Applications

LPT Series - Low-Profile Tactile Switches

- Portable electronic devices.
- 3C products.
- Smart phones.
- Digital cameras.

Features

- Compact size.
- Low-profile.
- Long operation life.
- Grounded options available.

LPT Series - Family Classification

Family	USLPT (Ultra-Mini Size)	MCSLPT (Micro-Mini Size)	MSLPT (Mini Size)
Body Size	$2.6 \times 1.6 \mathrm{~mm}$ to $3.7 \times 3.7 \mathrm{~mm}$	$4.6 \times 4.4 \mathrm{~mm}$ to $4.8 \times 4.8 \mathrm{~mm}$	$5.2 \times 5.2 \mathrm{~mm}$
Height	0.35 mm to 0.65 mm	0.55 mm to 1.05 mm	0.80 mm to 2.00 mm
Mounting	Tab / J-Bend	J-Bend	Gull-Wing / J-Bend
Grounding	No	No	Yes
Packaging	Tape \& Reel	Tape \& Reel	Tape \& Reel

Dimensions in millimetres unless otherwise specified

Dimensions Shown for reference purposes only. Specifications subject to change

For Email, phone or live chat, go to: www.te.com/help

MCSLPT Family - 4.6 x 4.4mm

	Contact Rating	$50 \mathrm{~mA}, 12 \mathrm{VDC}$
	Contact Resistance	$100 \mathrm{~m} \Omega$ Max.
	Insulation Resistance	100M 2 Min. 500VDC
	Dielectric Strength	300VAC/1 Minute
	Operating Force	$\begin{aligned} & 100 \pm 50 \operatorname{gf}(-1) / 160 \pm 50 \operatorname{gf}(-2) \\ & 200 \pm 50 \operatorname{gf}(-3) / 260 \pm 50 \operatorname{gf}(-4) \end{aligned}$
	Travel	0.20 mm
	Operating Life	$\begin{gathered} 100 \& 160 \mathrm{gf}=1,000,000 \text { Cycles Min. } \\ 200 \& 260 \mathrm{gf}=500,000 \text { Cycles Min. } \end{gathered}$
	Operating Temperature	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	Storage Temperature	$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$

Features	Applications
$\bullet \quad$ Compact size.	• \quad Digital cameras.
$\bullet \quad$ Extended operating life.	- Smart Phones.
$\bullet \quad$ Low profile.	• Portable electronic devices.

Circuit

-MSLPT4644

-MSLPT4644PH

Part Numbering

$\begin{aligned} & \text { Document \#2337232-1 } \\ & (08 / 10 / 18) \end{aligned}$	Dimensions in millimetres unless otherwise specified	Dimensions Shown for reference purposes only. Specifications subject to change	For Email, phone or live chat, go to: www.te.com/help

Diagrams
-MCSLPT4644 (No Pushbutton \& No Hole)

P.C.B. LAYOUT

-MCSLPT4644PH (W/Pushbutton \& No Hole)

P.C.B. LAYOUT

PN List

Smart PN	Body Size	Height	Mounting	Pitch	Operation Force	Packaging	MOQ	TE PN
MCSLPT4644B1TR	$4.6 \times 4.4 \mathrm{~mm}$	0.55 mm	J-Bend	3.50 mm	100 gf	Tape \& Reel	2,500	$2337234-1$
MCSLPT4644B2TR	$4.6 \times 4.4 \mathrm{~mm}$	0.55 mm	J-Bend	3.50 mm	160 gf	Tape \& Reel	2,500	$2337234-2$
MCSLPT4644B3TR	$4.6 \times 4.4 \mathrm{~mm}$	0.55 mm	J-Bend	3.50 mm	200 gf	Tape \& Reel	2,500	$2337234-3$
MCSLPT4644B4TR	$4.6 \times 4.4 \mathrm{~mm}$	0.55 mm	J-Bend	3.50 mm	260 gf	Tape \& Reel	2,500	$2337234-4$
MCSLPT4644B1PHTR	$4.6 \times 4.4 \mathrm{~mm}$	1.05 mm	J-Bend	3.50 mm	100 gf	Tape \& Reel	1,500	$2337235-1$
MCSLPT4644B2PHTR	$4.6 \times 4.4 \mathrm{~mm}$	1.05 mm	J-Bend	3.50 mm	160 gf	Tape \& Reel	1,500	$2337235-2$
MCSLPT4644B3PHTR	$4.6 \times 4.4 \mathrm{~mm}$	1.05 mm	J-Bend	3.50 mm	200 gf	Tape \&Reel	1,500	$2337235-3$
MCSLPT4644B4PHTR	$4.6 \times 4.4 \mathrm{~mm}$	1.05 mm	J-Bend	3.50 mm	260 gf	Tape \& Reel	1,500	$2337235-4$

Document \#2337232-1	Dimensions in	Dimensions Shown for	For Email, phone or live chat,		
$(08 / 10 / 18)$	millimetres unless				
otherwise specified				\quad	reference purposes only.
:---					
Specifications subject to					
change	\quad go to: www.te.com/help \quad.				

1. Style

"Tactile Switches" are mainly used as signal switches of electric devices, with the general requirements of mechanical and electrical characteristic.
1.1 Operating Temperature Range: $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
1.2 Storage Temperature Range: $-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
2. Current Range: 50mA, 12VDC Max.
3. Type of Actuation: Tactile feedback
4. Test Sequence:

	Item	Description	Test Conditions	Requirements
Appearance	1	Visual Examination	By visual examination check without any out pressure \& testing.	There shall be no defects that affect the serviceability of the product.
Electrical Performance	2	Contact Resistance	Applying a static load (1.5 to $2 x$ actuating force) to the centre of the actuator. Measurements shall be made with a 1 kHz small current contact resistance meter.	100m Ω Max.
	3	Insulation Resistance	Measurements shall be made following application of 500VDC potential across terminals and cover for 1 minute ± 5 seconds.	100M Ω Min.
	4	Dielectric Withstanding Voltage	$300 \mathrm{VAC}(50 \mathrm{~Hz}$ or 60 Hz) shall be applied across terminals and cover for 1 minute.	There shall be no breakdown or flashover.
	5	Bounce	3 to 4 operations at a rate of 1 cycles per second	10 m seconds Max.

Document \#2337232-1 (08/10/18)

Dimensions in millimetres unless otherwise specified

Dimensions Shown for reference purposes only. Specifications subject to change

For Email, phone or live chat, go to: www.te.com/help

MCSLPT Family - Low-profile Tactile Switches

Mechanical Performance	6	Operating Force	Applied in the direction of operation.	$\begin{gathered} 100 \pm 50 \mathrm{gf} \\ (0.98 \pm 0.49 \mathrm{~N}) \end{gathered}$	$\begin{gathered} 160+50 \mathrm{gf} \\ (1.57+0.4 \mathrm{~N}) \end{gathered}$	$\begin{gathered} 200550 \mathrm{gf} \\ (1.96 \pm 0.49 \mathrm{~N}) \end{gathered}$	$\begin{gathered} 26050 \mathrm{gf} \\ (2.55 \pm 0.49 \mathrm{~N}) \end{gathered}$
	7	Stroke	Placing the switch such that the direction of switch operation is vertical and then gradually increasing the load applied to the centre of the actuator to a stop shall be measured.	$0.2 \pm 0.1 \mathrm{~mm}$			
	8	Control strength	Static load of $3 \mathrm{Kg}(29.4 \mathrm{~N})$ shall be applied in the operating direction of the control unit for 15 seconds.	As shown in items 4 to 6.			
	9	Solder Heat Resistance	(PCB is 1.2 mm in thickness)	1) Shall be free from pronounced backlash and falling-off or breakage terminals. 2) As shown in item 4 and 5 . 3)Contact Resistance: $200 \mathrm{~m} \Omega$ Max. 4) Insulation Resistance: $10 \mathrm{M} \Omega$ Min.			
	10	Vibration	Shall be vibrated in accordance with Method 201A of MIL-STD-202F 1) Swing distance $=1.5 \mathrm{~mm}$ 2) Frequency: $10-55-10 \mathrm{~Hz}$ in 1-min/cycle. 3) Direction: 3 vertical directions including the directions of operation. 4) Test time: 2 hours each direction.	1) As shown in item 4 to 7 . 2)Contact Resistance: $200 \mathrm{~m} \Omega$ Max. 3)Insulation Resistance: $10 \mathrm{M} \Omega$ Min.			
	11	Shock	Shall be shocked in accordance with Method 213B condition A of MIL-STD202F 1) Acceleration: 50 G . 2) Action Time: $11 \pm 1 \mathrm{~m} \mathrm{sec}$. 3) Testing Direction: 6 sides. 4) Test cycle: 3 times in each direction.	1) As shown in item 4 to 7 . 2)Contact Resistance: $200 \mathrm{~m} \Omega$ Max. 3)Insulation Resistance: $10 \mathrm{M} \Omega$ Min.			
Durability	12	Operating Life	Measurements shall be made following the test forth below: 1) $5 \mathrm{~mA}, 5 \mathrm{VDC}$ resistive load. 2) Applying a static load the force to the centre of the actuator in the direction of operation. 3) Cycle of Operation: - 100 \& $160 \mathrm{gf}=1,000,000$ Cycles Min. - 200 \& $260 \mathrm{gf}=500,000$ Cycles Min.	1) As shown in item 4 to 5 . 2) Operating force: $\pm 50 \%$ of initial force. 3) Contact Resistance: 10Ω Max. 4) Insulation Resistance: $10 \mathrm{M} \Omega$ Min. 5) Bounce: 20 m seconds Max.			

Document \#2337232-1			
(08/10/18)	Dimensions in millimetres unless otherwise specified	Dimensions Shown for reference purposes only. Specifications subject to change	For Email, phone or live chat,
go to: www.te.com/help			

Environmental Endurance	13	Resistance Low Temperature	Following the test set forth below the sample shall be left in normal temperature and humidity conditions for 1 hour before the measurements are made: 1) Temperature: $-30 \pm 2^{\circ} \mathrm{C}$ 2) Time: 96 hours	1) As shown in item 4 to 7 . 2) Contact Resistance: $200 \mathrm{~m} \Omega$ Max. 3) Insulation Resistance: $10 \mathrm{M} \Omega$ Min.
	14	Heat Resistance	Following the test set forth below the sample shall be left in normal temperature and humidity conditions for 1 hour before the measurements are made: 1) Temperature: $80 \pm 2^{\circ} \mathrm{C}$ 2) Time: 96 hours	1) As shown in item 4 to 7 . 2) Contact Resistance: $200 \mathrm{~m} \Omega$ Max. 3) Insulation Resistance: $10 \mathrm{M} \Omega$ Min.
	15	Humidity Resistance	Following the test set forth below the sample shall be left in normal temperature and humidity conditions for 1 hour before the measurements are made: 1) Temperature: $60 \pm 2^{\circ} \mathrm{C}$ 2) Relative Humidity: 90to95\% 3) Time: 96 hours	1) As shown in item 4 to 7. 2) Contact Resistance: $200 \mathrm{~m} \Omega$ Max. 3) Insulation Resistance: $10 \mathrm{M} \Omega$ Min.

5. Soldering Conditions:

■ Condition for Soldering MCSLPT Series:

■ The condition noted above is the temperature of the copper foil on the surface of the PCB. There are cases where the temperature of the board greatly differs from the surface of the switch. Do not allow the surface temperature of the switch to exceed $260^{\circ} \mathrm{C}$.

■ Manual Soldering

Soldering Temperature: $350^{\circ} \mathrm{C}$ Max.

Continuous Soldering Time: 5 second Max.

Document \#2337232-1	Dimensions in	Dimensions Shown for	For Email, phone or live chat,
$(08 / 10 / 18)$	millimetres unless	reference purposes only. otherwise specified	Specifications subject to change

■ Precautions in Handling

1. Care should be exercised so that flux from the top surface of the printed circuit board does not adhere to the switch.
2. Do not wash the switch.

■ Operating precautions

1. Do not actuate the switch with excessive force.
2. Discontinue force after the switch has been actuated so as to avoid deformation of the components of the switch. Deformation of the components may cause the switch to malfunction.
3. Align the plunger with the switch to insure proper operation.

■ Notes on storage conditions
Avoid the following as exposure may affect the performance and/or the soldering of the switch:

1. Temperature of -10 to $+40^{\circ} \mathrm{C} \& 85 \%$ humidity.
2. Exposure to corrosive gas.
3. Storage over 6 months
4. Exposure to direct sunlight.
5. Storage conditions should prevent heavy impact or loading.
6. After opening the package, unused switches must be repackaged in a moisture-proof and airtight environment.

MCSLPT Family - $4.8 \times 4.8 \mathrm{~mm}$

	Contact Rating	$50 \mathrm{~mA}, 12 \mathrm{VDC}$
	Contact Resistance	$100 \mathrm{~m} \Omega$ Max.
	Insulation Resistance	100M Ω Min. 100VDC
	Dielectric Strength	100VAC/1 Minute
	Operating Force	$\begin{gathered} 100 \pm 50 \mathrm{gf}(-1) / 160 \pm 50 \mathrm{gf}(-2) \\ 200 \pm 50 \mathrm{gf}(-3) / 260 \pm 50 \mathrm{gf}(-4) \\ 360 \pm 60 \mathrm{gf}(-5) \end{gathered}$
	Travel	0.20 mm
	Operating Life	$\begin{gathered} 100 \& 160 \mathrm{gf}=1,000,000 \text { Cycles Min. } \\ 200 \& 260 \mathrm{gf}=500,000 \text { Cycles Min. } \\ 360 \mathrm{gf}=200,000 \text { Cycles Min. } \end{gathered}$
	Operating Temperature	$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
	Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Features	Applications
$\bullet \quad$ Compact size.	• \quad Digital cameras.
- Extended operating life.	- \quad Smart Phones.
\bullet - Low profile.	$\bullet \quad$ Portable electronic devices.

Circuit

Part Numbering

Document \#2337232-1	Dimensions in	Dimensions Shown for	For Email, phone or live chat,		
$(08 / 10 / 18)$	millimetres unless				
otherwise specified				\quad	reference purposes only.
:---					
Specifications subject to					
change	\quad go to: www.te.com/help \quad.				

Diagrams

-MCSLPT4848A

-MCSLPT4848C

PN List

Smart PN	Body Size	Height	Mounting	Pitch	Operation Force	Packaging	MOQ	TE PN
MCSLPT4848A1DTR	$4.8 \times 4.8 \mathrm{~mm}$	0.55 mm	J-Bend	2.80 mm	100 gf	Tape \& Reel	2,500	$2337232-1$
MCSLPT4848A2DTR	$4.8 \times 4.8 \mathrm{~mm}$	0.55 mm	J-Bend	2.80 mm	160 gf	Tape \& Reel	2,500	$2337232-2$
MCSLPT4848A3DTR	$4.8 \times 4.8 \mathrm{~mm}$	0.55 mm	J-Bend	2.80 mm	200 gf	Tape \& Reel	2,500	$2337232-3$
MCSLPT4848A4DTR	$4.8 \times 4.8 \mathrm{~mm}$	0.55 mm	J-Bend	2.80 mm	260 gf	Tape \& Reel	2,500	$2337232-4$
MCSLPT4848A5DTR	$4.8 \times 4.8 \mathrm{~mm}$	0.55 mm	J-Bend	2.80 mm	360 gf	Tape \& Reel	2,500	$2337232-5$
MCSLPT4848C1DTR	$4.8 \times 4.8 \mathrm{~mm}$	0.55 mm	J-Bend	3.70 mm	100 gf	Tape \& Reel	2,500	$2337233-1$
MCSLPT4848C2DTR	$4.8 \times 4.8 \mathrm{~mm}$	0.55 mm	J-Bend	3.70 mm	160 gf	Tape \& Reel	2,500	$2337233-2$
MCSLPT4848C3DTR	$4.8 \times 4.8 \mathrm{~mm}$	0.55 mm	J-Bend	3.70 mm	200 gf	Tape \& Reel	2,500	$2337233-3$
MCSLPT4848C4DTR	$4.8 \times 4.8 \mathrm{~mm}$	0.55 mm	J-Bend	3.70 mm	260 gf	Tape \& Reel	2,500	$2337233-4$
MCSLPT4848C5DTR	$4.8 \times 4.8 \mathrm{~mm}$	0.55 mm	J-Bend	3.70 mm	360 gf	Tape \& Reel	2,500	$2337233-5$

Document \#2337232-1
(08/10/18)

Dimensions in millimetres unless otherwise specified

Dimensions Shown for reference purposes only. Specifications subject to change

For Email, phone or live chat, go to: www.te.com/help

1. Style

"Tactile Switches" are mainly used as signal switches of electric devices, with the general requirements of mechanical and electrical characteristic.
1.1 Operating Temperature Range: $-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
1.2 Storage Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
2. Current Range: 50mA, 12VDC Max.
3. Type of Actuation: Tactile feedback
4. Test Sequence:

	Item	Description	Test Conditions	Requirements
Appearance	1	Visual Examination	By visual examination check without any out pressure \& testing.	There shall be no defects that affect the serviceability of the product.
Electrical Performance	2	Contact Resistance	Applying a static load (1.5 to $2 x$ actuating force) to the centre of the actuator. Measurements shall be made with a 1 kHz small current contact resistance meter.	100m Ω Max.
	3	Insulation Resistance	Measurements shall be made following application of 100VDC potential across terminals and cover for 1 minute ± 5 seconds.	100M Ω Min.
	4	Dielectric Withstanding Voltage	$100 \mathrm{VAC}(50 \mathrm{~Hz}$ or 60 Hz) shall be applied across terminals and cover for 1 minute.	There shall be no breakdown or flashover.
	5	Bounce	3 to 4 operations at a rate of 1 cycles per	10 m seconds Max.

Dimensions in millimetres unless otherwise specified

Dimensions Shown for reference purposes only. Specifications subject to change

For Email, phone or live chat, go to: www.te.com/help

Mechanical Performance	6	Operating Force	Applied in the direction of operation.	$\begin{gathered} 100 \pm 50 \mathrm{gf} \\ (0.98 \pm 0.49 \mathrm{~N}) \end{gathered}$	$\begin{gathered} 160 \pm 50 \mathrm{gf} \\ (1.57 \pm 0.99 \mathrm{~N}) \end{gathered}$	$\begin{gathered} 200 \pm 50 \mathrm{gf} \\ (1.96+0.49 \mathrm{~N}) \end{gathered}$	$\underset{(2.55+0.49 \mathrm{~g})}{\substack{20.5 \mathrm{gf} \\ \text { (2) }}}$	$\begin{gathered} 360 \pm 60 \mathrm{gf} \\ (3.53 \pm 0.59 \mathrm{~N}) \end{gathered}$
	7	Stroke	Placing the switch such that the direction of switch operation is vertical and then gradually increasing the load applied to the centre of the actuator to a stop shall be measured.	$0.2 \pm 0.1 \mathrm{~mm}$				
	8	Control strength	Static load of 3 Kg (29.4 N) shall be applied in the operating direction of the control unit for 15 seconds.	As shown in items 4 to 6.				
	9	Solder Heat Resistance	(PCB is 1.2 mm in thickness)	1) Shall be free from pronounced backlash and falling-off or breakage terminals. 2) As shown in item 4. 3) Contact Resistance: $200 \mathrm{~m} \Omega$ Max. 4) Insulation Resistance: $10 \mathrm{M} \Omega$ Min.				
	10	Vibration	Shall be vibrated in accordance with Method 201A of MIL-STD-202F 1) Swing distance $=1.5 \mathrm{~mm}$ 2) Frequency: $10-55-10 \mathrm{~Hz}$ in 1-min/cycle. 3) Direction: 3 vertical directions including the directions of operation. 4) Test time: 2 hours each direction.	1) As shown in item 4 to 6 . 2) Contact Resistance: $200 \mathrm{~m} \Omega$ Max. 3) Insulation Resistance: $10 \mathrm{M} \Omega \mathrm{Min}$.				
	11	Shock	Shall be shocked in accordance with Method 213B condition A of MIL-STD-202F 1) Acceleration: 50 G . 2) Action Time: $11 \pm 1 \mathrm{~m}$ sec. 3) Testing Direction: 6 sides. 4) Test cycle: 3 times in each direction.	1) As shown in item 4 to 6 . 2) Contact Resistance: $200 \mathrm{~m} \Omega$ Max. 3) Insulation Resistance: $10 \mathrm{M} \Omega$ Min.				
Durability	12	Operating Life	Measurements shall be made following the test forth below: 1) $5 \mathrm{~mA}, 5 \mathrm{VDC}$ resistive load 2) Applying a static load the force to the centre of the actuator in the direction of operation. 3) Cycle of Operation: - $100 \& 160 \mathrm{gf}=1,000,000$ Cycles Min. - 200 \& 260gf $=500,000$ Cycles Min. - 360gf = 200,000 Cycles Min.	1) As shown in item 4 to 5 . 2) Operating force: $\pm 50 \%$ of initial force. 3) Contact Resistance: 10Ω Max. 4) Insulation Resistance: $10 \mathrm{M} \Omega$ Min. 5) Bounce: 20 m seconds Max.				

Document \#2337232-1 $(08 / 10 / 18)$	Dimensions in millimetres unless otherwise specified	Dimensions Shown for reference purposes only. Specifications subject to change	For Email, phone or live chat, go to: www.te.com/help

Environmental Endurance	13	Low Temperature Resistance	Following the test set forth below the sample shall be left in normal temperature and humidity conditions for 1 hour before the measurements are made: 1) Temperature: $-40 \pm 2^{\circ} \mathrm{C}$ 2) Time: 96 hours	1) As shown in item 4 to 6 . 2) Contact Resistance: $200 \mathrm{~m} \Omega$ Max. 3) Insulation Resistance: $10 \mathrm{M} \Omega$ Min.
	14	High Temperature Resistance	Following the test set forth below the sample shall be left in normal temperature and humidity conditions for 1 hour before the measurements are made: 1) Temperature: $90 \pm 2^{\circ} \mathrm{C}$ 2) Time: 96 hours	1) As shown in item 4 to 6 . 2) Contact Resistance: $200 \mathrm{~m} \Omega$ Max. 3) Insulation Resistance: $10 \mathrm{M} \Omega \mathrm{Min}$.
	15	Humidity Resistance	Following the test set forth below the sample shall be left in normal temperature and humidity conditions for 1 hour before the measurements are made: 1) Temperature: $60 \pm 2^{\circ} \mathrm{C}$ 2) Relative Humidity: 90 to 95% 3) Time: 96 hours	1) As shown in item 4 to 6 . 2) Contact Resistance: $200 \mathrm{~m} \Omega$ Max. 3) Insulation Resistance: $10 \mathrm{M} \Omega \mathrm{Min}$.

5. Soldering Conditions:

■ Condition for Soldering MCSLPT Series:

■ The condition noted above is the temperature of the copper foil on the surface of the PCB. There are cases where the temperature of the board greatly differs from the surface of the switch. Do not allow the surface temperature of the switch to exceed $260^{\circ} \mathrm{C}$.

Dimensions Shown for reference purposes only. Specifications subject to change

For Email, phone or live chat, go to: www.te.com/help

■ Manual Soldering
Soldering Temperature: $350^{\circ} \mathrm{C}$ Max.
Continuous Soldering Time: 5 second Max.

■ Precautions in Handling

1. Care should be exercised so that flux from the top surface of the printed circuit board does not adhere to the switch.
2. Do not wash the switch.

■ Operating precautions

1. Do not actuate the switch with excessive force.
2. Discontinue force after the switch has been actuated so as to avoid deformation of the components of the switch. Deformation of the components may cause the switch to malfunction.
3. Align the plunger with the switch to insure proper operation.

RECOMMENDED OPERATING CONDITIONS

■ Notes on storage conditions
Avoid the following as exposure may affect the performance and/or the soldering of the switch:

1. Temperature of -10 to $+40^{\circ} \mathrm{C} \& 85 \%$ humidity.
2. Exposure to corrosive gas.
3. Storage over 6 months
4. Exposure to direct sunlight.
5. Storage conditions should prevent heavy impact or loading.
6. After opening the package, unused switches must be repackaged in a moisture-proof and airtight environment.

For Email, phone or live chat, go to: www.te.com/help

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Tactile Switches category:
Click to view products by TE Connectivity manufacturer:
Other Similar products are found below :
5GTH92001 5GTH9202242 6407-250V-25273P ADTSA62NV ADTSA62RV B3F-3123 1977177-8 1977266-1 ADTSA63NV ADTSM21NSVTR ADTSM25RVTR ADTSM32NVTR ADTSMW64RV FSMRA4JHA04 GS4.70F300QP KSC241J SP DELTA LFS 3FTL600RAS 3FTL640RAS 5GTH9658222 6407-250V-25343P EVQ-P1D05K 2-1977120-7 TSJW-5.2-260-TR KMT011MNGJLHS B3WN6002S 70-201.0 ADTSM62KSVTR ADTSM648NV 95C06E3RAT 5GTH96561 3ATH9Q FSMRA8JHA04 HARS0073 Y97HS12A5RAFP Y97BT23B2HAFP Y33R411N9FPLFT Y31C01402FPLFS PTS645SK50SMTR92 ADTSM32NVB KMS233GPWTLFG Y78B64124FP PTS638SK25SMTR2LFS Y96D113G0FP LFS Y33A812C5FP LFT Y56B2D120FP LFS PTS645 DVM83-BN125-2 LFS KSC621G OL LFS B3F 0047H B3F 1000G B3J 1400D

