and the normally closed contacts will open. The relay will de-energize during over or undervoltage conditions. Reset is automatic when the voltage returns to normal.

Note: Dimensions in inches. Multiply values by 25.4 for dimensions in mm .

Product Specifications

Nominal Voltage ($\pm 10 \%$) 12 VDC to 560 VDC
Drop-out Point (u/v models) -
70-100\% of nominal voltage, screwdriver adjustable
Pick-Up Point (o/v models) -100-125\% of nominal voltage, screwdriver adjustable
Output Contacts - One set N.O. One set N.C.

Contact Ratings -

5 amp resistive at 120 VAC or 28 VDC
Operating Temperature Range -$-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Temperature Effects -

Less than 1% voltage drift over the temperature range.

Power Consumption -

12 to 60 VDC models - 1 W max. 120 to 305 VDC models - 2 W max. 405 to 470 VDC models - 3 W max. 560 VDC Model - 4 W max.
Time Delay - A short duration delay is provided to prevent nuisance tripping due to momentary dips or surges in volt age. The drop-out delay, following a voltage fault is 75 to 100 milliseconds

Notes:

1. Remove black screws for access to the O/V and U/V trip adjustment.
2. Clockwise rotation of the adjustment potentiometer will raise the voltage trip point.
3. The adjustments are by means of a single turn potentiometer. Use a small screwdriver and do not force beyond the limit stops.

Ordering Information

Blank - Standard
A = 2 Form A Contacts
B $=2$ Form B Contacts
H = 125 VDC Contacts
$P=$ Transient Protection

Transient Protection - All voltage
relays will withstand momentary voltage surges of twice the nominal rated input voltage (standard).
Option "P" provides additional transient protection which complies with the requirements of ANSI/IEEE C37.90-1978
Consult factory for additional models.

WOUVT Series, Over/Undervoltage

Product Facts
 - Function 27/59
 ■ ANSI/IEEE C37.90-1978

Voltage sensitive relays are available for both AC and DC applications for overvoltage and undervoltage protection. Combination over/undervoltage relays provide band-pass capabilities. AC relays are either single or three-phase type. Three phase relays are designed to sense the average of the three phases. Voltage trip points are screwdriver adjustable, and operation is time-delayed so that momentary voltage transients will not cause nuisance tripping.

Operation

The relay will energize at normal voltage condition. The normally closed contact (Form B) will open and the normally open (Form A) will close. The relay will deenergize after time delay when over or undervoltage condition is reached.

Note: Dimensions in inches. Multiply values by 25.4 for dimensions in mm .

Single Phase Models

Three Phase Models

Product Specifications

Nominal Voltage - 120 VAC to 575 VAC
Phase - Single or Three
Line Frequency - $50-400 \mathrm{~Hz}$
Type of Sensing - Average of all three phases
Undervoltage Trip - $70-100 \%$ of nominal voltage, screwdriver adjustable
Overvoltage Trip - 100-125\% of nominal voltage, screwdriver adjustable
Drop-out Time Delay - 0.5 to 20 seconds, screwdriver adjustable
Pick-up to Drop-out Differential 2\% maximum
Output Contacts - One set N.O., One set N.C.
Contact Ratings - 5 amp resistive at 120 VAC or 28 VDC
Operating Temperature Range -
$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Power Consumption -
4 VA maximum

Notes:

1. Remove black screw for access to the voltage trip and time delay adjustment potentiometer
2. Clockwise rotation of the voltage adjustment potentiometer will raise the voltage trip point.
3. Clockwise rotation of the time adjustment potentiometer will increase the drop-out time delay.

Ordering Information

Options:
Blank - Standard
A $=2$ Form A Contacts
B $=2$ Form B Contacts
H = 125 VDC Contacts
P = Transient Protection

Option "H" provides for contacts rating of 3 amps @ 125VDC.
Option "P" provides additional transient protection which complies with the requirements of ANSI/IEEE C37.90-1978 Consult factory for additional models.

250 Series, Over/Undervoltage

Product Facts
■ Function 27/59
■ ANSI/IEEE C37.90-1978

The 250 series relays provide combined Overvoltage and Undervoltage protection in a single compact unit.
Models are available for single phase or three phase applications, and are suitable for either 50 Hz , 60 Hz , or 400 Hz operation. The trip point is adjustable.
A transistorized circuit provides a sharp and accurate response at the preset tripping voltage; unaffected by temperature or frequency variations.

Note: Dimensions in inches. Multiply values by 25.4 for dimensions in mm .

Ordering Information

Product Specifications

Nominal Voltage - See Ordering
Information
Undervoltage Trip - $70-100 \%$ of nominal voltage, screwdriver adjustable
Overvoltage Trip - $100-125 \%$ of nominal voltage, screwdriver adjustable
Pick-up to Drop-out Differential 3\% maximum
Contact Ratings - 5 amp resistive at 120 VAC or 28 VDC
Contact Form - One set N.O., one set N.C.
Operating Temperature Range -$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Notes:

1. Remove screws for access the overvoltage or undervoltage trip adjustments. Clockwise rotation of the adjustment potentiometer will raise the trip point.

Contact Arrangements

NC - Open at nominal voltage. Closed at Overvoltage and Undervoltage
NO - Closed at nominal voltage. Open at Overvoltage and Undervoltage

Consult factory for additional models.

Product Facts

■ ANSI/IEEE C37.90-1978
■ UL File No. E58048
■ CSA File No. LR61158

Close Differential Relays are voltage sensitive. The pickup and drop-out voltage settings are independently adjustable, which allows precise setting of the differential voltage. This relay is available in a wide range of AC and DC voltages. Their primary application is the sensing and control of transfer switches.

Operation

Monitors a single phase AC signal, and is used for undervoltage detection. Has separate pick-up and drop-out voltage settings, providing an adjustable hysteresis.

D100X Series, Close Differential

Product Specifications

Nominal Voltage - AC, Single
Phase, see Ordering Information
Nominal Frequency - 50 to 400 Hz .
Pick-Up Adjustment Range -$67-100 \%$ of nominal voltage
Drop-Out Adjustment Range -
$67-100 \%$ of nominal voltage
Maximum Differential Setting 33% of nominal voltage Minimum Differential Setting 2% of nominal voltage
Output Contacts - Form C (SPDT)
Contact Ratings - 5 Amp resistive at
120 VAC or 28 VDC
Operating Temperature Range -$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Expected Life - 10 million operations
Inverse Time Drop-Out -
The differential relay contains a time delay before operation so that momentary voltage transients do not affect the operation of the relay. The time delay has an inverse time characteristic so that excessive voltage conditions will cause a more rapid drop-out. This time delay is approximately 200 mSec . (12 cycles) at the trip settings and decreases to 30 mSec . at approximately 15% beyond the trip settings.

Notes:

1. Remove black nylon protective screws to gain access to the two internal adjustment potentiometers.
2. Clockwise rotation of the pick-up and drop-out adjustment will raise the voltage trip point.
3. The relay contacts are shown in the de-energized state.

Ordering Information

Sample Part Number $>$ D100X	
Model: L-L Volts	Height
D100X = 120 VAC	2 "
D100-6X = 120 VAC, Spike Suppression	2 "
D100-3X $=208$ VAC	$3.125{ }^{\prime \prime}$
D100-4X $=240$ VAC	$3.125{ }^{\prime \prime}$
D100-8X $=277$ VAC	$3.125{ }^{\prime \prime}$
D100-5X $=480$ VAC	$3.125{ }^{\prime \prime}$
D100-7X $=510$ VAC	$3.125{ }^{\prime \prime}$

Surge Withstand Capability is in
compliance with the requirements of
ANSI/IEEE C37.90B
Consult factory for additional models.

Height

3.125"
$3.125{ }^{\prime \prime}$
$3.125^{\prime \prime}$
$3.125{ }^{\prime \prime}$

D101X Series, 3 Phase Adjustable, Close Differential

Product Facts

■ ANSI/IEEE C37.90-1978
■ UL File No. E58048

- CSA File No. LR61158 (UL)

Close Differential Relays are voltage sensitive. The pickup and drop-out voltage settings are independently adjustable, which allows precise setting of the differential voltage. This relay is available in a wide range of AC voltages. Their primary application is the sensing and control of transfer switches.

Operation

The output contacts will close when the voltage of all three phases is above the pre-set pick-up point, and will open when any one phase drops below its drop-out setting.

Note: Dimensions in inches. Multiply values by 25.4 for dimensions in mm .

Ordering Information

Model	Power Consumption Each Phase	H1 (inches)	H2 (inches)
D101X	2 VA max.	2	$211 / 16$
D101-4X	3 VA max.	$31 / 2$	$43 / 16$
D101-6X	3 VA max.	$31 / 2$	$43 / 16$
D101-7X	4 VA max.	$31 / 2$	$43 / 16$
D101-10X	4 VA max.	$31 / 2$	$43 / 16$

Product Specifications

Nominal Voltage - AC, Three Phase, see Ordering Information
Nominal Frequency - 50 to 500 Hz . Pick-Up Adjustment Range -66-100\% of nominal voltage, screwdriver adjustable
Drop-Out Adjustment Range -66-100\% of nominal voltage, screwdriver adjustable
Output Contacts - SPNO
Contact Ratings - 5 amp resistive at 120 VAC or 28 VDC
Operating Temperature Range -$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Notes:

1. Remove screws for access to pick-up and drop-out trip adjustments.
2. Clockwise rotation of the pick-up and drop-out adjustment will raise the voltage trip point.

Consult factory for additional models.

Product Facts
 ■ Function 32
 ■ ANSI/IEEE C37.90-1978
 ■ UL File No. E58048
 ■ CSA File No. LR61158

Several types of Reverse Power Relays are available including relays sensitive to reverse reactive power (kVAR). KILOVAC is the leading brand of reverse power relays. Our rugged sealed construction provides continuous and reliable operation unaffected by shock, vibration or other severe environments. Reverse Power Relays are used for the protection of generator sets operating in parallel.

700 Series w/ Adjustable Time Delay

Note: Dimensions in inches. Multiply values by 25.4 for dimensions in mm .

Designed for 120, 220 or 266 volt line to neutral connection

Model 720TD (X) thru 724TD (X)

For operation on three phase, three wire

Ordering Information

Sample Part Number	
Type:	
$710 \mathrm{TD}=120 \mathrm{~V}, 220 \mathrm{~V}, 266 \mathrm{~V}$ line to neutral	
720TD = 120V, L-L, 3 Phase	
721TD = 230V, L-L, 3 Phase	
722TD $=380 \mathrm{~V}, \mathrm{~L}-\mathrm{L}, 3$ Phase	
723TD $=460 \mathrm{~V}, \mathrm{~L}-\mathrm{L}, 3$ Phase	
724TD $=575 \mathrm{~V}, \mathrm{~L}-\mathrm{L}, 3$ Phase	
725TD $=416 \mathrm{~V}, \mathrm{~L}-\mathrm{L}, 3$ Phase	
$\begin{aligned} 730 \mathrm{TD}= & 120 \mathrm{~V}, 230 \\ & 120 \mathrm{~V}, \text { Sino } \end{aligned}$	se or

Mounting:

X = Flange
Blank - Stud
Options:
7 = Reverse Inductive, 60 Hz

Product Specifications

Line Voltage -

Model 710TD - $120 \mathrm{~V}, 220 \mathrm{~V}$ or 266 V
line to neutral
Model 730 TD - $120 \mathrm{~V}, 230 \mathrm{~V}, 380 \mathrm{~V}$,
460 V, L-L, 3 Phase or 120 V, Single
Phase, L-N
All models for three phase, three wire sensing are available, see Ordering Information
Line Frequency - $50-500 \mathrm{~Hz}$.
Current Requirements -
0 to 5 amp max direct or from CT with 5 amp secondary
Trip Adjustment -
Screwdriver adjustable 4\% to 20\% (of the 5 amp rating)
Time Delay Adjustment - 0.5 to 20 seconds, screwdriver adjustable
Output Contacts - One set N.O., one set N.C.
Contact Ratings - 5 amp resistive at
120 AC or 28 Vdc

Power Consumption -

Voltage circuit - 2 VA max.
Current circuit - 4 VA max.
Weight -2.75 lbs . max.

Notes:

1. Remove screw for access to the pick-up and time delay adjustments.
2. Clockwise rotation of the pick-up adjustment will raise the reverse trip point.
3. Clockwise rotation of the time adjustment will increase the time delay.
4. Polarity of the voltage and the current connections must be observed for true power sensing.
5. Interchanging connections on terminals 5 and 6 , will cause the output contacts to pick-up on forward power and dropout on no power or reverse power.

Consult factory for additional

 models.
1000 Series

Product Facts

- Function 47

■ ANSI/IEEE C37.90-1978
■ UL File No. E58048
■ CSA File No. LR61158

Phase failure relays protect motors, equipment and personnel from damage or injury caused by open phase, reversed phase sequence, or low voltage in a three phase system. Models are available for 50 and 60 Hz with voltages up to 575 volts. Motor control switchboards are a common application.

Operation

The contacts of the relay will close only when it senses normal conditions of three phase power at the proper phase sequence.
The relay contacts will remain in their normally open position (de-energized) when voltage with incorrect phase sequence is applied, one or more phases are open, or at undervoltage condition.

Note: Dimensions in inches. Multiply values by 25.4 for dimensions in mm .

Ordering Information

X = Flange

Blank - Stud

Product Specifications

Nominal Voltage - See Ordering Information
Voltage Drop-Out - 75% to 100% of nominal, screwdriver adjustable
Pick-Up to Drop-Out Differential 3\% approx.
Ambient Operating Temperature -$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Temperature Drift — $\pm 1 \%$
Time Delay - See Curve
Output Contacts - One set, normally open
Contact Ratings -
10 amp at 28 VDC resistive
10 amp at 230 VAC resistive

Notes:

1. Remove screw for access to the undervoltage adjustment
2. Clockwise rotation of the adjustment potentiometer will raise the drop-out voltage.

Catalog 5-1773450-5	Dimensions are shown for reference purposes only.	Dimensions are in millimeters unless otherwise specified.	USA: +18005226752 Asia Pacific: +8604008206015 Revised 3-13
Specifications subject to change.		UK: +44800267666	

Consult factory for additional models. to change

900 Series

Product Facts
 ■ Function 47

Phase sequence relays are designed to monitor the correct phase rotation of a three phase system. Several models are available from $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$, and 400 Hz with voltages up to 575 volts. High shock relay output and reverse contacts are also available.

Operation

The relay remains de-energized when voltage in the proper phase sequence (A, $B, C)$ is applied, the relay is energized when voltage with incorrect sequence (A, C, B) is applied.

Product Specifications
Input Voltage - See Ordering
Information
Output Contacts - SPDT
Contact Ratings -
5 amp resistive at 120 Vac or 28 Vdc

Note: Dimensions in inches. Multiply values by 25.4 for dimensions in mm .

Ordering Information

X = Flange
Blank - Stud

Consult factory for additional models.

WCB Series

Product Facts

■ Function 60 or 87
■ ANSI/IEEE C37.90-1978
■ UL File No. E58048
■ CSA File No. LR61158

Current Balance Relays are designed to sense unbalanced current flow in a three phase system. The primary application of Current Balance Relays is to protect three phase motors against phase unbalance or phase failure.

Operation

With control voltage applied to the relay, the output contacts will energize when the three phase currents are balanced (including zero currents), and will be de-energize by unbalance currents.

Note: Dimensions in inches. Multiply values by 25.4 for dimensions in mm .

Notes:

1. Remove black screw for access to the trip adjustment.
2. Clockwise rotation of the adjustment potentiometer will raise the unbalance trip point.
3. The output contacts are shown de-energized.

Product Specifications

Line Current - Three Phase, AC current, $50-400 \mathrm{~Hz}$ Direct or from CT. 5 amp continuously
$20 \mathrm{amp}, 30 \mathrm{sec}$.
$200 \mathrm{amp}, 0.10 \mathrm{sec}$.
Control Voltage - See Ordering Information
Unbalanced Trip Point -
Screwdriver adjustable. Adjustment range in accordance with ordering information. (The unbalanced value is defined as the difference between the highest and the lowest phase current).
Drop-Out Time Delay -
0.9 to 1.3 seconds

Surge Withstand Capability -
In compliance with C37.90B ANSI//EEE
Operating Temperature -
$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Burden -

Current input - 5.0 VA ,
Phase Control voltage - 3.0 VA
Contact Ratings -
One set, N.O., One set N.C
5 amp resistive at 120 VAC or 28 VDC

Ordering Information

Trip Adjustment Range
$.5=0.1 \mathrm{amp}$ to 0.5 amps
$1=0.2 \mathrm{amp}$ to 1 amp
$2=0.4 \mathrm{amp}$ to 2 amp
Options:
A = two normally open contacts
B = two normally closed contacts

For additional support numbers please visit www.te.com

WC1 \& WCT1 Series, Overcurrent

Product Facts
 ■ Function 50/51
 ■ ANSI/IEEE C37.90-1978
 ■ UL File No. E58048
 ■ CSA File No. LR61158

Current sensitive relays are available for single and three phase applications. Voltage controlled overcurrent relays protect generators against fault currents below the full rated value, when the fault produces a voltage drop as in the case of short circuits or grounds. Phase balance relays are available to sense and control unbalanced current flow in three phase systems. Current differential relays operate when the differential between two currents exceeds preset values. Over/under current phase-band relays are also available.

Note: Dimensions in inches. Multiply values by 25.4 for dimensions in mm .

Time Delay

Standard Time Delay
(WC1 Series) - A fixed inverse time delay is incorporated in all overcurrent relays and is represented by the typical curves shown.
Adjustable Time Delay
(WCT1 Series) - The time delay is field adjustable. The standard time delay can be increased by any value between 0.5 and 20 seconds.

Product Specifications

Line Current - Single Phase, AC current, $50-400 \mathrm{~Hz}$ Direct or from CT
Control Voltage - See Ordering Information
Trip Point - Screwdriver adjustable. Adjustment range in accordance with ordering information.
Pick-Up to Drop-Out Differential Approximately 0.1 amp.
Overcurrent Allowance -
Maximum of 500% for 0.25 seconds
Surge Withstand Capability In compliance with C37.90B ANSI/IEEE
Operating Temperature -
$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Temperature Drift - $\pm .05 \%$
Burden -
Current input - 1.2 VA ,
Control voltage - 2.5 VA
Contact Ratings -
One set, N.O., One set N.C
5 amp resistive at 120 VAC or 28 VDC

Notes:

1. Remove black screws for access to the current pick-up and the time delay adjustment.
2. Clockwise rotation of the pick-up adjustment will raise the current trip point.
3. Clockwise rotation of the time
delay adjustment, (Type WCT1 only) will increase the time delay.

Ordering Information

Typical Curves (WC1 Series)

Trip Adjustment Range
$1=.2 \mathrm{amp}-1 \mathrm{amp}$
$5=1 \mathrm{amp}$ to 5 amp
$10=2 \mathrm{amp}$ to 10 amp

Other Options

$A=$ Two normally open contacts
$B=$ Two normally closed contacts
See next page for 3-phase types and consult factory for additional models.

Dimensions are in millimeters	USA: +1 8005226752
unless otherwise specified.	Asia Pacific: +8604008206015
	UK: +44 800 267666

For additional support numbers please visit www.te.com

WC3 \& WCT3 Series, Overcurrent

Product Facts

■ Function 50/51
■ ANSI/IEEE C37.90-1978
■ UL File No. E58048
■ CSA File No. LR61158

Current sensitive relays are available for single and three phase applications. Voltage controlled overcurrent relays protect generators against fault currents below the full rated value, when the fault produces a voltage drop as in the case of short circuits or grounds. Phase balance relays are available to sense and control unbalanced current flow in three phase systems. Current differential relays operate when the differential between two currents exceeds preset values. Over/under current phase-band relays are also available.

Note: Dimensions in inches. Multiply values by 25.4 for dimensions in mm .

Time Delay
Standard Time Delay
(WC3 Series) - A fixed inverse time delay is incorporated in all overcurrent relays and is represented by the typical curves shown.

Adjustable Time Delay
(WCT3 Series) - The time delay is field adjustable. The standard time delay can be increased by any value between 0.5 and 20 seconds.

Ordering Information

Trip Adjustment Range
$1=.2 \mathrm{amp}-1 \mathrm{amp}$
$5=1 \mathrm{amp}$ to 5 amp
$10=2 \mathrm{amp}$ to 10 amp
Other Options
A = Two normally open contacts
See previous page for 1-phase models and consult factory for
$B=$ Two normally closed contacts additional models.

Product Specifications

Line Current - Three Phase,
AC current, $50-400 \mathrm{~Hz}$ Direct or from CT
Control Voltage - See Ordering Information
Trip Point - Screwdriver adjustable. Adjustment range in accordance with ordering information.
Pick-Up to Drop-Out Differential Approximately 0.1 amp
Overcurrent Allowance - Maximum of 500% for 0.25 seconds
Surge Withstand Capability -
In compliance with the requirements of ANSI/IEEE
Operating Temperature -
$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Temperature Drift $- \pm 0.05 \% /{ }^{\circ} \mathrm{C}$

Burden -

Current input - 1.2 VA ,
Control voltage - 2.5 VA

Contact Ratings -

One set, N.O., One set N.C.
5 amp resistive at 120 VAC or 28 VDC

Notes:

1. Remove black screws for access to the current pick-up and the time delay adjustment.
2. Clockwise rotation of the pick-up adjustment will raise the current trip point.
3. Clockwise rotation of the time delay adjustment, (Type WCT3 only) will increase the time delay.

Catalog 5-1773450-5 Revised 3-13 www.te.com	Dimensions are shown for reference purposes only. Specifications subject to change.	Dimensions are in millimeters unless otherwise specified.	USA: +1 8005226752 Asia Pacific: +8604008206015 UK: +44 800267666

For additional support numbers please visit www.te.com

WCD Series

Product Facts
■ Function 87
■ ANSI/IEEE C37.90-1978

Current Differential Relays are used for the protection of transformers, motors and generators, by comparing the magnitude of the current entering and leaving the protected circuit. On a given phase winding, any difference between the two currents will indicate an internal fault; the relay will sense the vectorial difference between the two currents of the protected section and will initiate a quick disconnection of the unit, to prevent disastrous consequences.

The relay may also be used to protect internal faults on transformers, such as: ground faults, shorted winding, leakage between primary and secondary, etc. It will sense and compare primary vs. secondary currents, once the turns ratio has been taken into consideration.

Operation

With control voltage applied, the output contacts (shown in the de-energized position) will remain deenergized as long as the difference between the two input currents remains below the preset trip value. The contact will transfer to the energized position when the current difference exceeds the trip value.

172 DIA. 4 MTG. HOLES

Note: Dimensions in inches. Multiply values by 25.4 for dimensions in mm .

Ordering Information

$.5=0.1 \mathrm{amp}$ to 0.5 amp
$1=0.2 \mathrm{amp}$ to 1 amp
2 = 0.4 amp to 2 amp
Options:
A = Two normally open contacts
B = Two normally closed contacts
$\mathrm{H}=$ Contacts rated 3 amp at 125 VDC
$P=$ Transient protection is provided in compliance with ANSI/IEEE C37.90-1978

Product Specifications

Line Current -
Single Phase, AC current, 50-400 Hz
Direct or from CT
5 amp continuously
20 amp 30 seconds
200 amp, 0.10 seconds
Control Voltage - See Ordering
Information
Differential Trip Point -
Screwdriver adjustable. See Ordering
Information
Operating Temperature -
$-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Burden -
Current input - 2.5 VA max.
Control voltage DC -2 W max. AC -2 VA max.

Output Contacts -

One set, N.O., One set N.C.
Contact Ratings -
5 amp resistive at 120 VAC or 28 VDC

Notes:

1. Remove black screws for access to the trip adjustments.
2. Clockwise rotation of the adjustment potentiometer will raise the current differential trip point.
3. The output contacts are shown de-energized.

Catalog 5-1773450-5	Dimensions are shown for	Dimensions are in millimeters	USA: +1 800 5226752
Revised 3-13	reference purposes only. unless otherwise specified.	Asia Pacific: +8604008206015 Specifications subject	
www.te.com	to change.		

imensions are shown for Specifications subject to change.

Consult factory for additional models.

Protective Relays

1800 Series

Product Facts

- Function 25

■ ANSI/IEEE C37.90-1978
■ UL File No. E58048
■ CSA File No. LR61158

Application

These relays are designed for automatic paralleling (synchronizing) of generators. The relays sense the phase angle displacement and the amplitude difference between two voltages and permit paralleling only when both voltages are equal and in phase. A short time delay is provided to assure that the frequencies are essentially the same at the moment of paralleling. The basic series is designed to parallel two or more energized AC generators. The "Dead Bus" type provides paralleling of AC generators to the main bus. They permit electrical connection of an energized generator to an un-energized line (Dead Bus). If the bus is energized, connection of the generator to the bus is permitted only when both are synchronized.

Notes

*Permits paralleling of two generators only when they are "on-line" and their voltages are equal and in phase (synchronized)
**Normally used to permit paralleling of a generator to a bus when: (a) both line voltages are equal and in phase, or: (b) when the generator is "on-line" and the bus is "dead"
***Permits paralleling of two power lines (buses) when: (a) both line voltages are equal and in phase, or: (b) when either bus is "hot" and the other bus is "dead"

Output Contact Options -

1. Two Form A. (Add -A to Model Number)
2. Two Form B. (Add -B to Model Number)

Consult factory for additional models.

Note: Dimensions in inches. Multiply values by 25.4 for dimensions in mm .

A. 3 Phase, 4 Wire System

Connect phase "A" of LINE 1 to terminal 1 Connect phase "A" of LINE 2 to terminal 3 Connect the neutrals to terminals 2 \& 4
B. 3 Phase, 3 Wire or 1 Phase, 2 Wire System

Connect phase "A" of LINE 1 to terminal 1
Connect phase "B" of LINE 1 to terminal 2
Connect phase "A" of LINE 2 to terminal 3
Connect phase "B" of LINE 2 to terminal 4

Selection Guide (Typical Applications)

Sensing Voltage	Series 1800* Generator to Generator	Series 1800DB** Generator to Bus	Series 1800DDB*** Bus to Bus
120 Volts	$1810 X$	1810 DBX	1810 DDBX
230 Volts	1820 X	1820 DBX	1820 DDBX
380 Volts	$1830 X$	1830 DBX	1830 DDBX
460 Volts	$1840 X$	1840 DBX	1840 DDBX
575 Volts	$1850 X$	1850 DBX	1850 DDBX
415 Volts	$1860 X$	1860 DBX	1860 DDBX
277 Volts	$1870 X$	1870 DBX	1870 DDBX

		Condition			Series 1800 Contacts		Series 1800DB Contacts		Series 1800DDB Contacts	
		Energized	Not Energized	Synch.	N.C.	N.O.	N.C.	N.O.	N.C.	N.O.
1	Line 1	X			Open	Close	Open	Close	Open	Close
	Line 2	X		Yes						
2	Line 1	X		No	Close	Open	Close	Open	Close	Open
	Line 2	X		No						
3	Line 1	X			Close	Open	Open	Close	Open	Close
	Line 2		X							
4	Line 1		X		Close	Open	Close	Open	Close	Open
	Line 2		X							
5	Line 1		X		Close	Open	Close	Open	Open	Close
	Line 2	X								

Product Specifications

Sensing Voltage - $120 \mathrm{~V}, 230 \mathrm{~V}$, $277 \mathrm{~V}, 380 \mathrm{~V}, 460 \mathrm{~V}, 575 \mathrm{~V}, \& 415 \mathrm{~V}$
Line Frequency - $50-500 \mathrm{~Hz}$
Pick-Up Adjustment -
External adjustment for field sensing of 10-30\% of nominal input voltage. (Vertical voltage differential of 6 to 18 electrical degrees).
Time Delay — Fixed @ 60 milliseconds is provided to assure that the frequencies of both input lines are sufficiently close to permit paralleling within the preset window.

Output Contacts -

One set N.O., one set N.C.
5 amp resistive at 120 VAC or 28 VDC

Dimensions are shown for reference purposes only. Specifications subject to change.

Product Facts

- Function $810 / \mathrm{U}$

■ ANSI/IEEE C37.90-1978
■ UL File No. E58048
■ CSA File No. LR61158

Application

The output contacts of frequency relays are energized when the frequency exceeds the adjustable set point. Overfrequency and underfrequency relays are available in 50, 60 and 400 Hz . Combination over/underfrequency "band pass" relays are also available. These are energized at rated frequency and deenergized during overfrequency or underfrequency conditions. Frequency Differential relays are energized above the preset frequency. The pick-up and drop-out frequency settings are independently adjustable.

Consult factory for additional models.

WOF \& WUF Series

Product Specifications
Nominal Voltage ($\pm 20 \%$) -
120, 230, 380 and 460 volts
Nominal Frequencies -
50,60 and 400 Hz .
Trip Point - Screwdriver adjustable. Adjustment range in accordance with ordering information.
Operating Temperature -
$-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Differential - The frequency pitch-up to drop-out differential is .5\% max
Voltage Drift - $\pm .05 \%$ maximum
frequency error for input voltage variation of $\pm 10 \%$
Time Delay - See Time versus Frequency curves
Surge Withstand Capability In compliance with C37.90B ANSI/IEEE
Output Contacts - One set N.O., one set N.C.

Contact Ratings -
5 amp resistive at 120 VAC or 28 VDC

Ordering Information

blank = Per Time Curve
T = Adjustable

Time Delay

Standard Time Delay - A minimum,
fixed inverse time delay is incorporated in all frequency relays to prevent nuisance tripping and is represented by the typical curves shown above.

Adjustable Time Delay -

It additional time delay is required, a suffix "T" must be added to the part number. This allows the minimum fixed time delay to be field-adjustable up to 20 seconds.

Notes:

1. Remove black screws for access to the frequency and the time adjustments.
2. Clockwise rotation of the frequency potentiometer will raise the frequency trip point.
3. Clockwise rotation of the time adjustment, option " T " will increase the time for overfrequency relays and dropout time for underfrequency relays.

Dimensions are shown for reference purposes only. Specifications subject to change

Protective Relays

WOUF Series, Over/Underfrequency

Product Facts

- Function 81 0/U

■ ANSI/IEEE C37.90-1978
■ UL File No. E58048
■ CSA File No. LR61158

The output contacts of frequency relays are energized when the frequency exceeds the adjustable set point. Overfrequency and underfrequency relays are available in 50, 60 and 400 Hz . Combination over/underfrequency "band pass" relays are also available. These are energized at rated frequency and de-energized during overfrequency or underfrequency conditions. Frequency Differential relays are energized above the preset frequency. The pick-up and drop-out frequency settings are independently adjustable.

Operation

The relay will energize at normal frequency; The normally closed contacts will open and the normally open contacts will close. The relay will drop-out after time delay at overfrequency or underfrequency.

Consult factory for additional models.

Note: Dimensions in inches. Multiply values by 25.4 for dimensions in mm .

Product Specifications
Nominal Voltage ($\pm 20 \%$) -
120, 230, 380 and 460 volts

Nominal Frequencies -

50,60 and 400 Hz .
Trip Point - Screwdriver adjustable. Adjustment range in accordance with ordering information.

Operating Temperature -

$-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Differential - The frequency pick-up to drop-out differential is 5% max
Voltage Drift $- \pm 0.05 \%$ maximum frequency error for input voltage variation of $\pm 10 \%$
Time Delay - See Time versus
Frequency curves
Surge Withstand Capability In compliance with C37-90B ANSI//EEE Output Contacts - One set N.O., one set N.C.
Contact Ratings -
5 amp resistive at 120 VAC or 28 VDC

Notes:

1. Remove black screws for access to the frequency and the time adjustments.
2. Clockwise rotation of the frequency potentiometer will raise the frequency trip point.
3. Clockwise rotation of the time adjustment, option "T" will increase the drop-out time delay.

Time Delay

Standard Time Delay - A minimum, fixed inverse time delay is incorporated in all frequency relays to prevent nuisance tripping and is represented by the typical curves shown below.

Adjustable Time Delay -

If additional time delay is required, a suffix "T" must be added to the part number. This allows the minimum fixed time delay to be field-adjustable up to 20 seconds.

20-000 Series

Product Facts

■ Function 810

The output contacts of frequency relays are energized when the frequency exceeds the adjustable set point. Overfrequency and underfrequency relays are available in 50, 60 and 400 Hz . Combination over/underfrequency "band pass" relays are also available. These are energized at rated frequency and de-energized during overfrequency or underfrequency conditions. Frequency Differential relays are energized between the preset frequencies. The pick-up and drop-out frequency settings are independently adjustable.

Operation

The normally open contacts close, and the normally closed contacts open, at all frequencies above the set point. The contacts in the connection diagram, are shown in the de-energized position (below the trip set point).

11/64" DIA.
4 MTG. HOLES
Note: Dimensions in inches. Multiply values by 25.4 for dimensions in mm .

Ordering Information

X = Flange
blank = Stud

Product Specifications

Input Voltage ($\pm 10 \%$) -
120 VAC, Single Phase
Frequencies Range (adjustable) -
See Ordering Information
Differential - Frequency pick-up to drop-out differential is 1% max
Temperature Range -
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Temperature Drift $- \pm 1 \%$ frequency error over temperature range
Voltage Error $- \pm 1 \%$ for input
voltage of $120 \mathrm{VAC} \pm 10 \%$
Contact Ratings - 5 amp resistive at 120 VAC or 28 VDC
Output Contacts -
One set N.O., one set N.C.

Notes:

1. Remove screw for access to trip adjustment.

Consult factory for additional models.

25-000 Series

Product Facts
 - Function $810 / \mathrm{U}$
 ■ ANSI/IEEE C37.90-1978

The output contacts of frequency relays are energized when the frequency exceeds the adjustable set point. Overfrequency and underfrequency relays are available in 50, 60 and 400 Hz . Combination over/underfrequency "band pass" relays are also available. These are energized at rated frequency and de-energized during overfrequency or underfrequency conditions. Frequency Differential relays are energized above the preset frequency. The pick-up and drop-out frequency settings are independently adjustable.

Operation

The normally open contacts close, and the normally closed contacts open, at nominal frequency. The contacts are de-energize at underfrequency, overfrequency or no input voltage.

Note: Dimensions in inches. Multiply values by 25.4 for dimensions in mm .

Ordering Information

X = Flange
blank = Stud

Product Specifications

Input Voltage ($\mathbf{\pm 1 0 \%}$) — 120 VAC Frequency Range (adjustable) See Ordering Information
Trip Points - Screwdriver adjustable
Temperature Range -
$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Temperature Drift — $\pm 1 \%$ frequency error over temperature range
Voltage Drift $- \pm 1 \%$ frequency error input voltage variation of $\pm 10 \%$
Contact Ratings - 5 Amp resistive at 120 VAC or 28VDC
Output Contacts -
One set N.O., One set N.C.

Notes:

1. The contacts are shown in the de-energized position.
. Remove screws for access to the underfrequency and overfrequency trip adjustments.
2. Clockwise rotation of the adjustment potentiometer will raise the frequency trip points.

Consult factory for additional models. to change.

Product Facts

■ Function 27/81
■ ANSI/IEEE C37.90-1978
■ UL file No. E58048
■ CSA file No. LR61158

The output contacts of frequency relays are energized when the frequency exceeds the adjustable set point. Overfrequency and underfrequency relays are available in 50, 60, and 400 Hz . Combination over/underfrequency "band pass" relays are also available. These are energized at rated frequency and de-energized during overfrequency or underfrequency conditions. Frequency Differential relays are energized above the preset frequency. The pick-up and drop-out frequency settings are independently adjustable.

20-050-19 Series (Voltage/Frequency)

Note: Dimensions in inches. Multiply values by 25.4 for dimensions in mm.

Ordering Information

Mounting Options

Blank = stud
X = Flange
Options:
P = Surge Suppression

Consult factory for additional models.

WGD Series — Floating Ground

Product Facts

■ ANSI/IEEE C37.90-1978
■ UL file No. E58048
■ CSA file No. LR61158

Ground Fault Detectors are used to sense leakage current to ground in power transformers and generators. They are available for both $A C$ and DC systems. Some generator systems provide auxiliary power outlets for small equipment. TE Connectivity GFD's eliminate personnel risk of accessing these outlets if a ground fault exists. Diesel locomotives and railroad line signal boxes also use GFD's for operational control purposes. The GFD monitors both positive and negative grounds for fault currents and can trigger either notification or system shutdown if these are detected. GFD's are available for both grounded and ungrounded systems.

Operation

When the resistance between any phase to ground falls below the set point the relay will energize; The normally closed contacts will open, the normally open contacts will close.

Product Specifications
Sensing Voltage ($\pm 10 \%$) -
3 phase, 3 -wire. See Ordering Information.
Control Voltage - 120 Volts AC
Contacts Trip Points (sensitivity) -
Screwdriver adjustable. See Ordering Information.
Pick-up Time Delay - 1.5 seconds approximately
Contact Ratings - 5 amp resistive at 120 VAC or 28 VDC

Operating Temperature -

 $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$Temperature Effects -
$\pm 1 \%$ over temperature range
Power Consumption -
Sensing: $-2 \mathrm{~mA} /$ Phase Approx., Control - 2 VA at 120VAC
Surge Withstand Capability In accordance with the requirements of ANSI//EEE

Notes:

1. Remove screw for access to the pick-up adjustment potentiometer 2. Clockwise rotation of the adjustment potentiometer will raise the relay sensitivity.

WGD-

Trip Point Adj. Phase to Ground

115-120AC	115	$11-55 \mathrm{~K} \Omega$
120-120AC	120	$12-60 \mathrm{~K} \Omega$
200-120AC	200	$20-100 \mathrm{~K} \Omega$
$208-120 A C$	208	$21-105 \mathrm{~K} \Omega$
220-120AC	220	$22-110 \mathrm{~K} \Omega$
230-120AC	230	$23-115 \mathrm{~K} \Omega$
$240-120 A C$	240	$23-115 \mathrm{~K} \Omega$
380-120AC	380	$38-190 \mathrm{~K} \Omega$
400-120AC	400	$40-200 \mathrm{~K} \Omega$
416-120AC	416	$42-210 \mathrm{~K} \Omega$
440-120AC	440	$44-220 \mathrm{~K} \Omega$
460-120AC	460	$46-230 \mathrm{~K} \Omega$
480-120AC	480	$48-240 \mathrm{~K} \Omega$
525-120AC	525	$52-260 \mathrm{~K} \Omega$
575-120AC	575	$57-285 \mathrm{~K} \Omega$
600-120AC	600	$60-300 \mathrm{~K} \Omega$

WC1G Series — Grounded

Ground Fault Detectors are designed to provide very sensitive Ground-Current protection for motor, equipment and personnel from damage or electrical shock. In a ground system, the leakage current is monitored through a toroidal or doughnut current transformer placed around the supply conductors to a motor, transformer, equipment or outlets. Since the sums of the current in a system add to zero, the relay is responsive only to groundfault current.

Operation

The output contacts are shown in de-energized position. They will change state when these conditions are met:

1. Control voltage is applied.
2. Leakage current exceed the trip setting.

Note: Dimensions in inches. Multiply values by 25.4 for dimensions in mm .

Current Transformer

Ordering Information

Product Specifications

CT Window Diameter - 1.7 inches
(std) or can be specified by customer
Leakage Current Range -
10 to 60 mA
Control Voltage - See Ordering
Information
Output Contacts - One set N.C.,
one set N.O.
Operating Temperature -
$40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Contact Ratings - 10 amp resistive at $250 \mathrm{Vac}, 8$ amp. resistive @ 30 Vdc

Notes:

1. Remove screw for access to the pick-up adjustment potentiometer.
2. Clockwise rotation of the adjustment potentiometer will raise the relay sensitivity.

Additional Relays

OVERVOLTAGE RELAYS

AC, SINGLE PHASE, 50-400 HZ, SPECIALS

300X
300HX
300S-1X
300-2X
300S-2X
300-3X
300-4X
300-5X
$300-5 \mathrm{KX}$
300-6X
300-7X
300-8X
300-9X
300-10X
300-10HX
300-11X
300-12X
300-13X
300-14X
300-17X
300-18X
300-20X
300-21X
300-24X
300-25X
300-26X
300-27X
300-28X
300-29x
300-30X
300-32X
300-33X
300-34X
300-35X
300-36X
300-37X
300-38X
300-39X
300-40X
300-41X
$300-42 X$
300-43X
300-44X
300-45X
$300-46 \mathrm{X}$
300-47X
300-48X
300-49X
300-50X

120VAC
120VAC, Similar to 300X, with 125VDC 3A Contacts
440VAC, $370-480$ V Range, Navy High Shock 120 VAC , Set at 132V, .010 Sec . Time Delay
120VAC, Navy High Shock
190VAC, 180-280V Range
190VAC, P.U. 264V, D.O. 261V
240VAC, 230-360V Range
240VAC, Similar to $300-5 \mathrm{X}$, except $1-10 \mathrm{KHz}$
230VAC, $230-300 \mathrm{~V}$ Range
450VAC, 375-475V Range
120VAC, P.U. 130 V , D.O. 125 V
120VAC, P.U. 132 V, D.O. 126 V
120VAC, 99-132V Range
120VAC, Sim. to $300-10 \mathrm{X}$, 125VDC 3A
Contacts
120VAC, 0.5 Sec. Time Delay
480VAC, $480-600 \mathrm{~V}$ Range
120VAC, 2 N.O. Contacts
95 VAC, $95-120 \mathrm{~V}$ Range
120VAC, Similar to 300X with Spike Suppression
120VAC, Differential, 2V Max.
10VAC, 8-12V Range, 120 V Transient, 120VAC Ctrl.
120VAC, 1.5-2.0 Sec. Time Delay
277VAC, 140-320VAC Range
24VAC, 24-30VAC Range
120VAC, $90-150 \mathrm{~V}$ Range
120VAC, 105-135VAC Range
10VAC, 8-12VAC , 220VAC Transient, 120VAC Ctrl.
120VAC, 150-180V Range
120VAC, 375V Max., 24VDC Control
120VAC, $135-180 \mathrm{~V}$ Range, 1.5 Sec . Time Delay
115/230VAC, DPDT Contacts 230VAC 1A
100VAC, $1.5-2.0 \mathrm{Sec}$. T.D., $100-120 \mathrm{~V}$ Range 480VAC, 1.5-2.0 Sec. T.D., 480-600V Range 138VAC, 138-172V Range
$350 \mathrm{VAC}, 350-450 \mathrm{~V}$ Range, 2.0 Sec . T.D., Supp.
120VAC, 99-132V Range, 125VDC 1A Contacts
120VAC, 120-150V Range, 0.3-3.0 Adj. T.D. 230VAC, 220-300V Range, 2.0 Sec . T.D.
120VAC, 120-165V Range, 1.5 Sec. T.D., Supp.
120VAC, Similar to 300-39X, but 2 N.O.
Contacts
120/240VAC, 140-180V Range, Phase Protection
277VAC, 277-350V Range
30/60VAC, 277V Continuous, 115VAC Control 67VAC, $67-120 \mathrm{~V}$ Range
$360 \mathrm{VAC}, 10-64 \mathrm{~V}$ Range, $0.75-7.5 \mathrm{Sec}$. T.D.
10VAC, $8-21 \mathrm{~V}, 220 \mathrm{VAC}$ Transient, 125VDC Ctrl.
120VAC, Similar to WOV-1-120,

but 0.2 Sec . T.D.

120/240VAC, Highest of $2,0.5-10 \mathrm{Sec}$. T.D.

300-51X
300-52X
300-53X
300DC-1X

302X
302-SX
302-1X
302-2X
302-3X
302-4X

301X
301-SX
301-HX
301-1X
301-2X
301-3X
301-3HX
301-4X
301-4HX
301-5X
301-6X
301-7X
301-8X
301-9X
301-11X
301-12X
301-13SX
301-15X
301-16X
301-17SX
301-18X
301-195x
301-20SX
301-21X
301-22X
301-23X
301-25X
301-26X
301-27X
301-28X
301-29X
301-30SX
301-31X
301-32X
301-34X
301-35X
301-37X
301-39x
301-40X
301-41SX

301-42X

301-45X
301-46X
$30 / 60 \mathrm{VAC}, 400 \mathrm{~V}$ Max. Contin., 120 V 60 Hz Ctrl. 208VAC, 208-291V, 24VDC Ctrl., 1 N.O.
Contact
200-480VAC, 200-240V Range
28VDC, Set at 30V, Curve 1 MIL-STD-704

AC, SINGLE PHASE, 400 HZ

120VAC
120VAC, A.E.I. . Special
$120 \mathrm{VAC}, 0.3 \mathrm{Sec}$. T.D.
120VAC, 125-175V Range
120VAC, 125-150V Range with T.D.
120VAC, $125-150 \mathrm{~V}$ Range, 0.3 Sec . T.D.

AC, THREE PHASE, $50-400 \mathrm{HZ}$, SPECIALS

120/208VAC4W
120/208VAC, 4W, Similar to WOV-3-208 with hi-shock
120/208VAC, 4W, 125VDC 3A Contacts
240VAC, 4W, 240-330V Range
220/380VAC, 4W
254/440VAC, 4W, 440-605V Range
277/480VAC, 4W, 125VDC 3A Contacts
127/220VAC, 4W, 220-275V Range
120/208VAC, 4W, 125VDC 3A Contacts
$380 \mathrm{VAC}, 4 \mathrm{~W}, 370-460 \mathrm{~V}$ Range
380VAC, 4W, 375-528V Range
120/208VAC, 4W, 0.022 Sec. T.D.
120VAC. 3W, 120-150VAC
240VAC, 3W, 240-300V Range
120/208VAC, Similar to 301-7X
440VAC, 3W
120/208VAC, 4W, Hi-Shock, T.D., Solar
120/208VAC, 4W, 140-180V Range 254/440VAC, 4W, Sim to 301-3, but 3 XFMS 120VAC, 3W, Sim to 301-13SX except 120V 277/480VAC,4W,3 independent adjustments
94VAC, 3W, Similar to 301-17SX
86/150VAC, 4W, 90-120V Range, T.D., Solar
460VAC, 3W, 125VDC Contacts
277/480VAC, 4W, 323-425V Range (L-N)
$380 \mathrm{VAC}, 3$ or 4W, 0.022 Sec. T.D.
120/208V, 4W, 2-3 Sec. T.D.
416VAC, 3 or 4W, 415-520V Range
277/480VAC, 4W, 2-3 Sec. T.D.
20.8VAC, 3W, 20-25V Range

480VAC, 3 or 4W, Sim. to 301-3X with spike supp.
100VAC, 3W, 100-125V Range, hi-shock
208-240, 3W, 200-280V Range, $45-65 \mathrm{~Hz}$.
400VAC, 3W, 400-500V Range
208VAC, 3W, Set 240V, Withstand 600V contin.
$120 \mathrm{VAC}, 3 \mathrm{~W}, 3-5 \mathrm{Sec}$. T.D.
120VAC, 3W, Sim. to 301-8X with spike suppression
138/240VAC, 3 or 4 W , 2 Sec. T.D.
120/208VAC, 4W, Highest of 3, Solar
450VAC, 3W, Navy Hi-Shock,
75VDC 3A Contacts
120VAC, 3W, Highest of $3,120-150 \mathrm{~V}$ Range
120/208VAC, 4W, Highest of 3, Adj. T.D.
104VAC, 3W, Similar to WOV-3-104

Catalog 5-1773450-5	Dimensions are shown for	Dimensions are in millimeters	USA: +1 800 5226752	For additional support numbers Revised $3-13$
reference purposes only.	unless otherwise specified. Asia Pacific: +8604008206015	please visit www.te.com Specifications subject		UK: +44800267666

Additional Relays (Continued)

301-47X
301-48X 301-49X
301-50X
301-51X
301-52X
301-53X

303X
$303-1 X$
303-1SX
303-2X
303-3X
303-4X
303-8X
303-9X
303-10X
303-12X
303-13X
303-15X
303-16X

310DCX
310DC-HX
310DC-SX

310DC-2X
310DC-3X
310DC-4X
311DCX
311DC-1X
320DCX
320DC-HX
320DC-1X
320DC-2X
320DC-4X
320DC-5X
330DCX
330DC-HX

330DC-1X 330DC-2X 340DCX 340DC-HX

340DC-1SX

350DCX 350DC-HX

350DC-1SX

360DCX 360DC-HX

69/120VAC, 4W, 69-90V Range, 120V (L-N) Contin.
380VAC, 3 or 4W, 380-500V Range 250VAC, Withstand 520VAC Continuous
180VAC, 3W, Similar to WOV-3-180
120VAC, 3W, Supp, 10CFR Class1E (Nuclear) 95VAC, 3W, 95-120V (L-L) Range 115/200VAC, Similar to WOV-3-200, 1.0 Sec T.D.

AC, THREE PHASE, 400 HZ
120/208VAC, 4W
115/200VAC, 4W, Highest of 3, T.D.,
MIL-E-7894
115/200VAC, 3W, High Shock
120/208VAC, 4W, High of 3, T.D., MIL-E-7894
120/208VAC, Highest of 3, T.D.
120VAC, 3W, 120-160V Range
254/440VAC, 4W
240/416VAC, 4W
120/208VAC, 4W, 168V P.U., Kato
120/208VAC, 4W, Fast Operating
120/208VAC, 4W, 0 deg. C to 90 deg. C
120/208VAC, Sim. to 303-13X with
Latching Circuit
120/208VAC, 303X with conformal coating
DC
28VDC, 28-36V Range
28VDC, 28-36V Range, 125VDC 2A Contacts
28VDC, 28-36V Range, 2A Contacts, High Shock
28VDC, 28-36V Range, T.D., MIL-E-7894 Fig. 2
28VDC, 35-46V Range, T.D., MIL-E-7894
28VDC, Set 31V, 2 Sec; 40V, 0.2 Sec.
12VDC, 12-16V Range
12VDC, 12-16V Range, 1V Differential
60VDC, 60-85V Range
60VDC, 60-85V Range, 125VDC 2A Contacts
35-60VDC, Spike Suppression
55-80VDC, Spike Suppression
48VDC, 48-70V Range
20-70VDC, 120VAC Control
120VDC, 120-160V Range
120VDC, 120-160V Range,
125VDC 2A Contacts
120VDC, 110-150V Range
120VDC, 150-190V Range
240VDC, 240-300V Range
240VDC, 240-300V Range,
125VDC 2A Contacts
200VDC, 240-300V Range, Non-Mag., High Shock
305VDC, 280-400V Range
305VDC, 280-400V Range,
125VDC 2A Contacts
250VDC, 280-400V Range, Hi-Shock,
120VAC Control
405VDC, 400-470V Range
405VDC, 400-470V Range,
125VDC 2A Contacts

360DC-1X
360DC-2X
360DC-3X
360DC-4X
360DC-4HX
370DCX
370DC-2X
370DC-1X
370DC-3X
370DC-5X

AC, SINGLE PHASE, 50/60 HZ, SPECIALS

120VAC
120VAC, Sim. to 400X with
125VDC 3A Contacts
120VAC, Hi-Shock, 10A Contacts
120VAC, $55-72 \mathrm{~V}$ Range
120VAC, Sim. to 400-1X,
125VDC 3A Contacts
450VAC, 240-350V Range, Hi-Shock, T.D.
120VAC, 0.017 Sec. T.D.
440VAC, 280-420V Range, Hi-Shock, T.D.
120VAC, 4.8 Sec. T.D., 80-115V Range
440VAC, 280-420V Range, Hi-Shock, T.D.
240VAC, 170-240V Range
440VAC, Sim. to 400-2SX, 2-3 Sec. T.D.,
D.O. 160 V

450VAC, 320-450V Range
450VAC, 70-100\% Range, Hi-Shock, 10A Contacts
120VAC, 90-123V Range
277VAC, 190-290V Range
120VAC, 55-80V Range
120VAC, 50-70\% Range, Hi-Shock
480VAC, 320-480V Range
120VAC, 1.0 Sec. T.D. with power loss 480VAC, 1.0 Sec. T.D., 320-480V Range
120VAC, Similar to 400-10X except 1 N.O. \& 1 N.C.
120VAC, 14-30V Range
67VAC, 30-67V Range, Suppression
120VAC, 0.6 Sec. T.D., $50-420 \mathrm{~Hz}$
120VAC, Similar to 400-2 with seismic 120VAC, 125VDC 2A Contacts, Suppression 208VAC, 24-48V Range
120VAC, 94.8-102V Range, 6 +/-2 Sec. T.D. 480VAC, 320-480V Range, 2.0 Sec . T.D.
120VAC, 2.0 Sec. T.D.
240/480VAC, 3-30Sec. T.D., Latching
480VAC, 160-200V Range
460VAC, 250-350V Range, 0.3 Sec. T.D., Set to 76V
0.5VAC, 0.5-1.0V Range, 115VAC Control

120VAC, 0.15 Sec. T.D., 10A Contacts
24VAC, 18-24VAC Adjustable
120VAC, 105-135V Range
120VAC, 1 Ph. T.D. 0-10 Sec.
480VAC, 1 Ph. T.D., 0-10Sec.
120VAC, $55-72$ V Range, 2 N.O. Contacts 120VAC, Similar to 400X, but 2 N.C. Contacts

Catalog 5-1773450-5	Dimensions are shown for	Dimensions are in millimeters	USA: +1 800 5226752	For additional support numbers
Revised 3-13	reference purposes only. unless otherwise specified.	Asia Pacific: +8604008206015 UK: +44800267666	please visit www.te.com	
www.te.com	Specifications subject to change.			

Additional Relays (Continued)

400-36X	120VAC, Similar to 400-24X, 1 N.O., 1 N.C. Contact	D100DC-35X	30-40VDC Range, Plug-in, NSN 5945-00-650-8613
400-37X	120VAC, Similar to 400X, with Suppression	D100DC-36X	48VDC, Adjustable 38-48VDC
400-38X	120VAC, 85-120V, 1-20 Sec. T.D., Instant. at 50 V	D100DC-37X	75VDC, 50-80VDC Range, 0.5A, 74VDC Contacts
400-38PX	120VAC, Similar to 400-38X with Spike Protection	D100DC-38X	270VDC, 190-270VDC Range, Similar to D100DC-23
400-39X	120VAC, 1.0 Sec. T.D., Transient Protection	D100DC-39X	28VDC, Adjustable 15-30VDC
400-40X	$120 \mathrm{VAC}, 0.083 \mathrm{Sec}$. T.D.	D100DC-40X	28VDC, Approx. 2.0 Sec T.D.
400-41X	120VAC, Similar to 400X with 2 N.O. Contacts		
400-43X	$240 \mathrm{VAC}, 120-240 \mathrm{~V}$ Range	AC, THREE PHASE, 50/60 HZ, SPECIALS	
400-44X	208VAC, 150-210V Range	401X	120/208VAC, 4W, 85-120V Range
400-47X	380VAC, Fast Operating, 220VAC 5A Contacts	401-HX	120/208VAC, 4W, 125VDC 3A Contacts
400-49x	$120 \mathrm{VAC}, 55-80 \mathrm{~V}$ Range, 125VDC Contacts	401-1X	$240 \mathrm{VAC}, 4 \mathrm{~W}, 182-244 \mathrm{~V}$ Range (L-L)
400-50X	$480 \mathrm{VAC}, 320-480 \mathrm{~V}$ Range,	401-2X	480VAC, 4W, 360-485V Range (L-L)
	125VDC 1A Contacts	401-2HX	480VAC, 3 or 4W, 125VDC 3A Contacts
400-51X	120VAC, Sim. to 400-38X with 1-30 Sec. T.D.	401-3X	220VAC, 3W, 160-200V Range (L-L)
400-52X	120VAC, $55-80 \mathrm{~V}$ Range, 125VDC 2A Contacts	401-4X	380VAC, 4W, 150-220V Range (L-N)
400-53SX	$450 \mathrm{VAC}, 110-300 \mathrm{~V}$ Range, 120 V Control	401-5X	120VAC, 4W, 90-120V Range (L-L)
400-54X	120 VAC , Sim. to $400-13 \mathrm{X}$ with 1.0 Sec . T.D.	401-6X	120VAC, 3W, $85-120 \mathrm{~V}$ Range (L-L)
400-55X	208VAC, 125-208V, 24VDC Ctrl.,	401-7X	480VAC, 4W, 332-407V Range (L-L)
	1 N.O. Contact	401-8X	100VAC, 3W, 70-100V Range (L-L)
400-56X	208VAC, 24-48V Range, 2 N.O. Contacts	401-9X	120/208VAC, 4W, Fast Operating
400-57X	$120 \mathrm{VAC}, 25 \mathrm{~Hz}, 84-120 \mathrm{~V}$, 125VDC 3A Contacts	401-9HX	120/208VAC, 4W, 0.02S T.D., 125VDC 3A Cont.
400-58X	$277 \mathrm{VAC}, 194-277 \mathrm{~V}$ Range, 0.020 Sec . T.D.	401-10X	480VAC, 3W, 360-485V Range
400-59X	139VAC, 97-159V Range	401-10HX	480VAC, 3W, 125VDC 3A Contacts
400-60X	240VAC, $84-120 \mathrm{~V}$ Range	401-11X	240VAC, 3W, 180-240V Range
400-6IPX	120VAC, Similar to WUV-1-120P	401-11HX	240VAC, 3W, 125VDC 3A Contacts
400-62X	120VAC, $30-42 \mathrm{~V}$ Range, 125VDC Contacts	401-12X	120/208VAC, 4W, 1.0 Sec. T.D.
400-63X	120VAC, $30-42 \mathrm{~V}$ Range, 120VAC Contacts	401-12HX	120/208VAC, 4W, 1.0 Sec. T.D., 125VDC 3A Contacts
	AC, SINGLE PHASE, 400 HZ	401-13X	380VAC, 3W, 1.0 Sec. T.D.
402X	120VAC	401-14X	$480 \mathrm{VAC}, 4 \mathrm{~W}, 0.5 \mathrm{Sec} . \mathrm{T} . \mathrm{D}$.
402-SX	120VAC, Hi-Shock, NSN 5945-00-258-6662	401-15X	120/208VAC, Sim. to 401X with 6" leads
402-1X	240VAC, 170-240V Range		and socket
402-1SX	240VAC, High Shock	401-16X	380VAC, Sim. to 401-4X with 6 " leads and socket 120/208VAC, 4W, 10 Sec. T.D., Solar
402-2X	120VAC, $90-120 \mathrm{~V}$ Range, 0.3 Sec . T.D., Set to 96V		
402-3X	120VAC, Similar to 402-2X with 10A Contact	401-18X	480VAC, 3W, 2.0 Sec. T.D., 90\% P.U., 70\% D.O.
402-4X	120VAC, Similar to 402-2X with 0.15 Sec . T.D.	401-19X	120/208VAC, Sim. to 401X with 2KV Diodes, Supp.
AC \& DC, SINGLE PHASE, CLOSE DIFFERENTIAL		401-20X	69/120VAC, 4W, 25-35V Range, 4KV Diodes,
D100-10X	$120 \mathrm{VAC}, 50-500 \mathrm{~Hz},-40$ to +75 deg. C		Supp.
D100-13X	450VAC, D.O. $60-100 \%$, P.U. 66-100\%	401-21X	120/208VAC, 4W, 85-120V Range,
D100-15X	$120 \mathrm{VAC}, 50-500 \mathrm{~Hz}, 125 \mathrm{VDC}, 1$ Amp Contacts		0.05 Sec . T.D.
D100-16X	$208 \mathrm{VAC}, 50-500 \mathrm{~Hz}, 125 \mathrm{VDC}, 1 \mathrm{Amp}$ Contacts	401-22X	$480 \mathrm{VAC}, 3$ or 4W, 5.0 Sec. T.D.
D100-17X	$120 \mathrm{VAC}, 50-500 \mathrm{~Hz}, 450 \mathrm{VAC}$ Input Capacitor,	401-23x	$120 \mathrm{VAC}, 3 \mathrm{~W}, 0.05 \mathrm{Sec} . \mathrm{T} . \mathrm{D}$.
	GE	401-24X	$120 \mathrm{VAC}, 3 \mathrm{~W}, 2$ N.C. Contacts
D100-18X	120VAC, Hi-Shock, D. O. 72-84,	401-25SX	120VAC, 3W, 10Sec. T.D., Solar
	P.U. 102-114 Range	401-26X	67/115VAC, 4W, Suppression
D100-19X	120VAC, Hi-Shock, D.O. 80-120,	401-28X	120/208VAC, 4W, 60-100V Range, Set at 90V
	P.U. 80-120 Range	401-29X	$120 \mathrm{VAC}, 4 \mathrm{~W}, 90-120 \mathrm{~V}$ Range, 1.0 Sec . T.D.
D100-20X	$150 \mathrm{VAC}, 105-150 \mathrm{~V}$ Range	401-29HX	69/120VAC, 4W, 1.0 Sec. T.D.,
D100DCX	60 VDC, 48-55VDC Range, 1.5 Sec. T.D.		125VDC 3A Contacts
D100DC-15X	120VDC, 80-120VDC Adjust, 0.4V Differential	401-30X	480VAC, 3W, 360-480V Range, 2.0 Sec . T.D.
D100DC-16X	60VDC, 40-60VDC Adjust, 0.2V Differential		125VDC 3A Contacts
D100DC-18X	40VDC, 20-40VDC Adjust, 120VAC Control	401-31SX	94VAC, 3W, 10 Sec. T.D., Solar
D100DC-19X	140VDC, 100-140VDC, 0.4V Differential	401-33X	480VAC, 4W, 139-231V Range (L-N)
D100DC-22HX	$120 \mathrm{VDC}, 80-120 \mathrm{VDC}$ Range,	401-34X	120/208VAC, 4W, 2-3 Sec. T.D.
	120VDC Contacts	401-35X	208VAC, 3W, 0.008 Sec. T.D., 28VDC Control
D100DC-23X	260VDC, 195-260VDC Range	401-36X	$480 \mathrm{VAC}, 3 \mathrm{~W}, 0.008 \mathrm{Sec}$. T.D., 28VDC Control

Catalog 5-1773450-5 Revised 3-13 www.te.com	Dimensions are shown for reference purposes only. Specifications subject to change.	Dimensions are in millimeters unless otherwise specified.	USA: +1 8005226752 Asia Pacific: +86 04008206015 UK: +44 800267666	For additional support numbers please visit www.te.com

Additional Relays (Continued)

401-37X
401-38X
401-39X
401-41X
401-41HX
401-42X
401-43SX
401-44X
401-45X
401-46X
401-47X
401-48X
401-49X
401-50X
401-51SX
401-52X
401-53X
401-54X
401-55X
401-58X
401-59X
401-60X
401-61X
401-62X
401-63X
401-67X
401-68X
401-69X
401-70X
401-71X
401-72X
401-74X

401-75X
401-76SX
401-77X
401-79X
401-80X
401-81X
401-82X
401-83SX
401-84X
401-85Sx
401-86SX
401-87SX
401-90X
401-93X
401-97X
401-98X

403X
403-1X
403-1SX
403-2X
403-3X
403-4X
403-5X
$120 \mathrm{VAC}, 3 \mathrm{~W}, 5.0 \mathrm{Sec}$. T.D.
$380 \mathrm{VAC}, 3 \mathrm{~W}, 0.05 \mathrm{Sec} . \mathrm{T} . \mathrm{D}$.
480VAC, 4W, 250-550V Range (L-L) 240/416VAC, 4W, 312-416V Range (L-L)
230/400VAC, 4W, 125VDC 3A Contacts
120/208VAC, 4W, 5.0 Sec. T.D.
480VAC, Sim. to 403-7SX except 60 Hz .
139/240VAC, 4W, 2.0 Sec. T.D.
120VAC, 3W, 85-120V Range (L-L), 125VDC Contacts
480VAC, Similar to 401-2X with Suppression
380VAC, 3W, 2.0 Sec. T.D.
208VAC, 3W, 145-208V Range
20.8VAC, 3W, 15.5-20.8V Range

120VAC, 3W, 0-10 Sec. T.D.
90/156 VAC, 4W, Similar to 401-17SX
480VAC, 3W, Sim. to 401-10X
120/208VAC, 4W, 1 N.O., 1 N.C.
400VAC, 3W, 300-400V Range
600VAC, 3W, 480-600V Range
120/208VAC, Sim. to 401X except 2 N.C. Contacts
$220-380 \mathrm{VAC}$, Dual Voltage 220 V or 380 V 480VAC, 1 N.O., 1 N.C. Contact, 2-3 Sec. T.D.
120VAC, 3W, 85-120V Range (L-L),
1.0 Sec . T.D.

380VAC, 3W, 220VAC 5A Contacts
120VAC, 3W, Sim. to 401-6X with Suppression
120/208VAC, 4W, 1.0 Sec. T.D., -55F to +150F
120VAC, $3 \mathrm{~W}, 85-120 \mathrm{~V}$ Range, 2-3 Sec. T.D.
120/208VAC, 4W, 85-120V Range, Lowest of 3 133/230VAC, 4W, 99-133V Range, Lowest of 3 $220 / 380 \mathrm{VAC}, 4 \mathrm{~W}, 154-220 \mathrm{~V}$ Range, Lowest of 3 266/460VAC, 4W, 186-266V Range, Lowest of 3 66/115VAC, 4W, 65-75\% Adj., Supp., 125VDC Cont.
115/200VAC, 3W, 65-75\% Adj., Suppression $450 \mathrm{VAC}, 3 \mathrm{~W}, 382-450 \mathrm{~V}, 0.3-0.5 \mathrm{~S}$ T.D., Hi-Shock
120/208VAC, 4W, 0.5-10 Sec. T.D., Lowest of 3 $480 \mathrm{VAC}, 3 \mathrm{~W}, 0.2-0.3 \mathrm{Sec}$. T.D., Suppression
76VAC, 3W, 53-76V Range
120/208VAC, Sim. to 401-12X with
48VDC Contacts
104VAC, 3W, Similar to WUV-3-104
120/208VAC, MIL-R-2033A
180VAC, 3W, Similar to WUV-3-180
480VAC, Similar to 401-25SX except 480V
380VAC, Similar to 401-25SX except 380V
240VAC, Similar to 401-25SX except 240V
120/208VAC, 4W, 0.5 Sec. T.D.
480VAC, 3W Fast Oper. 50mS., Suppression
69/120VAC, Lowest of 3
480VAC, Sim. to 401TD-9HX with 2.0 Sec . T.D.

AC, THREE PHASE, 400 HZ

120/208VAC, 4W
$115 / 200 \mathrm{VAC}, 4 \mathrm{~W}, 35-400 \mathrm{mS}$ T.D.
115VAC, 3W, Hi-Shock
120VAC, 3W
120/208VAC, 4W, 1.0 Sec. T.D.
254/440VAC, 4W
120/208VAC, 4W, 2 N.C. Contacts

403-7SX
403-10X
403-11X
403-13X
403-14X
403-15X
403-16X

D101-3X
D101-5X
D101-9X
D101-11X
D101-12X
D101-13X
D101-14X
D101-15X
D101-16X
D101-17X
D101-18X
D101-19X

D101-20X
D101-21X
D101-24X
D101-25X
D101-26X
D101-27X
D101-29X
D101-30X
D101-31X
D101-32X

400DCX
400DC-HX
400DC-IX
400DC-2X
400DC-3X
400DC-4X
400DC-5X
410DCX
410DC-SX
410DC-1X
410DC-5X
410DCTDX
411DCX
411DC-1X
411DCTDX
420DCX

AC THREE PHASE, CLOSE DIFFERENTIAL

480VAC, 3W, T.D., Hi-Shock 120/208VAC, 4W, 10A Contacts 480VAC, $4 \mathrm{~W}, 60 \%$ to 80% Range 120/208VAC, 4W, OC to +90C $575 \mathrm{VAC}, 3 \mathrm{~W}, 400-500 \mathrm{~V}$ Range 120/208VAC, Sim. to 403-13X with Latching Circuit 120/208VAC, Sim. to 403X with Conformal Coating

Similar to D101X, -55C to +85C
120VAC, $50-500 \mathrm{~Hz}$, Military
120VAC, $50-500 \mathrm{~Hz}, 0.5 \mathrm{Sec}$ T.D.
$120 \mathrm{VAC}, 50-500 \mathrm{~Hz}, 120-150 \mathrm{VAC}$ Adjust,
N.C. Cont.

120VAC, Similar to D101X but 60-120VAC Range
120VAC, Similar to D101X but

3 N.C. Contacts

208VAC, Similar to D101-6X but 3 N.C. Contacts
480VAC, $50-500 \mathrm{~Hz}$, Spike Suppressors
480VAC, Similar to D101-7X but 3 N.C. Contacts
120VAC, 0.4A 120VDC Contact, -20 to +85 deg C
120VAC, Similar to D101X but Spike Suppression
208VAC, Similar to D101-6X but Spike Suppression
240VAC, Similar to D101-4X but Spike Suppression
380VAC, Similar to D101-10X but Spike Suppression
240VAC, 3 N.C. Contacts
208VAC, 3 N.C. Contacts, Spike Suppression
277VAC, $50-500 \mathrm{~Hz}, 66-100 \%$ Adjustable
120VAC, Sim. to D101X, withstand
208 V continuous
$415 \mathrm{VAC}, 50-500 \mathrm{~Hz}$
380VAC, $50-500 \mathrm{~Hz}, 3$ N.C. Contacts
525VAC, Spike Suppression
$120 \mathrm{VAC}, 50-500 \mathrm{~Hz}, 5 \mathrm{Sec}$ T.D.
DC
120VDC, 85-120V Range 120VDC, 85-120V Range, 125VDC 2A Contacts 28VDC, 15-29V Range
240VDC, 180-220V Range
62.5VDC, 40-65V Range

305VDC, 200-300V Range
5.6VDC, 4-6V Range, 120VAC Cont

28VDC, 16-29V Range
28VDC, 16-29V Range, Hi-Shock, MIL-R-57
28VDC, 15-32V Range, 1.5V Differential
24VDC, 16-29V Range, Suppression
28VDC, 0.5-20 Sec. T.D.
12VDC, 9-12 V Range
15VDC, 11-15V Range
12VDC, $0.5-20 \mathrm{Sec}$. T.D.
60VDC, 40-65V Range

Catalog 5-1773450-5	Dimensions are shown for	Dimensions are in millimeters	USA: +1 8005226752	For additional support numbers please visit www.te.com
Revised 3-13	reference purposes only.	unless otherwise specified.	Asia Pacific: +86 04008206015	
	Specifications subject		UK: +44 800267666	
www.te.com	to change.			

Additional Relays (Continued)

420DC-4X	48VDC, 32-48V Range	250-12X	120VAC, Sim. to 250X, MIL-R-5757 2A
420DC-5X	48VDC, $20-48 \mathrm{~V}$ Range	250-14XAC	67VAC, Sim. to 250-3X with removable cover
420DC-6X	70VDC, 50-70V Range	250-17X	120VAC, Sim. to 250X plus suppression
420DC-8X	32VDC, 33-40V Range (Pick-Up)	250-19x	120VAC, Sim. to 250X with 2 N.O. Contacts
420DC-9X	48VDC, Similar to 420DC-4X with 2 N.O.	250-22X	240VAC, 1-2 Sec. TD on Drop Out
	Contacts	250-23X	120VAC, Sim. to 250X but -40C to +52C
420-470 SUFFIX	SUFFIX: "A" 2 N.O. Contacts	250-27X	139VAC, Same as 250-12X except voltage
	"B" 2 N.C. Contacts	250-28X	138VAC, Same as 250-10X except voltage
430DCX	120VDC, 85-120V Range	250-29HX	120VAC, $50-400 \mathrm{~Hz}$., 125VDC 3A Contacts
430DC-HX	120VDC, 85-120V Range,	250-30X	480VAC
	125VDC 3A Contacts	250-31X	240VAC, Fast Trip 25mS
430DC-1X	140VDC, 105-140V Range	250-32HX	480VAC, 100 Hz , 1Sec TD
430DC-2X	140VDC, 105-140V Range, 0.5 Sec. T.D.,		120V 3ADC Contacts
	Suppression	250-33HX	480VAC, 25Hz, 1 Sex TD,
430DC-3X	120VDC, 50-80V Range		120V 3ADC Contacts
430DC-4X	120VDC, 85-120V Range, 0.5 Sec. T.D.,	250-34X	120VAC, 72-120-160V Range, Hi Shock
	Set at 90V	250-35X	230VAC, Sim. to 250-22X, 3.0 Sec. TD
430DC-5X	125VDC, 90-125V Range, Spike Suppression	250-36X	120VAC, 84-120-150V Range, Hi Shock,
430DC-6X	125VDC, 105-140V Range, 3.0-5.0 Sec. T.D.		-40C to 70C
430DC-7X	170VDC, 120-170V Range	250-37HX	120VAC, 25 Hz , 1 Sec. TD,
430DC-8X	120VDC, $85-120 \mathrm{~V}$ Range, 2 N.C. Contacts		120V 3ADC Contacts
430DC-9X	100VDC, 35-50V Range	250-38X	240VAC, Two N.O. Contacts
430DC-10X	120VDC, 85-120V Range, 2 N.O. Contacts	250-39X	120VAC, Similar to 250X, Range +/- 35\%
440DCX	240VDC, 168-240V Range		
440DC-HX	240VDC, 168-240V Range,		AC, SINGLE PHASE, 50-400HZ
	125VDC 3A Contacts	251SX	120/208VAC, Sim. to 251X with Hi Shock
440DC-1X	280VDC, 190-260V Range	251-1X	120/208VAC, 4W, 0.50 Sec. TD
450DCX	305VDC, 230-305V Range		NSN 5895-00-139-0337
450DC-HX	305VDC, 230-305V Range,	251-4X	139/240VAC, 4W
	125VDC 3A Contacts	251-5X	120/208VAC, 4W, Two N.C. Contacts
450DC-1X	305VDC, 230-305V Range,	251-8X	120/208VAC, 4W, 1.2 Sec. TD
	2 N.C. Contacts	251-10X	110/190VAC, 4W
460DCX	405VDC, 315-415V Range	251-13X	120/208VAC, Sim. to 251X except -40C to 52C
460DC-HX	405VDC, 315-415V Range,	251-14X	120/208VAC, 4W, Withstand 220/380V
	125VDC 3A Contacts		Continuous
460DC-1X	405VDC, 300-330V Range	251-15X	120/208VAC, Sim. to 251X with Transient
460DC-3X	405VDC, 300-425V Range		Protection
460DC-4X	432VDC, 275-325V Range	251-16X	120/208VAC, 1.2 Sec. TD, Transient Protection
460DC-5X	470VDC, 300-425V Range	251-17X	120/208VAC, Similar to 251X,
470DC	560VDC, 400-500V Range		208V 7.5A Contacts
470DC-1X	585VDC, 400-500V Range	251-18X	120/208VAC, Highest/Lowest of three, TD Adjust 12VDC control
	DC TIME DELAY	251-19X	120/208VAC, Highest/Lowest of three,
420DCTDX	48VDC, 32-48V Range, 0.5-20 Sec. T.D.		TD Adjust 120VAC control
430DCTDX	125VDC, $83-125 \mathrm{~V}$ Range, $0.5-20 \mathrm{Sec}$. T.D. 250VDC, 166-250V Range, $0.5-20 \mathrm{Sec}$. T.D.	251-20X	120/208VAC, Highest/Lowest of three, TD Adjust, 24VDC Control
440DCTDX	250VDC, 166-250V Range, 0.5-20 Sec. T.D.	251-21X	120/208VAC, Sim. to 251X, 0.5Sec. TD
OVER/UNDERVOLTAGE RELAYS		251-22X	115/200VAC, Sim. to 251X, 0.75 Sec . TD
	AC, SINGLE PHASE	253-HX	230VAC, 3W, 48VDC 3A Contacts
250SX	120VAC, Hi-Shock	253-1X	230VAC, 3W, Spike Suppression
250-1X	120VAC, 72-120V, Mil,	253-1HX	230VAC, 3W, Spike Suppression, 125VDC Contacts
	NSN 6125-00-091-0969	253-3X	230VAC, 3W, 1.0 Sec. TD
250-2X	120VAC, 1.2 Sec. Time Delay	$253-5 X$	230VAC $3 / 4$ W 2 N . C. Contacts, -51 C to +71 C
250-3X	67VAC, UV 30-67V, OV 67-91V	253-6X	230VAC 3W 3.0 Sec. TD
250-4X	26VAC, 28VDC Control, Connector	253-6X	415VAC 3W, 290-415-519V
250-5X	240VAC, Two N.C. Contacts	254-1X	415VAC, 3W, 290-415-519V
250-6X	240VAC, One N.O., One N.C. Contact	254-2X	416VAC, $3 / 4 \mathrm{~W}, 2$ N.C. Contacts, -51 C to 71C
250-6HX	240VAC, 120VDC, 3A Contact	254-3X	416VAC, 3/4W, 2 N.C. Contacts, -51C to 71C 460VAC, 3W, 125VDC 3A Contacts
250-7X	$120 \mathrm{VAC}, 3 \mathrm{Sec}$. Time Delay	255-HX	460VAC, 3/4W, Spike Suppression
250-8X	100VAC	$\begin{gathered} \text { 255-1X } \end{gathered}$	460VAC, 3/4W, Spike Suppression 480VAC 3W, High Shock
250-10X	120VAC, Fast Trip, 25mS		480VAC, 3W, High Shock
250-11X	120VAC, Set at 97V and 156V	255-3X	495VAC, 3W, 3.0 Sec. TD

Catalog 5-1773450-5	Dimensions are shown for	Dimensions are in millimeters	USA: +1 8005226752	For additional support numbers
Revised 3-13	reference purposes only. Specifications subject	unless otherwise specified.	Asia Pacific: +86 04008206015 UK: +44 800267666	please visit www.te.com
www.te.com	to change.			

Additional Relays (Continued)

255-4X	460VAC, 3W, 2 N.O. Contacts, $\text { EMD \# } 9333490$
255-5X	460VAC, 3W, Sim. to 255-4X, MIL-R-5757, 10A Relay
255-6X	460VAC, 3W, EMD\# 9337151
255-7X	460VAC, 3W, Sim. to 255X, Fast operating, 40 mSec .
255-8X	480VAC, 3W, 5.0 Sec. fixed TD, 120VAC Control
255-9X	480VAC, 3W, Sim. to 255-8X except +/- 10\% Setting
	AC, SINGLE PHASE, 50-400HZ
256-1X	$600 \mathrm{VAC}, 3 \mathrm{~W}, 60 \mathrm{~Hz}, 2$ N.O. Contacts, EMD Canada
256-2X	575VAC, 3W, GM\# 6964912 Rev. A
	DC
250DC-HX	24VDC, 16-24-30V Range, 48VDC 3A Contacts
250DC-1X	28VDC, MIL Shock and Vibration
250DC-2X	26VDC, UV 20-30V, OV 26-36V
250DC-3X	28VDC, 20-28-35V Range, Hi Shock, -40 C to 70 C
250DC-4X	14VDC, Commonwealth Edison
250DC-5X	28VDC, Commonwealth Edison
251DC-1X	48VDC, Removable Cover
251DC-2X	$35 \mathrm{VDC}, \mathrm{UV} 23-30 \mathrm{~V}$, OV 40-52V
251DC-3X	$30 \mathrm{VDC}, \mathrm{UV} 21-27 \mathrm{~V}, \mathrm{OV} 30-40 \mathrm{~V}$
251DC-HX	48VDC, 32-48-60V, 48VDC 3A Contacts
251DC-4X	60VDC, $45-60-75 \mathrm{VDC}, 2 \mathrm{~N} .0 .120 \mathrm{VAC}$ Contacts
252DCX	120VDC, 85-120-150V Range
252DC-1X	130VDC, $80-130 / 120-150 \mathrm{~V}$ Range
252DC-1HX	125VDC, 85-125/125-160V, 48VDC 3A Contacts
252DC-2X	130VDC, 80-130/120-150V, Removable Cover
253DCX	250VDC, 175-250-315VDC Range
253DC-HX	250VDC, 175-250-315VDC, 48VDC 3A Contacts

REVERSE POWER RELAYS

AC, SINGLE PHASE

710-HX
710-PX
710-1X
710-3X
120/220/266VAC, 125VDC 3A Control
120/220/266VAC, 0.2-1.0A, Spike Suppression 120/220/266VAC, 125VDC 1/4A Control 120VAC (L-N), 1 Phase, 3-5A

120/220/266VAC. SINGLE PHASE TIME DELAY

710TD-1X
710TD-5X
710TD-7X
710TD-7PX
710TD-8X
710TD-9X
710TD-12X
710TD-14X
720TD-14X
721TD-14X
722TD-14X
723TD-14X
724TD-14X

725TD-14X
726TD-14X
727TD-14X
415 V, L-L, 50Hz, Reverse Inductive 100 V, L-L, 50 Hz , Reverse Inductive 185 V, L-L, 50Hz, Reverse Inductive

PHASE SEQUENCE RELAYS

AC, THREE PHASE

900-2PX
900-4X
900-5X
900-8X
900-10X
901-1X
901-5X
901-6X
901-SX

910-1X

910-2X
910-3X 220/440VAC, 60 Hz , Porcelain Term.,

Sigma Relay

380VAC, 50 Hz
380VAC, 50 Hz , Mounting per 21-037 380VAC, 50 Hz , Porcelain Terminals, Sigma Relay
416VAC, $50 \mathrm{~Hz}, 5 \mathrm{~A}$ Contacts
220/380VAC, 50 Hz
$440 \mathrm{VAC}, 50 \mathrm{~Hz}$
208VAC, 400 Hz
$208 \mathrm{VAC}, 400 \mathrm{~Hz}, 2 \mathrm{~A}$ at 28 VDC Contacts, Energized A-B-C, 5A
400VAC, 400 Hz
400 VAC, 2 N.C. Contacts, -51 C to +71 C 120VAC, 400 Hz .
115/200VAC, 400 Hz , 2A Contact,Hi-Shock
230/400VAC, 400 Hz

PHASE FAILURE RELAYS

980X	120VAC, 60 Hz , no T.D. on Starting
981 X	230VAC, 60 Hz , no T.D. on Starting
982 X	460VAC, 60 Hz , no T.D. on Starting
$983 X$	380VAC, 60 Hz , no T.D. on Starting
984 X	575VAC, 60 Hz , no T.D. on Starting
985 X	
	525VAC, 60 Hz , no T.D. on Starting
1980X	120VAC, 60 Hz
1981X	230VAC, 60 Hz
1982X	460VAC, 60 Hz
1983X	380VAC, 50 Hz
1984X	575VAC, 60 Hz
1985X	525VAC, 60 Hz
1986X	415VAC, 50 Hz
1987X	380VAC, 60 Hz
SUFFIX:	"-S": Time Delay (0.5-30 Sec.)
	"-3S": Factory Set Time Delay (0-60 Sec.)
1981-1SX	230VAC, Similar to 1981X except 50 Hz
1980-2SX	120VAC, Similar to 1980X except N.C.
	Contacts

AC, THREE PHASE, VOLTAGE SENSITIVE

1003X-60HZ	380VAC, Similar to 1003X except 60HZ
1009 X	415VAC, 50 Hz
1010 X	208VAC, 50 Hz.

Catalog 5-1773450-5	Dimensions are shown for reference purposes only.	Dimensions are in millimeters unless otherwise specified.	USA: +18005226752 Asia Pacific: +8604008206015 Revised $3-13$	For additional support numbers please visit www.te.com
Uww.te.com	Specifications subject			
to change.				

Additional Relays (Continued)

1001X-1010X SUFFIX "-1": N.C. Contact (example: 1004-1X) 1001X-1010X SUFFIX "-2": -53C to +70C, 2\% Drift below -20C
1001X-1010X SUFFIX "-3": 400Hz, N.O. Contacts
1001X-1010X SUFFIX "-T": Spike Suppression
1001X-1010X SUFFIX "-H': 125VDC 3A Contacts
1001X-1010X SUFFIX"-9" 1 N.O. \& 1 N.C. Contacts
1001X-1010X SUFFIX "-12": Spike Supp., 125VDC 3A Contacts
1001X-1010X SUFFIX "-13": 1 N.O + 1 N.C. 125VDC 3A Contacts

OVERCURRENT RELAYS

1100X

1100-1X
1100-2X
1100-2SX
1100-9X
1100-11X
1100-13X
1100-14X
1100-15X
1100-17X
1100-18X
1100-19x
1100-20X
1100-21X
1100-22X
1100-23X
$1100-24 \mathrm{X}$
1100-25X
1100-26X
1100-27X
1100-32X

1100-35X
1100-36X
1100-37X
1100-38X
AC, SINGLE PHASE, ADJ. DIFFERENTIAL

D1100X
D1100-2X
D1100-3X
D1100-4X D1100-5X
D1100-6X
D1100-7X
D1100-8X

1100TDX
1100TD-HX

1100TD-SX

1100TD-1X
1100TD-2X
1100TD-3X
1100TD-5X
1100TD-6X
1100TD-8X

120VAC, 1-5A Range
120VAC, 0.5-5A Range, Remote Adjust 120VAC, 0.5-5A Range
120VAC, 0.5-5 A Range, Hi-Shock, 2A Contact
120VAC, 1-5A, Fast Operating
120VAC, 1-5A, 3\% Diff., Suppression 2.5KV
$120 \mathrm{VAC}, 1-5 \mathrm{~A}, 2$ N.C. Contacts
120VAC, $7-30 \mathrm{~A}, 2$ N.C. Contacts
120VAC, 2-10A, 2 Sec. T.D.
120VAC, 1-5A, 2 Sec. T.D.
120VAC, 0.05-0.15A, 5A Max, 400 Hz
24VDC, 1-5A Range
120VAC, 1-5A, Suppression (15 times in-rush)
74VDC, 7-30A, 50mS T.D., Shock \& Vibration
120VAC, 1-5A Remote Adjust
125VDC, 0.25-1.8A, 1 N.O.
125VDC 2A Contact
32VDC, 1-5AAC Range
120VAC, $0.25-1.25 \mathrm{~A}$
120VAC, 0.3-1.5A, Withstand 5A 220VAC, 1-5A Range, 220VAC Contacts
120VAC, Undercurrent 1-10A Adj,
$0.2-5 \mathrm{Sec}$. T.D.
120VAC, 0.1-0.4A Range
74VDC, 4-20A, 50 mS T.D., Shock \& Vibration
24VDC, 0.1-0.3A Range
74VDC, Similar to WC1-74DC-5

120VAC, 1-5A Range
220VAC, 1-5A Range
120VAC, 4-12A Range
230VAC, 4-12A Range
460VAC, 4-12A Range
120VAC, 1-5A Range, 1-2 Sec. T.D.
120VAC, 0.7-5A Range,
125VDC 0.5A Contacts
120VAC, 5-15A Range
AC, SINGLE PHASE, TIME DELAY
120VAC, 1-5A Range, 0.5-30 Sec. T.D. 120VAC, 1-5A, $0.5-30 \mathrm{Sec}$. T.D., 125VDC 3A Cont.
120VAC, 1-5A Range, $0.5-20 \mathrm{Sec}$. T.D., Hi-Shock
240VAC, 1-5A Range, 0.5-30 Sec. T.D.
24VDC, 1-5AAC Range, $0.5-30 \mathrm{Sec}$. T.D.
120VAC, $0.5-5 \mathrm{~A}$ Range, $0.5-30 \mathrm{Sec}$. T.D. 120VAC, 0.5-2.5A Range, 0.5-30 Sec. T.D. 120VAC, 1-5A , 0.2-20 Sec. T.D., Manual Reset

1100TD-9X 1100TD-10X

1100TD-11X
1100TD-12X
OPTION

1130TDX 1130TD-1X 1130TD-2X 1130TD-3X

1150X 1150-1X 1150-2X
1150-4X
1150-6X
1150-8X
1150-10X
1150-10SX
1150-11X
1150-12X
1150-14X
1150-15X
1150-16X

1200X
1200-1X
1200-4X
1200-5X
1200-6X
1200-7X
1200-8HX
1100DCX
1100DC-1X 1100DC-2X

1100DC-3X
1100DC-4X
1100DC-6X
1100DC-7X
1100DC-8X
1100DC-9X

1100DC-10X
1100DC-11X
1100DC-13X
1100DC-15X
1100DC-17X
1100DC-20X

24VDC, 0.5-5AAC Range, $0.5-20 \mathrm{Sec}$. T.D. 120VAC, Sim. to WCT1-120AC-5 w/ removable cover
120VAC, Sim. to WCT1-120AC-5, 1-5 Min. T.D.
120VAC, Sim. to WCT1-120AC-5,
$0.5-5 \mathrm{Sec} . \mathrm{T} . \mathrm{D}$.

> 1: 0.2 A to 1.0 A Range
> 2.5: 0.5 A to 2.5 A Range
> 5: 1.0 A to 5.0 A Range

10: 2.0 A to 10.0A Range
AC, THREE PHASE, TIME DELAY
$120 \mathrm{VAC}, 1-5 \mathrm{~A}, 0.5-20 \mathrm{Sec}$. T.D.
24VDC, 1-5A, 0.5-20 Sec. T.D.
120VAC, 1-5A, 0.5-20 Sec. T.D., Suppression
120VAC, 1-5A, 0.5-60 Sec. T.D.,
2 N.C. Contacts
120VAC, $4.35 \mathrm{~A}, 0.5-5 \mathrm{Sec}$. T.D.
120VAC, 4.26A, 0.5-5 Sec. T.D.
120VAC, $3.72 \mathrm{~A}, 0.5-5 \mathrm{Sec}$. T.D.
120VAC, 1-5A, (P.G.E.)
120VAC, 1-5A, 2-3 Sec. T.D. on D.O.
120VAC,Same as $1150-2 \mathrm{X}$ with 2 N.O. Contacts
120VAC, 1-5A, 2 Sec. T.D.
120VAC, 1-5A, 2 Sec. T.D., Hi-Shock
120VAC, $2.5-5$ A, 400 Hz , Special T.D. Curve
120VAC, $2.5-5 \mathrm{~A}, 60 \mathrm{~Hz}$, Special T.D. Curve
120VAC, $2.5-5 \mathrm{~A}, 400 \mathrm{~Hz}$, T.D. Curve, Aux. N.O.
24VDC, $1.2-2.2 \mathrm{~A}, 60 \mathrm{~Hz}$, T.D. Curve, (Solar)
$24 \mathrm{VDC}, ~ 2.5-4.3 \mathrm{~A}, 60 \mathrm{~Hz}$, T.D. Curve, (Solar)
VOLTAGE RESTRAINT
120VAC, 1-5A, 24VDC Control
120VAC, 1-5A, 12VDC Control
120/208VAC, 1-5A, 3 Phase, 24VDC Control
120VAC, 1-5A, 3 Phase, 24VDC Control
120VAC, 1-5A, 3 Phase, 24VDC Control,
Suppression
120VAC, 1-5A, 1 Phase, 120VAC Control
120VAC, 1-5A, 3 Phase, 125VDC Control DC
120VAC, $10-50 \mathrm{mV}$ ext. Shunt, 5A Contacts
230VAC, 0-10VDC ext. Shunt, 5A Contacts
120VAC, $10-50 \mathrm{mV}$ ext. Shunt,
Transistor Output
120VAC, 0.2-0.6ADC with 0.125 ohm Shunt
$28 \mathrm{VDC}, 10-50 \mathrm{mV}$, Inverter, ext. Shunt,
2 Sec. T.D.
125VDC, 10-50mV, Inverter,
125VDC 3A Contacts
120VAC, 10-50mV, Inverter,
125VDC 3A Contacts
120 VAC , isolated outputs
250VDC, 150mV Shunt, Hi-Shock,
+/- 20\% Adj.
120VAC, $50-150 \mathrm{mV}$
220VDC, $5-25 \mathrm{mV}$, 1-25 Sec. T.D.,
Inverse Current
120VAC, $20-35 \mathrm{mV}$, Hi-Shock
12VDC, $10-50 \mathrm{mV}$, Inverter
74VDC, 10-50mV, Inverter
120VAC, Similar to 1100DCX except $4-25 \mathrm{mV}$

Catalog 5-1773450-5
Revised 3-13

Dimensions are shown for
reference purposes only.
Specifications subject to change.

Additional Relays (Continued)

UNDERCURRENT RELAYS
$\begin{array}{ll}\text { 21-693-1 } & \text { Self Contained CT, 120VAC Control } \\ 21-693-2 & \text { Self Contained CT, 230VAC Control }\end{array}$

CURRENT DIFFERENTIAL
1350X 24VDC, 0.1-0.5A Range
1350PX 24VDC, 0.1-0.5A Range, Suppression, 1 N.O. Contact
1350SX 24VDC, 0.1-0.5A Range, High Shock
1350-1X 24VDC, 0.1-0.5A Range, 1 N.C. Contact
1350-3X
1351X
1351PX
1351SX
1351-1X
1351-2X
1351-4X
48VDC, 0.1-0.5A Range
120VAC, 0.1-0.5A Range
120VAC, 0.1-0.5A Range, Suppression
120VAC, 0.1-0.5A Range, High Shock
120VAC, 0.1-0.5A Range, 1 N.C. Contact
120VAC, 2 Sec. T.D. on application of voltage
120VAC, 0.1-0.5A Range, Fast,
125VDC Contacts
PARALLELING (SYNCHRO-CHECK) RELAYS

1880X

1890X
SUFFIX
1880DBX
1890DBX
SUFFIX
200VAC, 1 N.O. \& 1 N.C. Contact
90VAC, 1 N.O. \& N.C. Contact
"-A": Two Normally Open Contacts
"-B": Two Normally Closed Contacts
"-P": Spike Suppression
"-7": 0.025 Second Time Delay
"-9": 125VDC 2A Contacts
"-13": 0.250 Second Time Delay

DEAD BUS TYPE

200VAC, 1 N.O. \& 1 N.C. Contact
90VAC, 1 N.O. \& 1 N.C. Contact
"-A": 2 Normally Open Contacts
"-B": 2 Normally Closed Contacts
"-S": High Shock
"-2": 2 N.O. Contacts, Cond. 5 same as 3
"-3": Condition 1 reversed
" -5 ": 12 deg. to 36 deg. adjustment
"-8" 3 Phase, Phase Sequence
"-9": 125VDC 2A Contacts
"-12": $25 \mathrm{~Hz}, 125 \mathrm{VDC} 3 \mathrm{~A}$ Contacts

DOUBLE DEAD BUS (EITHER BUS DEAD)	
1880DDBX	200VAC, 1 N.O. \& 1 N.C. Contact
1890DDBX	90VAC, 1 N.O. \& 1 N.C. Contact
SUFFIX	"-A": 2 Normally Open Contacts
	"-B": 2 Normally Closed Contacts
	"-9": 125VDC Contacts; 2A res. , 1A ind.

DOUBLE DEAD BUS, UNDERVOLTAGE
2800-120
2800-208
2800-240
2800-380
2800-416
2800-440

120VAC, Ph. Ang. 5-25 deg.,
UV: 70\% D.O. 80\% P.U.
208VAC, Ph. Ang. 5-25 deg.,
UV: 70\% D.O. 80\% P.U.
240VAC, Ph. Ang. 5-25 deg.,
UV: 70\% D.O. 80\% P.U.
380VAC, Ph. Ang. 5-25 deg.,
UV: 70\% D.O. 80\% P.U.
416VAC, Ph. Ang. 5-25 deg., UV: 70\% D.O. 80\% P.U.
440VAC, Ph. Ang. 5-25 deg.,
UV: 70\% D.O. 80\% P.U.

2800-480
2800-600

2850X
2850-1X

480VAC, Ph. Ang. 5-25 deg., UV: 70\% D.O. 80\% P.U.
600VAC, Ph. Ang. 5-25 deg.,
UV: 70\% D.O. 80\% P.U.
PHASE BAND MONITOR
208/230/460 V, 5-60 deg. Range, 60 Hz 208/240/380/480 V, 5-45 deg. Range, 50/60 Hz

OVERFREQUENCY RELAYS

WOF-12-100110 120VAC, 100-110 Hz. Range SUFFIX "-1": 0.2\% Max. Differential
"-T": 0.5-20 Sec. Time Delay "-2T": 60 Second Time Delay "-S": High Shock
$120 \mathrm{VAC}, 50-60 \mathrm{~Hz}$
120VAC, $60-70 \mathrm{~Hz}$
$120 \mathrm{VAC}, 400-450 \mathrm{~Hz}$

UNDERFREQUENCY RELAYS

22-050X	120VAC, $50-60 \mathrm{~Hz}$
$22-060 X$	120VAC, $60-70 \mathrm{~Hz}$
$22-400 \mathrm{X}$	120VAC, $400-450 \mathrm{~Hz}$

FREQUENCY RELAYS (Over or Under)

25-050HX	120VAC, 40-50-60 Hz, 125VDC 3A Contacts
25-050SX	$120 \mathrm{VAC}, 40-50-60 \mathrm{~Hz}$, High Shock
25-050-1X	$120 \mathrm{VAC}, 40-50-60 \mathrm{~Hz}, 2$ N.C. Contacts
25-050-2X	$120 \mathrm{VAC}, 40-50-60 \mathrm{~Hz}, 1.2 \mathrm{Sec}$. Time Delay
25-060HX	$120 \mathrm{VAC}, 50-60-70 \mathrm{~Hz}$, 125VDC 3A Contacts
25-060SX	120VAC, $50-60-70 \mathrm{~Hz}$, High Shock
25-060-1X	120VAC, $50 / 60 \mathrm{~Hz}+/-10 \%$ on each Frequency
25-060-2X	$120 \mathrm{VAC}, 50-60-70 \mathrm{~Hz}, 0.4 \mathrm{~Hz}$ Differential
25-060-3X	$120 \mathrm{VAC}, 50-60-70 \mathrm{~Hz}, 2$ N.C. Contacts
25-060-4X	$120 \mathrm{VAC}, 50-60-70 \mathrm{~Hz}, 2$ N.O. Contacts
25-060-5X	120VAC, $50-60-70 \mathrm{~Hz}, 2$ N.O, 10A MIL-R-5757
25-060-7X	120VAC, EMD \#9337150, Set 57.4 \& $62.6+/-0.6 \mathrm{~Hz}$
25-060-8X	$120 \mathrm{VAC}, 50-60-70 \mathrm{~Hz}$, 1 Sec . T.D.
25-060-10X	120VAC, Spike Suppression
25-060-12X	$104 \mathrm{VAC}, 50-60-70 \mathrm{~Hz}$
25-060-14X	$240 \mathrm{VAC}, 50-60-70 \mathrm{~Hz}$
25-060-18X	$120 \mathrm{VAC}, 50-60-70 \mathrm{~Hz}, 1 \mathrm{Sec}$. T.D., Suppression
25-060-19X	120VAC, $50-60-70 \mathrm{~Hz}, 0.5-10 \mathrm{Sec} . \mathrm{T} . \mathrm{D}$. , 12VDC Ctrl.
25-060-20X	120VAC, $50-60-70 \mathrm{~Hz}, 0.5-10 \mathrm{Sec}$. T.D., 24VDC Ctrl.
25-100X	$120 \mathrm{VAC}, 90-100-110 \mathrm{~Hz}$
25-400X	$120 \mathrm{VAC}, 350-400-450 \mathrm{~Hz}$
25-400-2X	$120 \mathrm{VAC}, 350-400-450 \mathrm{~Hz}$, 220VAC 5A Contacts
25-400-5X	$120 \mathrm{VAC}, 350-400-450 \mathrm{~Hz}$, Suppression
25-025T-1HX	480VAC, $20-25-30 \mathrm{~Hz}, 0.5-20 \mathrm{Sec}$ T.D., 125VDC 3A Contacts
25-025T-2HX	120VAC, $20-25-30 \mathrm{~Hz}, 0.5-20 \mathrm{Sec}$. T.D., 125VDC 3A Contacts
25-100T-1HX	480VAC, $90-100-110 \mathrm{~Hz}, 0.5-20 \mathrm{Sec}$. T.D., 125VDC 3A Contacts
20-040-1X	100VAC, $40-50 \mathrm{~Hz}$
20-040-2X	$120 \mathrm{VAC}, 40-50 \mathrm{~Hz}, 1.5-2.0 \mathrm{Sec}$. T.D.

Catalog 5-1773450-5 Revised 3-13	Dimensions are shown for reference purposes only. Specifications subject	Dimensions are in millimeters unless otherwise specified.	USA: +1 8005226752 Asia Pacific: +8604008206015 UK: +44 800267666	For additional support numbers please visit www.te.com

Additional Relays (Continued)

20-040-3X	$120 \mathrm{VAC}, 40-50 \mathrm{~Hz}$, 2 N.C. Contacts
20-040-4X	$220 \mathrm{VAC}, 40-50 \mathrm{~Hz}$.
20-050-HX	120VAC, $50-60 \mathrm{~Hz}$, 125VDC 3A Contacts
20-050SX	120VAC, $50-60 \mathrm{~Hz}$, High Shock, MIL-S-901C
20-050-1X	$120 \mathrm{VAC}, 50-60 \mathrm{~Hz}, 0.2 \mathrm{Sec}$. T.D.
20-050-2X	$120 \mathrm{VAC}, 45-66 \mathrm{~Hz}$, U.L.
20-050-3X	$120 \mathrm{VAC}, 50-60 \mathrm{~Hz}, 2000 \mathrm{~V}$ PIV Diode
20-050-4X	120VAC, $50-60 \mathrm{~Hz}$, 1 Sec. T.D., 0.5\% Drift
20-050-8X	120VAC, $57-60 \mathrm{~Hz}, 0.2 \mathrm{~Hz}$ Diff., 240 V Contacts, FAA
20-050-8PX	120VAC, Similar to 20-050-8X w/ Spike Suppression
20-050-9x	$120 \mathrm{VAC}, 45-55 \mathrm{~Hz}$
20-050-10X	$120 \mathrm{VAC}, 50-60 \mathrm{~Hz}$, Suppression
20-050-12X	$120 \mathrm{VAC}, 50-60 \mathrm{~Hz}, 125 \mathrm{VDC}$ Contacts
20-050-13X	$120 \mathrm{VAC}, 50-60 \mathrm{~Hz}, 2 \mathrm{Sec}$. T.D.
20-050-16X	150VAC, Similar to 20-050-10X except Voltage
20-050-19X	120VAC, Volt./Freq., $45-60 \mathrm{~Hz}, 85-120 \mathrm{~V}$
20-050-19PX	120VAC, Similar to 20-050-19X w/ Suppression
20-050-20X	$120 \mathrm{VAC}, 50-60 \mathrm{~Hz}, 2$ N.C. Contacts
20-050-21X	220VAC, $50-60 \mathrm{~Hz}$
20-050-22X	$120 \mathrm{VAC}, 50-60 \mathrm{~Hz}, 125 \mathrm{VDC}$ Contacts, Seismic
20-050-23X	240VAC, Similar to 20-050-19X except Voltage
20-050-23PX	240VAC, Similar to 20-050-23X w/Suppression
20-050-25X	$104 \mathrm{VAC}, 50-60 \mathrm{~Hz}$
20-050-26X	$120 \mathrm{VAC}, 57-60 \mathrm{~Hz}$, Supp., 0.2 Sec. T.D. on D.O.
20-050-27X	120VAC, Sim. to 20-050-26X, Operation Reversed
20-050-28X	120VAC, Sim. to 20-050-2X with Suppression
20-050-29X	120VAC, Sim. to 20-050-19X w/125VDC 2A Contacts
20-050-30X	120VAC, Sim. to 20-050-1X w/125VDC 2A Contacts
20-050-31X	200-480VAC, $50-60 \mathrm{~Hz}$ Range, 26VDC Control
20-050-32X	120VAC, Sim. to WUF-12-5060T, Operation Rev.
20-060-1X	120VAC, $60-70 \mathrm{~Hz}$, 2000V Diode
20-060-2X	$120 \mathrm{VAC}, 60-63 \mathrm{~Hz}, 0.2 \mathrm{~Hz}$ Diff., 240VAC Contacts

20-060-2PX	120VAC, Sim. to 20-060-2X w/Suppression
20-060-4X	$120 \mathrm{VAC}, 65-77 \mathrm{~Hz}$
20-060-5X	120VAC, Jumper, Set at $60 \mathrm{~Hz}+3 \%$ or $50 \mathrm{~Hz}+3 \%$
20-060-6X	120VAC, $103-156 \mathrm{~V}$ Range, $60-70 \mathrm{~Hz}$, Set at 70 Hz
20-060-7X	$120 \mathrm{VAC}, 60-63 \mathrm{~Hz}, 0.2 \mathrm{Sec}$ T.D. on P.U., Suppression
20-060-8X	$120 \mathrm{VAC}, 60-70 \mathrm{~Hz}$, Spike Suppression
20-060-9X	120VAC, $60-70 \mathrm{~Hz}, 0.25 \mathrm{Sec}$. Inverse T.D. on P.U.
20-350X	$120 \mathrm{VAC}, 350-500 \mathrm{~Hz}$
20-350SX	120VAC, $350-400 \mathrm{~Hz}$, 2 N.C. 2 A Contacts, Hi-Shock
20-350-2SX	115VAC, $350-400 \mathrm{~Hz}$, Hi-Shock
20-350-4X	$120 \mathrm{VAC}, 300-400 \mathrm{~Hz}$
20-400X	$120 \mathrm{VAC}, 400-450 \mathrm{~Hz}$
20-400SX	120VAC, $400-450 \mathrm{~Hz}$, High Shock
20-400-2SX	115VAC, Hi-Shock
20-400-3X	120VAC, $400-450 \mathrm{~Hz}, 2$ N.C. Contacts
20-400-4X	120VAC, $400-500 \mathrm{~Hz}$
	ADJUSTABLE DIFFERENTIAL
D20-040X	$120 \mathrm{VAC}, 40-50 \mathrm{~Hz}$
D20-050X	$120 \mathrm{VAC}, 50-60 \mathrm{~Hz}$
D20-050-2X	120VAC, P.U. $50-60 \mathrm{~Hz}$, D.O. $40-50 \mathrm{~Hz}$
D20-060X	$120 \mathrm{VAC}, 60-70 \mathrm{~Hz}$
VOLTAGE UNBALANCE RELAYS	
1500X	120VAC, 3 Phase, 15\%-25\% Adjustment
1510X	230VAC, 3 Phase, 15\%-25\% Adjustment
1520X	380VAC, 3 Phase, 15\%-25\% Adjustment
1530X	460VAC, 3 Phase, 15\%-25\% Adjustment
1540X	575VAC, 3 Phase, 15\%-25\% Adjustment
1550X	208VAC, 3 Phase, 15\% - 25\% Adjustment SUFFIX "-2": N.C. Contacts (Example: 1500-2X) "-3": 10\%-20\% Adjustment "-4": Transient Suppression "-H": 125VDC 3A Contacts

Catalog 5-1773450-5 Revised 3-13 www.te.com	Dimensions are shown for reference purposes only. Specifications subject to change.	Dimensions are in millimeters unless otherwise specified.	USA: +1 8005226752 Asia Pacific: +8604008206015 UK: +44 800267666

Engineering Notes

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by TE Connectivity manufacturer:

Other Similar products are found below :

```
APF30318 JVN1AF-4.5V-F PCN-105D3MHZ 5JO-10000S-SIL 5JO-1000CD-SIL 5JO-400CD-SIL LY2S-AC220/240 LYQ20DC12
6031007G 6131406HQ 6-1393099-3 6-1393099-8 6-1393122-4 6-1393123-2 6-1393767-1 6-1393843-7 6-1415012-1 6-1419102-2 6-
1423698-4 6-1608051-6 6-1608067-0 6-1616170-6 6-1616248-2 6-1616282-3 6-1616348-2 6-1616350-1 6-1616350-8 6-1616358-7 6-
1616359-9 6-1616360-9 6-1616931-6 6-1617039-1 6-1617052-1 6-1617090-2 6-1617090-5 6-1617347-5 6-1617353-3 6-1617801-8 6-
1617802-2 6-1618107-9 6-1618248-4 M83536/1-027M CX-4014 MAHC-5494 MAVCD-5419-6 703XCX-120A 7-1393100-5 7-1393111-7
7-1393144-5 7-1393767-8
```

