Table of Contents

TD2 Series Time Delay Relays, per MIL-PRF-83726/28, /29, /30, \& /31 $5-2-5-5$
Double-pole, Electrically Held, 5 Amps and Less
FCB-205 Series $5-6-5-8$
Four-pole, Electrically Held, 5 Amps and Less
FCB-405 Series $5-9-5-11$
Double-pole, Electrically Held, 15 Amps and Less
FCA-210 Series 5-12-5-14
FCA-212 Series 5-15-5-17
FCA-215 Series 5-12-5-14
Four-pole, Electrically Held, 15 Amps and Less
FCA-410 Series 5-18-5-20
FCA-415 Series 5-18-5-20
Single-pole, Electrically Held, 25 Amps and Less
$5-21-5-23$
Three-pole, Electrically Held, 25 Amps and Less
FC-325 Series 5-24-5-25
FCA-325 Series 5-26 - 5-28
Three-pole, Electrically Held, 25 Amps and Less, with Auxiliary Contacts FCAC-325 Series $5-30-5-31$
Single-Pole, Electrically Held, 50 Amps or Less
FCA-150 $5-32-5-35$
Single-Pole, Electrically Held, 50 Amps and Less, Normally Closed, Bwith Auxiliary Contacts
FCA-150NC 5-36-5-39
Selection and Application Guide 5-40
Cross Reference - Socket to Relay 5-41

TD2 Series Time Delay Relay

Product Facts

- Qualified to:

MIL-PRF-83726/28
MIL-PRF-83726/29
MIL-PRF-83726/30
MIL-PRF-83726/31

- Fixed delay on operate, fixed delay on release, adjustable delay on operate \& adjustable delay on release
- Meets or exceeds electrostatic discharge MIL-STD-1686 Class Non-Sensitive
- Welded hermetically sealed enclosure occupies about 1 $\mathrm{in}^{3}\left(16.4 \mathrm{~cm}^{3}\right)$
- 10A, 2 form C (DPDT) output contacts

TD2 series time delay relays are available for delay on operate or delay on release operation. Either can be supplied as fixed or resistor adjustable types. Both military and commercial versions are offered.

These products consist of solid state timing circuits controlling our FCA-210 series relays, providing 2 Form C (DPDT) output contacts rated 10 amps . The internal timing circuit uses an R/C controlled oscillator with a program-
mable digital pulse counter, gating a semiconductor switch to operate the relay. Timing is independent of whether the controlling voltage is a ramp or step function.

For the adjustable models the user specifies a one decade range in seconds, within which the required delay will be set. This range is programmed internally at the time of manufacture. The required delay is obtained by calculating the oscillator timing resistor as
follows and connecting it externally to terminals 1D 3D as below.
$\mathrm{R}_{\text {Ext }}=\left[\left(\mathrm{T}_{1} / \mathrm{T}_{0}\right)-1\right] 100 \mathrm{~K}$ Ohms
$\mathrm{T}_{0}=$ Minimum time of selected decade in seconds.
$\mathrm{T} 1=$ Required time delay. EXAMPLE
Selected Range $=3-30 \mathrm{sec}$
Required Time $=15 \mathrm{sec}$
$\mathrm{R}_{\text {EXT }}=[(15 / 3)-1] 100 \mathrm{~K}=$ 400K

Timing Action and Terminal Wiring

Delay On Operate:
The time delay starts on the application of input voltage to $\mathrm{X} 1-\mathrm{X} 2$. The timing circuit energizes the end of the time delay period.

Fixed Model

Adjustable Model

Delay On Release:

The input voltage is continuous to $\mathrm{X} 1-\mathrm{X} 2$. When the control voltage is applied to $\mathrm{C} 1-\mathrm{X} 2$ the timing circuit and the relay are both energized. The time delay starts when the control voltage is shut off.

Fixed Model

Adjustable Model

Terminal designations shown in the diagrams above are for reference only. They do not appear on the relay header.

TD2 Series Time Delay Relay (Continued)

Specifications

NOTES

1. The accuracy requirement applies to any combination of operating temperature and voltage. Add $\pm 10 \mathrm{~ms}$ for timing less than one second.
2. Recycle time to assure that the next timing cycle will be completed. Units can be recycled during timing and after time-out: Delay on operate models - Power must be OFF the input at least 10 ms . Delay on release models - Power must be ON the control terminal at least 10 ms .
3. Transient specifications are based on a maximum duty cycle of $1 / 50$.
4. All wired terminals must be connected together during this test. Dielectric withstanding voltage and insulation resistance are measured between all mutually insulated wired terminals and between all these terminals and case.
5. Inductive loads must be diode suppressed.

TD2 Series Time Delay Relay (Continued)

Outline Dimensions

The standard terminal types and enclosures are illustrated below with dimensions expressed as inches ± 0.010 and (millimeters ± 0.25).

Terminals

All terminals on 0.200 (5.4) centers.

CODE "P"
Socket Pins - Gold Plated

CODE "T"
Circuit Board Pins - Tin/Lead Plated

CODE "S"
Solder Hooks

Enclosures

All Enclosures have cupro-nickel cans bright acid tin/lead plated after assembly to terminal headers.

For factory-direct application assistance, phone 419-521-9500 or fax 419-526-2749.

TD2 Series Time Delay Relay (Continued)

Part Numbering System Mil-Spec Types

Commercial Types

NOTE: Commercial versions are available with timing ranges outside of .1 to 600 sec . range.

For factory-direct application
assistance, phone 419-521-9500 or
fax 419-526-2749.

FCB-205 Series, 5 Amperes, DPDT

Product Facts

- Hermetically Sealed
- All Welded Construction
- Balanced Force
- Permanent Magnet Drive
- Contacts rated low level to 5 Amps VDC and 115/200 VAC 400 Hz, 3 Phase
$■$ Weight .54 ounces max. (15.4 grams)
- Qualified to M83536/1, /2

The Series FCB-205 relay is a polarized single-side stable design, where the flux from a permanent magnet provides the armature holding force in the deactivated state, and its flux path is switched and combined with the coil flux in the operated state. This results in appreciably

Type of Load	Life (Min.) Cycles x 103	28 VDC	$\mathbf{1 1 5 V A C}$ $\mathbf{4 0 0 H z}$	$\mathbf{1 1 5 / 2 0 0 V A C}$ $\mathbf{4 0 0 H z}, \mathbf{3 \emptyset}$
Resistive	100	5	5	5
Inductive	20	3	5	5
Motor	100	2	3	3
Lamp	100	1	1	1

Low Level Switching Capability: With contacts operating a load of 10 to 50 microamperes at 10 to 50 millivolts, the contact resistance miss detection level shall be 100 ohms max. Cycling rate is 1 to 12 per second, for 100,000

Contact Make Bounce - 1.0 MILLISECOND AT NOMINAL VOLTAGE
increased contact pressure in both states over that of a spring return nonpolar design. We also manufacture other forms of the FCB relay:
FCB-405 - 5 Amp 4PDT Relay

Contact Rating - Amperes Ratings Are Continuous Duty
*60 Hz loads rated for 10,000 operations operations.

Overload Current - 20 AMPS DC, 30 AMPS 400Hz
Rupture Current - 25 AMPS DC, 40 AMPS 400Hz

Max. Contact Drop at 5 Amps - INITIAL 0.100 VOLTS
End of Life - 0.125 VOLTS
End

General Specifications
Temperature Rating -
$-70^{\circ} \mathrm{C} \mathrm{TO}+125^{\circ} \mathrm{C}$
Altitude - 300,000 Feet
Shock* -
Z, Y, \& X Enclosures -
200 g for 6 mS
W \& M Enclosures (Stud Mtg.) -
100 g for 6 mS
T Enclosure (Socket Mounted in Track) -
50 g for 11 mS
Vibration, Sinusoidal* ${ }^{*}$
Z, Y, \& X Enclosures -
0.12 DA 10 to $70 \mathrm{~Hz}, 30 \mathrm{~g} 70-3000 \mathrm{~Hz}$

W \& M Enclosures (Stud Mtg.) -
0.12 DA 10 to $57 \mathrm{~Hz}, 20 \mathrm{~g} 57-3000 \mathrm{~Hz}$

T Enclosure (Socket Mounted in Track) -
0.06 DA 10 to $57 \mathrm{~Hz}, 10 \mathrm{~g} 57$ to 500 Hz ,

20 g 500 to 3000 Hz
Vibration, Random* -
Z, Y, \& X Enclosures -
$0.4 \mathrm{~g} / \mathrm{Hz} 50-2000 \mathrm{~Hz}$
T, W \& M Enclosures -
$0.2 \mathrm{~g} 2 / \mathrm{Hz} 50-2000 \mathrm{~Hz}$
Dielectric Strength -
At Sea Level -
All circuits to ground and circuit to
circuit - 1000 V rms
Coil to ground - 1000 V rms
At 80,000 Feet - 250 V rms
Insulation Resistance Initial (500 VDC) - $100 \mathrm{M} \Omega$ Min. After Life or Environmental Tests $50 \mathrm{M} \Omega \mathrm{Min}$.
Operate Time at Nominal
Voltage - 4 ms or less
Release Time at Nominal
Voltage - 4 ms or less

* Max. contact opening under vibration or shock 10 microseconds

Coil Data

Coil Code	Nominal Voltages	Freq. Hz	DC Res. (B)	Over Temperature Range		
	6	DC	20Ω	Pickup or Below Volts	Dropout or Above Volts	Must Hold Voltage (C)
2	12	DC	95Ω	9.5	0.3	2.5
3	28	DC	500Ω	9.0	0.75	4.5
$4(\mathrm{~A})$	28	DC	500Ω	18.0	1.5	7.0
5	48	DC	1600Ω	36.0	1.5	7.0

A. CODE 4 COILS HAVE BACK EMF SUPPRESSION TO 42 VOLTS MAX.
B. DC COIL RESISTANCE $\pm 10 \%$ AT $25^{\circ} \mathrm{C}$
C. RELAY WILL STAY IN PICKED-UP STATE DOWN TO MUST HOLD VOLTAGES SHOWN.
D. MAX. OVERVOLTAGE: 6 \& 12 VDC COILS 120% OF NOMINAL; ALL OTHERS 110% OF NOMINAL.

FCB-205 Series, 5 Amperes, DPDT (Continued)
Below are shown the standard terminal types and the enclosures available. Specify the assembly as indicated under How To Order. Dimensions are shown in inches $\pm .010$ and (Millimeters $\pm .25$).

Terminals

CODE	Socket Pin Terminals	
"A"	Socket Pins Gold Plated. Polarizing pin tin/lead plated	
$\begin{aligned} & .170 \\ & (4.32) \end{aligned}$		$\left[\begin{array}{l} .050 \pm .005 \\ (1.27 \pm(.13) \\ \text { Silicicone } \end{array}\right.$
$\begin{gathered} \uparrow \\ .200 \\ (5.08) \end{gathered}$		$\frac{1}{1} \text { Rubber }$
	$\angle_{\text {BLUE BEAD }}^{+1}$	$\begin{aligned} & .040 \pm .001 \text { Dia Pin } \\ & (1.02 \pm .02) \\ & 8 \text { Places } \end{aligned}$

CODE Solder Pin Terminals
 "C" Hook Terminals Tin/Lead Plated

*Metric threads available, To specify use M in place of \square

Terminal Wiring

DC Coils

NOTE: Polarity must be observed with DC coil supply. Relay is polarized with a permanent magnet and will not operate or be damaged by reverse polarity.

Diodes used in transient suppression and in AC rectifier circuits have peak inverse voltage rating of 600 VDC minimum. Zener diodes have a minimum rating of 1 watt.
Terminal designations are for reference only and do not appear on the header.

Transient Suppression

TERMINAL VIEW
EW

Product Facts

■ Hermetically Sealed

- All Welded Construction
- Balanced Force

■ Permanent Magnet Drive

- Contacts rated low level to 5 Amps 28 VDC and 115/200 VAC $400 \mathrm{~Hz}, 3$ Phase
$■$ Weight .93 ounces max. (26.4 grams)
■ Qualified to M83536/5 \& /6
aualitilo

FCB-405 Series, 5 Amperes, 4PDT

The Series FCB-405 relay is a polarized single-side stable design, where the flux from a permanent magnet provides the armature holding force in the deactivated state, and its flux path is switched and combined with the coil flux in the operated state. This results in appreciably

Contact Rating - Amperes Ratings Are Continuous Duty

Type of Load	Life (Min.) Cycles x 103	28 VDC	115VAC $\mathbf{4 0 0 H z}$	$\mathbf{1 1 5 / 2 0 0 V A C}$ $\mathbf{4 0 0 H z} \mathbf{- 3 \emptyset}$
Resistive	100	5	5	5
Inductive	20	3	5	5
Motor	100	2	3	3
Lamp	100	1	1	1

Low Level Switching Capability: With contacts operating a load of 10 to 50 microamperes at 10 to 50 millivolts, the contact resistance miss detection level shall be 100 ohms max. Cycling rate is 1 to 12 per second, for 100,000 operations.

Overload Current - 20 AMPS DC, 30 AMPS 400 Hz
Rupture Current - 25 AMPS DC, 40 AMPS 400 Hz
Contact Make Bounce - 1.0 MILLISECOND AT NOMINAL VOLTAGE
Max. Contact Drop at 5 Amps - INITIAL 0.100 VOLTS
End of Life - 0.125 VOLTS
increased contact pressure in both states over that of a spring return nonpolar design. We also manufacture other versions of this relay:
FCB-205 - 5 Amp DPDT Relay

General Specifications

Temperature Rating -
$-70^{\circ} \mathrm{C} \mathrm{TO}+125^{\circ} \mathrm{C}$
Altitude - 300,000 Feet
Shock* -
Z \& Y Enclosures -
200 g for 6 mS
W, X \& M Enclosures -
100 g for 6 mS
TEnclosure (In Track) -
50 g for 11 mS
Vibration, Sinusoidal* -
Z \& Y Enclosures -
$30 \mathrm{~g} 70-3000 \mathrm{~Hz}$
W, X \& M Enclosures -
$20 \mathrm{~g} 70-3000 \mathrm{~Hz}$
TEnclosure (Socket Mounted in Track) -
$20 \mathrm{~g} 500-3000 \mathrm{~Hz}$
Vibration, Random* -
Z \& Y Enclosures -
$0.4 \mathrm{~g} / \mathrm{Hz} 50-2000 \mathrm{~Hz}$
T, W, X \& M Enclosures -
$0.2 \mathrm{~g} / \mathrm{Hz} 50-2000 \mathrm{~Hz}$
Dielectric Strength -
At Sea Level -
All circuits to ground and circuit to
circuit - 1000 V rms
Coil to ground - 1000 V rms
At 80,000 Feet - 250 V rms
Insulation Resistance -
Initial (500 VDC) - $100 \mathrm{M} \Omega$ Min.
After Life or Environmental Tests $50 \mathrm{M} \Omega \mathrm{Min}$.
Operate Time at Nominal
Voltage - 6 ms or less
Release Time at Nominal
Voltage - 6 ms or less
*Max. contact opening under vibration or shock 10 microseconds

Coil Data

Coil Code	Nominal Voltages	Freq. Hz	DC Res. (B)	Over Temperature Range		
Pickup or Below Volts	Dropout or Above Volts	Must Hold Voltage (C)				
2	6	DC	25Ω	4.5	0.3	2.5
3	12	DC	78Ω	9.0	0.75	7.5
$4(\mathrm{~A})$	28	DC	400Ω	18.0	1.5	7.0
5	28	DC	400Ω	18.0	1.5	7.0

A. CODE 4 COILS HAVE BACK EMF SUPPRESSION TO 42 VOLTS MAX.
B. DC COIL RESISTANCE $\pm 10 \%$ AT $25^{\circ} \mathrm{C}$
C. RELAY WILL STAY IN PICKED-UP STATE DOWN TO MUST HOLD VOLTAGES SHOWN.
D. MAX. OVERVOLTAGE: 6 \& 12 VDC COILS 120\% OF NOMINAL; ALL OTHERS 110\% OF NOMINAL.

FCB-405 Series, 5 Amperes, 4PDT (Continued)

Below are shown the standard terminal types and the enclosures available. Specify the assembly as indicated under How To Order. Dimensions are shown in inches $\pm .010$ and (Millimeters $\pm .25$).

Terminals

Terminal Wiring

DC Coils

NOTE: Polarity must be observed with DC coil supply. Relay is polarized with a permanent magnet and will not operate or be damaged by reverse polarity.
Diodes used in transient suppression and in AC rectifier circuits have peak inverse voltage rating of 600 VDC minimum. Zener diodes have a minimum rating of 1 watt.
Terminal designations are for reference only and do not appear on the header.

HOW TO ORDER

DC Coils with Transient

 Suppression
terminal view

RELAY TYPE

TERMINALS (Socket Pins) \qquad
ENCLOSURE (With Flanges)
COIL (28 VDC With Transient Suppression)

[^0]

Product Facts
■ Hermetically Sealed

- All Welded Construction
- Balanced Force

■ Permanent Magnet Drive
■ Contacts - Silver Cadmium Oxide with Gold Plating
■ Coils for DC, 50 to 400 Hz and 400 Hz AC
■ Weight 1.6 ounces max. (45.4 grams)

■ Qualified to M83536/9, /10

NOTE: Only DC Coil Models are QPL Approved.

FCA-210 Series, 10 Amperes, DPDT

The Series FCA-210 relay is a polarized single-side stable design, where the flux from a permanent magnet provides the armature holding force in the deactivated state, and its flux path is switched and combined with the coil flux in the operated state. This results in appreciably increased contact pressure in both states over that of a spring return nonpolar design. We also

Contact Rating - Amperes
Ratings Are Continuous Duty

Type of Load	Life (Min.) Cycles x 103	$\mathbf{2 8}$ VDC	$\mathbf{1 1 5 V A C}$ $\mathbf{4 0 0 H z}$	$\mathbf{\mathbf { 1 1 5 / 2 0 0 V A C ~ 3 ~ }} \mathbf{4 0 0 \mathrm { Hz }}$	
Resistive	100	10	10	10	2.5
Inductive	20	8	8	8	2.5
Motor	100	4	4	4	2.0
Lamp	100	2	2	2	1

*60 Hz loads rated for 10,000 operations
Overload Current - 40 AMPS DC, 60 AMPS 400Hz
Rupture Current - 50 AMPS DC, 80 AMPS 400Hz
Contact Make Bounce - 1 MILLISECOND AT NOMINAL VOLTAGE
Max. Contact Drop at 10 Amps - INITIAL 0.100 VOLTS
End of Life - 0.125 VOLTS

General Specifications

Temperature Rating -
$-70^{\circ} \mathrm{C} \mathrm{TO}+125^{\circ} \mathrm{C}$
Altitude - 300,000 Feet
Shock* -
Z, Y, \& X Enclosures -
200 g for 6 mS
W \& M Enclosures (Stud Mitg.) -
100 g for 6 mS
Vibration, Sinusoidal* ${ }^{*}$
Z, Y, \& X Enclosures -
$30 \mathrm{~g} \mathrm{33-3000Hz}$
W \& M Enclosures (Stud Mtg.) -
$20 \mathrm{~g} \mathrm{33-3000Hz}$
Vibration, Random* -
Z, Y, \& X Enclosures -
$0.4 \mathrm{~g} / \mathrm{Hz} 50-2000 \mathrm{~Hz}$
W \& M Enclosures (Stud Mtg.) -
$0.2 \mathrm{~g} 2 / \mathrm{Hz} 50-2000 \mathrm{~Hz}$
Dielectric Strength -
At Sea Level -
All circuits to ground and circuit to
circuit - 1250 V rms
Coil to ground - 1000 V rms
At 80,000 Feet - 350 V rms

Insulation Resistance -

Initial (500 VDC) - $100 \mathrm{M} \Omega$ Min. After Life or Environmental Tests $50 \mathrm{M} \Omega \mathrm{Min}$.
Operate Time at Nominal Voltage -
DC Relays - 10 ms or less
AC Relays - 15 ms or less
Release Time at Nominal
Voltage -
DC Relays - 10 ms or less
AC Relays - 50 ms or less

* Max. contact opening under vibration
or shock 10 microseconds

Coil Data

Coil Code	Nominal Voltages	Freq. Hz	DC Res. AC Amps (B)	Over Temperature Range 1 $\quad 6$	DC	20Ω
Pickup or Below Volts	Dropout or Above Volts	Must Hold Voltage (C)				
2	12	DC	80Ω	9.5	0.3	2.5
3	28	DC	320Ω	18.0	0.75	4.5
$4(\mathrm{~A})$	28	DC	320Ω	18.0	1.5	7.0
5	48	DC	920Ω	32.0	2.5	7.0
6	28	400 Hz	180 mA	22.0	1.25	10.0
7	28	$50 / 400 \mathrm{~Hz}$	100 mA	22.0	1.25	10.0
8	115	400 Hz	40 mA	90.0	5.0	40.0
9	115	$50 / 400 \mathrm{~Hz}$	30 mA	95.0	5.0	40.0

A. CODE 4 COILS HAVE BACK EMF SUPPRESSION TO 42 VOLTS MAX.
B. DC COIL RESISTANCE $\pm 10 \%$ AT $25^{\circ} \mathrm{C}$; AC COIL MAX. CURRENT AT NOMINAL VOLTAGE.
C. RELAY WILL STAY IN PICKED-UP STATE DOWN TO MUST HOLD VOLTAGES SHOWN.
D. MAX. OVERVOLTAGE: 6 \& 12 VDC COILS 120\% OF NOMINAL; ALL OTHERS 110\% OF NOMINAL.
E. COILS AVAILABLE FOR OTHER VOLTAGES AND FOR AC 50/60HZ.

FCA-210 Series, 10 Amperes, DPDT (Continued)
Below are shown the standard terminal types and the enclosures available. Specify the assembly as indicated under How To Order. Dimensions are shown in inches $\pm .010$ and (Millimeters $\pm .25$).

Terminals

SOCKET PINS ARE GOLD PLATED
POLARIZING PINS ARE TIN/LEAD PLATED
CIRCUIT BOARD PINS ARE TIN/LEAD PLATED
DIMENSIONS EXCEPT AS NOTED:
INCHES $\pm .010$ (MILLIMETERS $\pm .25$)

CODE Solder Hook Terminals
"C"
HOOK TERMINALS TIN/LEAD PLATED

Enclosures

All Enclosures have Cupro-Nickel Cans bright acid tin/lead plated after assembly to terminal headers.
Dimensions: Inches $\pm .010$ ($\mathrm{mm} \pm .25$)
"A" AC Coils 1.125 in. (28.57) Max. DC Coils 1.010 in. (25.65) Max.

*Metric threads available, To specify use M in place of W

FCA-210 Series, 10 Amperes, DPDT (Continued)
Terminal Wiring

AC Coils
28 VAC

NOTE: Polarity must be observed with DC coil supply. Relay is polarized with a permanent magnet and will not operate or be damaged by reverse polarity.
Diodes used in transient suppression and in AC rectifier circuits have peak inverse voltage rating of 600 VDC minimum. Zener diodes have a minimum rating of 1 watt. Terminal designations are for reference only and do not appear on the header.

TERMINAL VIEW

FCA-215-
FCA-210-A Y 4

RELAY TYPE
TERMINALS (Socket Pins, DC Coil)
ENCLOSURE (With Flanges)
COIL (28 VDC With Transient Suppression).
NOTE: Only DC coil models are QPL Approved

* The part number example shown on this page is for catalog items. For a list of specific QPL part numbers, please see the index in Section 15.

Product Facts

■ Hermetically Sealed

- All Welded Construction
- Balanced Force

■ Permanent Magnet Drive
■ Contacts - Silver Cadmium Oxide with Gold Plating
■ Coils for DC, 50 to 400 Hz and 400 Hz AC
■ Weight 1.6 ounces max. (45.4 grams)

FCA-212 Series, 12 Amperes, DPDT

The Series FCA-212 relay is a polarized single-side stable design, where the flux from a permanent magnet provides the armature holding force in the deactivated state, and its flux path is switched and combined with the coil flux in the operated state.

This results in appreciably increased contact pressure in both states over that of a spring return nonpolar design. We also manufacture other versions of this relay:
FCA-412 - 12 Amp 4PDT Relay

Contact Rating - Amperes
Ratings Are Continuous Duty

Type of Load	Life (Min.) Cycles x 103	28 VDC	115VAC $\mathbf{4 0 0 H z}$	$\mathbf{1 1 5 / 2 0 0 V A C ~ 3 \varnothing}$	
Resistive	100	12	12	12	2.5
Inductive	20	8	8	8	2.5
Motor	100	4	4	4	2.0
Lamp	100	2	2	2	1

*60 Hz loads rated for 10,000 operations
Overload Current - 40 AMPS DC, 60 AMPS 400 Hz
Rupture Current - 50 AMPS DC, 80 AMPS 400 Hz
Contact Make Bounce - 1 MILLISECOND AT NOMINAL VOLTAGE
Max. Contact Drop at 12 Amps - INITIAL 0.150 VOLTS
End of Life - 0.175 VOLTS

General Specifications

Temperature Rating -
$-70^{\circ} \mathrm{C} \mathrm{TO}+125^{\circ} \mathrm{C}$
Altitude - 300,000 Feet
Shock* -
Z, Y, \& X Enclosures -
200 g for 6 mS
W \& M Enclosures (Stud Mtg.) -
100 g for 6 mS
Vibration, Sinusoidal* ${ }^{*}$
Z, Y, \& X Enclosures -
$30 \mathrm{~g} 33-3000 \mathrm{~Hz}$
W Enclosure -
$20 \mathrm{~g} 33-3000 \mathrm{~Hz}$
Vibration, Random* -
Z, Y, \& X Enclosures -
$0.4 \mathrm{~g} 2 / \mathrm{Hz} 50-2000 \mathrm{~Hz}$
W \& M Enclosures (Stud Mtg.) -
$0.2 \mathrm{~g} / \mathrm{Hz} 50-2000 \mathrm{~Hz}$
Dielectric Strength -
At Sea Level -
All circuits to ground and circuit to
circuit - 1250 V rms
Coil to ground - 1000 V rms
At 80,000 Feet - 350 V rms

Insulation Resistance -

Initial (500 VDC) - $100 \mathrm{M} \Omega$ Min. Atter Life or Environmental Tests $50 \mathrm{M} \Omega \mathrm{Min}$.
Operate Time at Nominal Voltage -
DC Relays - 10 ms or less
AC Relays - 15 ms or less
Release Time at Nominal
Voltage -
DC Relays - 10 ms or less
AC Relays - 50 ms or less

* Max. contact opening under vibration or shock 10 microseconds

Coil Data

Coil Code	Nominal Voltages	Freq. Hz	DC Res. AC Amps (B)	Over Temperature Range Below Volts		
	6	DC	20Ω	Dropout or Above Volts	Must Hold Voltage (C)	
2	12	DC	80Ω	9.5	0.3	2.5
3	28	DC	320Ω	18.0	1.5	
$4(\mathrm{~A})$	28	DC	320Ω	18.0	7.0	
5	48	DC	920Ω	32.0	2.5	7.0
6	28	400 Hz	180 mA	22.0	1.25	14.0
7	28	$50 / 400 \mathrm{~Hz}$	100 mA	22.0	1.25	10.0
8	115	400 Hz	40 mA	90.0	5.0	40.0
9	115	$50 / 400 \mathrm{~Hz}$	30 mA	95.0	5.0	40.0

A. CODE 4 COILS HAVE BACK EMF SUPPRESSION TO 42 VOLTS MAX.
B. DC COIL RESISTANCE $\pm 10 \%$ AT $25^{\circ} \mathrm{C}$; AC COIL MAX. CURRENT AT NOMINAL VOLTAGE.
C. RELAY WILL STAY IN PICKED-UP STATE DOWN TO MUST HOLD VOLTAGES SHOWN.
D. MAX. OVERVOLTAGE: 6 \& 12 VDC COILS 120\% OF NOMINAL; ALL OTHERS 110% OF NOMINAL.
E. COILS AVAILABLE FOR OTHER VOLTAGES AND FOR AC $50 / 60 \mathrm{HZ}$.

FCA-212 Series, 12 Amperes, DPDT (Continued)
Below are shown the standard terminal types and the enclosures available. Specify the assembly as indicated under How To Order. Dimensions are shown in inches $\pm .010$ and (Millimeters $\pm .25$).

Terminals

SOCKET PINS ARE GOLD PLATED POLARIZING PINS ARE TIN/LEAD PLATED CIRCUIT BOARD PINS ARE TIN/LEAD PLATED DIMENSIONS EXCEPT AS NOTED:
INCHES $\pm .010$ (MILLIMETERS $\pm .25$)

CODE
"C"

Solder Hook Terminals

HOOK TERMINALS TIN/LEAD PLATED

CODE Circuit Board Pins

CODE Circuit Board Pins

"G"

Enclosures

All Enclosures have Cupro-Nickel Cans bright acid tin/lead plated after assembly to terminal headers.
Dimensions: Inches $\pm .010$ ($\mathrm{mm} \pm .25$)
"A" AC Coils 1.125 in . (28.57) Max.
DC Coils 1.010 in. (25.65) Max.

*Metric threads available, To specify use M in place of W

FCA-212 Series, 12 Amperes, DPDT (Continued)
Terminal Wiring
DC Coils with
Transient Suppression

DC Coils

NOTE: Polarity must be observed with DC coil supply. Relay is polarized with a permanent magnet and will not operate or be damaged by reverse polarity.
Diodes used in transient suppression and in AC rectifier circuits have peak inverse voltage rating of 600 VDC minimum. Zener diodes have a minimum rating of 1 watt. Terminal designations are for reference only and do not appear on the header.

HOW TO ORDER

FCA-212-A Y 4

RELAY TYPE
TERMINALS (Socket Pins, DC Coil)
ENCLOSURE (With Flanges)
COIL (28 VDC With Transient Suppression).

FCA-410 Series, 10 Amperes, 4PDT

The Series FCA-410 relay is a polarized single-side stable design, where the flux from a permanent magnet provides the armature holding force in the deactivated state, and its flux path is switched and combined with the coil flux in the operated state. This results in appreciably increased contact pressure in both states over that of a spring return

Contact Rating - Amperes

Ratings Are Continuous Duty

Type of Load	Life (Min.) Cycles x 103	28 VDC	$\mathbf{1 2 0 V A C}$ $\mathbf{4 0 0 H z}$	120/200VAC	
Resistive	100	10	10	10	2.5
Inductive	20	8	8	8	2.5
Motor	100	4	4	4	2.0
Lamp	100	2	2	2	1.0

*60 Hz loads rated for 10,000 operations
Overload Current - 40 AMPS DC, 60 AMPS 400Hz
Rupture Current - 50 AMPS DC, 80 AMPS 400 Hz
Contact Make Bounce - 1 MILLISECOND AT NOMINAL VOLTAGE
Max. Contact Drop at 10 Amps - INITIAL 0.100 VOLTS
End of Life - 0.125 VOLTS
nonpolar design. We also manufacture 2-pole and 6 -pole versions of this relay.
FCA-210 - 10 Amp DPDT Relay
FCA-610 - 10 Amp 6PDT Relay
Available
FCA-415 - 15 Amp 4PDT, Has the same specifications as the FCA-410 except is rated at 15 amps . (Commercial Only)

General Specifications
Temperature Rating -
$-70^{\circ} \mathrm{C} \mathrm{TO}+125^{\circ} \mathrm{C}$
Altitude - 300,000 Feet
Shock* -
Z \& Y Enclosures -
200 g for 6 mS
W, X \& M Enclosures -

100 g for 6 mS

Vibration, Sinusoidal*
Z \& Y Enclosures -
0.12 DA 10 to 70 Hz

30 g 70 to 3000 Hz
W, X \& M Enclosures -
0.12 DA 10 to 57 Hz

20 g 57 to 3000 Hz
Vibration, Random* -
Z \& Y Enclosures -
$0.4 \mathrm{~g} / \mathrm{Hz} 50-2000 \mathrm{~Hz}$
W, X \& M Enclosures -
$0.2 \mathrm{~g} 2 / \mathrm{Hz} 50-2000 \mathrm{~Hz}$

Dielectric Strength -

At Sea Level -
All circuits to ground and circuit to
circuit - 1250 V rms
Coil to ground - 1000 V rms At 80,000 Feet - 350 V rms Insulation Resistance Initial (500 VDC) - $100 \mathrm{M} \Omega$ Min. After Life or Environmental Tests $50 \mathrm{M} \Omega \mathrm{Min}$.

Operate Time at Nominal

Voltage -
DC Relays - 15 ms or less
AC Relays - 20 ms or less
Release Time at Nominal
Voltage -
DC Relays - 15 ms or less
AC Relays - 50 ms or less

* Max. contact opening under vibration or shock 10 microseconds

Coil Data

Coil Code	Nominal Voltages	Freq. Hz	DC Res. AC Amps (B)	Over Temperature Range Pickup or Below Volts		
1	6	DC	18Ω	Dropout or Above Volts	Must Hold Voltage (C)	
2	12	DC	7.5	0.3	2.5	
3	28	DC	290Ω	9.0	0.75	7.5
$4(\mathrm{~A})$	28	DC	290Ω	18.0	1.5	7.0
5	48	DC	865Ω	18.0	1.5	7.0
6	28	400 Hz	225 mA	22.0	2.5	14.0
7	28	$50 / 400 \mathrm{~Hz}$	120 mA	22.0	1.25	10.0
8	115	400 Hz	40 mA	90.0	1.25	10.0
9	115	$50 / 400 \mathrm{~Hz}$	30 mA	95.0	5.0	40.0

A. CODE 4 COILS HAVE BACK EMF SUPPRESSION TO 42 VOLTS MAX.
B. DC COIL RESISTANCE $\pm 10 \%$ AT $25^{\circ} \mathrm{C}$; AC COIL MAX. CURRENT AT NOMINAL VOLTAGE.
C. RELAY WILL STAY IN PICKED-UP STATE DOWN TO MUST HOLD VOLTAGES SHOWN.
D. MAX. OVER-VOLTAGE: 6 \& 12 VDC COILS 120% OF NOMINAL; ALL OTHERS 110% OF NOMINAL.
E. COILS AVAILABLE FOR OTHER VOLTAGES AND FOR AC $50 / 60 \mathrm{HZ}$.

NOTE: Only DC Coil Models are QPL Approved.

FCA-410 Series, 10 Amperes, 4PDT (Continued)
Below are shown the standard terminal types and the enclosures available. Note that the pin configuration for coil connections is determined by the coil supply voltage. Specify the assembly as indicated under How To Order. Dimensions are shown in inches $\pm .010$ and (Millimeters $\pm .25$) except as noted.

Terminals

Terminals on 0.200 centers.
Coil terminals: X1-X2.
Socket Pins are Gold Plated.
Circuit Board Pins are Tin/Lead Plated.
CODE "A"
Socket Pins-All DC Coils

CODE "B"
Circuit Board Pins-All DC Coils

CODE "C"

Solder Hooks-AC or DC Coils

CODE "D"
Socket Pins-115 VAC Coils
$\begin{array}{r}.270 \\ \hline 6.86\end{array}$

SEE NEXT PAGE FOR MORE COIL

TERMINAL OPTIONS

$$
\begin{aligned}
& \text { FULL } \\
& 6 \text { PLC }
\end{aligned}
$$

Enclosures

All Enclosures have cupro-Nickel cans bright acid tin/lead plated after assembly to terminal headers.

CODE

CODE

"W"

*Metric threads available,To specify use \mathbb{M} in place of W

CODE "F"
Circuit Board Pins-115 VAC Coils

CODE "G"

Circuit Board Pins- 28 VAC Coils

Terminals (Continued)
CODE "E"
Socket Pins- 28 VAC Coils

Terminal Wiring A \& B Pin Terminal All DC Coils

C Hook Terminal All AC \& DC Coils

NOTE: Polarity must be observed with DC coil supply. Relay is polarized with a permanent magnet and will not operate or be damaged by reverse polarity.

Diodes used in transient suppression and in AC rectifier circuits have peak inverse voltage rating of 600 VDC minimum. Zener diodes have a minimum rating of 1 watt.
Terminal designations are for reference only and do not appear on the header.

E \& G Pin Terminal 28 VAC Coils

FCA-415-
FCA-410 A Y 4

RELAY TYPE
TERMINALS (Socket Pins)
ENCLOSURE (With Flanges)
COIL (28 VDC With Transient Suppression).

NOTE: Only DC coil models are QPL Approved

* The part number example shown on this page is for catalog items. For a list of specific QPL part numbers, please see the index in Section 15.

Product Facts

■ Hermetically Sealed

- All Welded Construction
- Balanced Force

■ Permanent Magnet Drive
■ Contacts - Silver Cadmium Oxide with Gold Plating
■ Coils for DC, 50 to 400 Hz and 400 Hz AC
■ Weight 1.6 ounces max. (45.4 grams)

■ Qualified to M6106/19, M83536/36, /37

FCA-125 Series, 25 Amperes, SPDT

The Series FCA-125 relay is a polarized single-side stable design, where the flux from a permanent magnet provides the armature holding force in the deactivated state, and its flux path is switched and combined with the coil flux in the operated state.

Contact Rating - Amperes
Ratings Are Continuous Duty

Type of Load	Life (Min.) Cycles x 103	$\mathbf{2 8}$ VDC	$\mathbf{1 1 5 V A C}$ $\mathbf{4 0 0 H z}$	$\mathbf{1 1 5 V A C}$ $\mathbf{6 0 H z}$
Resistive	50	25	25	10
Inductive	10	12	-	10
Inductive	20	-	15	-
Motor	50	10	10	8
Lamp	50	5	5	-

*60 Hz loads rated for 10,000 operations

Overload Current - 50 AMPS DC, 80 AMPS 400Hz
Rupture Current - 60 AMPS DC, 100 AMPS 400 Hz
Contact Make Bounce - 1 MILLISECOND AT NOMINAL VOLTAGE
Max. Contact Drop at 25 Amps - INITIAL 0.150 VOLTS
End of Life - 0.175 VOLTS

This results in appreciably increased contact pressure in both states over that of a spring return nonpolar design. We also manufacture other versions of this relay:
FCA-325-25 Ampere 3PDT Relay
FCAC-325-25 Ampere 3PST-NO Relay with 2 amp SPDT auxiliary

General Specifications

Temperature Rating -
$-70^{\circ} \mathrm{C} \mathrm{TO}+125^{\circ} \mathrm{C}$
Altitude - 300,000 Feet
Shock* -
Z, Y, \& X Enclosures 200 g for 6 mS
W \& M Enclosures (Stud Mitg.) -

100 g for 6 mS

Vibration, Sinusoidal ${ }^{*}$ -
Z, Y, \& X Enclosures -
$30 \mathrm{~g} 33-3000 \mathrm{~Hz}$
W \& M Enclosures (Stud Mtg.) -
$20 \mathrm{~g} \mathrm{33-3000Hz}$
Vibration, Random* -
Z, Y, \& X Enclosures -
$0.4 \mathrm{~g} / \mathrm{Hz} 50-2000 \mathrm{~Hz}$
W \& M Enclosures (Stud MItg.) -
$0.2 \mathrm{~g} / \mathrm{Hz} 50-2000 \mathrm{~Hz}$
Dielectric Strength -
At Sea Level -
All circuits to ground and circuit to
circuit - 1250 V rms
Coil to ground - 1000 V rms
At 80,000 Feet - 350 V rms

Insulation Resistance -

Initial (500 VDC) - $100 \mathrm{M} \Omega$ Min. After Life or Environmental Tests $50 \mathrm{M} \Omega \mathrm{Min}$.
Operate Time at Nominal
Voltage -
DC Relays - 10 ms or less
AC Relays - 15 ms or less
Release Time at Nominal
Voltage -
DC Relays - 10 ms or less
AC Relays - 50 ms or less

* Max. contact opening under vibration or shock 10 microseconds

Coil Data

Coil Code	Nominal Voltages	Freq. Hz	DC Res. AC Amps (B)	Over Temperature Range		
				Pickup or Below Volts	Dropout or Above Volts	Must Hold Voltage (C)
1	6	DC	20Ω	4.5	0.3	2.5
2	12	DC	80Ω	9.0	0.75	4.5
3	28	DC	320Ω	18.0	1.5	7.0
4 (A)	28	DC	320Ω	18.0	1.5	7.0
5	48	DC	920Ω	32.0	2.5	14.0
6	28	400 Hz	180 mA	22.0	1.25	10.0
7	28	$50 / 400 \mathrm{~Hz}$	100 mA	22.0	1.25	10.0
8	115	400 Hz	40 mA	90.0	5.0	40.0
9	115	$50 / 400 \mathrm{~Hz}$	30 mA	95.0	5.0	40.0

A. CODE 4 COILS HAVE BACK EMF SUPPRESSION TO 42 VOLTS MAX.
B. DC COIL RESISTANCE $\pm 10 \%$ AT $25^{\circ} \mathrm{C}$; AC COIL MAX. CURRENT AT NOMINAL VOLTAGE.
C. RELAY WILL STAY IN PICKED-UP STATE DOWN TO MUST HOLD VOLTAGES SHOWN.
D. MAX. OVERVOLTAGE: 6 \& 12 VDC COILS 120\% OF NOMINAL; ALL OTHERS 110\% OF NOMINAL.
E. COILS AVAILABLE FOR OTHER VOLTAGES AND FOR AC 50/60HZ.

NOTE: Only DC Coil Models are QPL Approved.

FCA-125 Series, 25 Amperes, SPDT (Continued)
Below are shown the standard terminal types and the enclosures available. Specify the assembly as indicated under How To Order. Dimensions are shown in inches $\pm .010$ and (Millimeters $\pm .25$).

Terminals

FCA-125 Series, 25 Amperes, SPDT (Continued)

Terminal Wiring

```
DC COILS
```


DC COILS WITH TRANSIENT SUPPRESSION

AC COILS

NOTE: Polarity must be observed with DC coil supply. Relay is polarized with a permanent magnet and will not operate or be damaged by reverse polarity.

Diodes used in transient suppression and in AC rectifier circuits have peak inverse voltage rating of 600 VDC minimum. Zener diodes have a minimum rating of 1 watt.

Terminal designations are for reference only and do not appear on the header.

TERMINAL VIEW

HOW TO ORDER

FCA-125-A Y 4
RELAY TYPE
TERMINALS (Socket Pins, DC Coil)
ENCLOSURE (With Flanges)
COIL (28 VDC With Transient Suppression).
NOTE: Only DC coil models are QPL Approved

Product Facts

■ Non-latching Hermetically Sealed Relay

- Corrosion protected metal can
- All welded construction.

■ 1.5 inch cube enclosure
$■ 0.452 \mathrm{lbs}$
■ Excellent for switching harsh inductive, motor, and lamp loads

- $-70^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range
- $\mathbf{8 0 , 0 0 0}$ feet altitude rating

■ 28 Vdc or 115 Vac coils
■ Solder hook or terminal block configurations
■ Qualified to MS27418 specifications

- Higher current ratings than standard M83536 mid-range relays
■ 3-Pole 25A Contacts (FORM X) Switching in 1.5 inch ${ }^{3}$
- Main contacts are suitable for use in 360-800 Hz variable frequency application

Applications

- Launch Systems
- Power Distribution

■ Fuel Pumps
■ Guidance and Navigation Systems
■ Aircraft Galley/Cabin Equipment
■ Weapons Systems
■ Ground Support Equipment

CII FC-325 Series Relays

FC-325 Series relays from TE Connectivity (TE) are hermetically sealed devices designed for harsh inductive, motor, and lamp load applications in aerospace, defense, and marine markets

Configured as a 3PST/NO (DM), the double make/ break contact design of the CII FC-325 Series relays

Circuit Diagram

DC Nonsuppressed and AC Coils
offer higher capability than comparable relays in the market. It shares the load across two contact sets, resulting in less wear and tear on the relay. This provides stable performance and extends the relay's life. The relay's all welded design creates a reliable alternative to similar solder sealed relays in the market.

DC Suppressed Coils

General Specifications
Temperature Rating -
$-70^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Altitude - 80,000 Feet
Shock - $50 \mathrm{~g} / 11 \mathrm{~ms}$
Sinusoidal Vibration - $10 \mathrm{~g} / 5$ to
1000 H2
Electrical
Dielectric Strength at Sea Level: Coil to Case - 1250 Vrms
All Other Points - 1500 Vrms
Dielectric Strength at $\mathbf{8 0}, \mathbf{0 0 0} \mathrm{ft}$
($25,000 \mathrm{~m}$) - 500 Vrms (all points) Insulation Resistance at 500 Vdc : Initial - $100 \mathrm{M} \Omega$ min.
After Life or Environmental Test $50 \mathrm{M} \Omega$ min.
Contact Voltage Drop at Nominal Current:
Initial Value - 150 mV max.
After Life - 175 mV max.
Operational
Operate Time at Nominal Voltage:
AC - 25 ms max.
DC - 20 ms max.
Release Time at Nominal Voltage:
AC - 50 ms max.
DC - 10 ms max.
Bounce Time at Nominal Voltage - 2 ms max.

Coil Characteristics

Code	115 Vac $50 / 60 \mathrm{~Hz}$	115 Vac $\mathbf{4 0 0 \mathrm { Hz }}$	$\mathbf{2 8 ~ V d c}^{c}$	$\mathbf{2 8 ~ V d c}$ (Suppresed)
Nominal operating voltage	115	115	28	28
Maximum operating voltage	122	122	32	32
Maximum pick-up voltage over temperature range	95	95	18	18
Maximum pick-up voltage over temperature range (Continuous Current test)	108	108	22.5	22.5
Drop-out voltage over temperature range	5.0	5.0	1.5	1.5
Coil current at $+25^{\circ}$ C (amperes)	.06	.055	-	-
Coil resistance - DC Coils (*)	-	-	160	160
Back EMF Suppression to (VDC)	-	-	-	42

Contact Characteristics

Load Type	Life Cycles	Current Rating (A)				
		$\begin{gathered} 28 \\ \mathrm{Vdc} \end{gathered}$	115 Vac, 1 Phase Power		115/200 Vac, 3 Phase Power	
			400 Hz	$50 / 60 \mathrm{~Hz}$	400 Hz	$50 / 60 \mathrm{~Hz}$
Resistive	50,000	25	25	25	25	25
Inductive	10,000	15	25	25	25	25
Motor	50,000	20	20	12	20	12
Lamp	50,000	10	10	10	10	10
Mechanical Life, Reduced Current	200,000	6.3	6.3	6.3	6.3	6.3

CII FC-325 Series Relays (Continued)

Dimensions

Solder Hook Terminals (Shown with Mounting Studs)

Screw Terminals (Shown with Mounting Bracket)

Tolerances are $\pm .010$ unless otherwise noted.

Part Numbers

Coil	Terminal	Mounting	Mil Spec	Comml Part No.	Part No.
28 Vdc	Solder Hook	Stud	MS27418-1B	FC-325-CW3	FC-325-2
	Screw	Bracket	MS27418-2B	FC-325-SY3	FC-325-5
28 Vdc (Suppressed)	Solder Hook	Stud	MS27418-1D	FC-325-CW4	FC-325-7
	Screw	Bracket	MS27418-2D	FC-325-SY4	FC-325-8
$\begin{aligned} & 115 \mathrm{Vac}, \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	Solder Hook	Stud	MS27418-1C	FC-325-CW9	FC-325-3
	Screw	Bracket	MS27418-2C	FC-325-SY9	FC-325-6
115 Vac, 400 Hz	Solder Hook	Stud	MS27418-1A	FC-325-CW8	FC-325-1
	Screw	Bracket	MS27418-2A	FC-325-SY8	FC-325-4

Custom configurations are available. Consult TE.

FCA-325 Series, 25 Amperes, 3PDT

Product Facts

■ Hermetically Sealed

- All Welded Construction
- Balanced Force

■ Permanent Magnet Drive
■ Contacts - Silver Cadmium Oxide with Gold Plating
■ Coils for DC, 50 to 400 Hz and 400 Hz AC
■ Weight 2.89 ounces max. (82 grams)
■ Qualified to M83536/32, /33

The Series FCA-325 relay is a polarized single-side stable design, where the flux from a permanent magnet provides the armature holding force in the deactivated state, and its flux path is switched and combined with the coil flux in the operated state.

Contact Rating - Amperes
Ratings Are Continuous Duty

Type of Load	Life (Min.) Cycles x 103	28 VDC	$\mathbf{1 1 5 V A C}$ $\mathbf{4 0 0 H z}$	$\mathbf{\text { 115/200VAC }}$	
Resistive	50	25	25	$\mathbf{4 0 0 H z - 3 \emptyset}$	$\mathbf{6 0 H z} \mathbf{- 3 0 ^ { * }}$
Inductive	10	12	-	-	2.5
Inductive	20	-	15	15	-
Motor	50	10	10	10	2.0
Lamp	50	5	5	5	1.0

*60 Hz loads rated for 10,000 operations
Overload Current — 50 AMPS DC, 80 AMPS 400Hz
Rupture Current - 60 AMPS DC, 100 AMPS 400Hz
Contact Make Bounce - 1 MILLISECOND AT NOMINAL VOLTAGE
Max. Contact Drop at 25 Amps - INITIAL 0.150 VOLTS
End of Life - 0.175 VOLTS

General Specifications

Temperature Rating -
$-70^{\circ} \mathrm{C} \mathrm{TO}+125^{\circ} \mathrm{C}$
Altitude - 300,000 Feet
Shock* -
Z, Y, \& V Enclosures 200 g for 6 mS
W, X \& M Enclosures -

100 g for 6 mS

Vibration, Sinusoidal ${ }^{*}$ -
Z, Y, \& V Enclosures -
$30 \mathrm{~g} 33-3000 \mathrm{~Hz}$
W, X \& M Enclosures -
$20 \mathrm{~g} 33-3000 \mathrm{~Hz}$
Vibration, Random* -
Z, Y, \& V Enclosures -
$0.4 \mathrm{~g} 2 / \mathrm{Hz} 50-2000 \mathrm{~Hz}$
W, X \& M Enclosures -
$0.2 \mathrm{~g} / \mathrm{Hz} 50-2000 \mathrm{~Hz}$
Dielectric Strength -
At Sea Level -
All circuits to ground and circuit to
circuit - 1250 V rms
Coil to ground - 1000 V rms
At 80,000 Feet - 350 V rms

Insulation Resistance -

Initial (500 VDC) - $100 \mathrm{M} \Omega$ Min. After Life or Environmental Tests $50 \mathrm{M} \Omega$ Min.
Operate Time at Nominal Voltage -
DC Relays - 15 ms or less
AC Relays - 20 ms or less
Release Time at Nominal
Voltage -
DC Relays - 15 ms or less
AC Relays - 50 ms or less

* Max. contact opening under vibration
or shock 10 microseconds

Coil Data

Coil Code	Nominal Voltages	Freq. Hz	DC Res. AC Amps (B)	Over Temperature Range Below Volts		
1	6	DC	18Ω	Dropout or Above Volts	Must Hold Voltage (C)	
2	12	DC	70Ω	9.5	0.3	2.5
3	28	DC	290Ω	18.0	0.75	4.5
$4(\mathrm{~A})$	28	DC	290Ω	18.0	1.5	7.0
5	48	DC	865Ω	32.0	2.5	14.0
6	28	400 Hz	225 mA	22.0	1.25	10.0
7	28	$50 / 400 \mathrm{~Hz}$	120 mA	22.0	1.25	10.0
8	115	400 Hz	40 mA	90.0	5.0	40.0
9	115	$50 / 400 \mathrm{~Hz}$	30 mA	95.0	5.0	40.0

A. CODE 4 COILS HAVE BACK EMF SUPPRESSION TO 42 VOLTS MAX.
B. DC COIL RESISTANCE $\pm 10 \%$ AT $25^{\circ} \mathrm{C}$; AC COIL MAX. CURRENT AT NOMINAL VOLTAGE.
C. RELAY WILL STAY IN PICKED-UP STATE DOWN TO MUST HOLD VOLTAGES SHOWN.
D. MAX. OVER-VOLTAGE: 6 \& 12 VDC COILS 120% OF NOMINAL; ALL OTHERS 110% OF NOMINAL.
E. COILS AVAILABLE FOR OTHER VOLTAGES AND FOR AC $50 / 60 \mathrm{HZ}$.

NOTE: Only DC Coil Models are QPL Approved.

FCA-325 Series, 25 Amperes, 3PDT (Continued)
Below are shown the standard terminal types and the enclosures available. Specify the assembly as indicated under How To Order. Dimensions are shown in inches $\pm .010$ and (Millimeters $\pm .25$).

Terminals

FCA-325 Series, 25 Amperes, 3PDT (Continued)

Terminal Wiring

DC Coils

NOTE: Polarity must be observed with DC coil supply. Relay is polarized with a permanent magnet and will not operate or be damaged by reverse polarity.

Diodes used in transient suppression and in AC rectifier circuits have peak inverse voltage rating of 600 VDC minimum. Zener diodes have a minimum rating of 1 watt.
Terminal designations are for reference only and do not appear on the header.

DC Coils with Transient Suppression

AC Coils

TERMINAL VIEW

HOW TO ORDER

RELAY TYPE
TERMINALS (Socket Pins, DC Coil) \qquad
ENCLOSURE (With Flanges)
COIL (28 VDC With Transient Suppression).

NOTE: Only DC coil models are QPL Approved

[^1]FCAC-325 Series, 25 Amperes, 3PST-NO with 2 Amp SPDT Auxiliary Contacts

Product Facts
■ Hermetically Sealed

- All Welded Construction
- Balanced Force

■ Permanent Magnet Drive
■ Contacts - Silver Cadmium Oxide with Gold Plating
■ Coils for DC, 50 to 400 Hz and 400 Hz AC
■ Weight 2.89 ounces max. (82grams)

The Series FCAC-325 relay is a polarized single-side stable design, where the flux from a permanent magnet provides the armature holding force in the deactivated state, and its flux path is switched and combined with the coil flux in the operated state. This results in appreciably increased contact pressure

Contact Rating - Amperes
Ratings Are Continuous Duty

Type of Load	Life (Min.) Cycles x103	28 VDC		$\begin{aligned} & \text { 115VAC } \\ & 400 \mathrm{~Hz} \end{aligned}$		$\begin{gathered} 115 / 200 \mathrm{VAC} \\ 400 \mathrm{~Hz}-3 \varnothing \end{gathered}$	$\begin{gathered} \text { 115/200VAC } \\ 60 \mathrm{~Hz}-30^{*} \end{gathered}$
		Main	Aux.	Main	Aux.		
Resistive	50	25	2	25	2	25	2.5
Inductive	10	12	1	-	-	-	2.5
Inductive	20	-	-	15	1	15	-
Motor	50	10	-	10	-	10	2.0
Lamp	50	5	. 5	5	. 5	. 5	1.0

*60 Hz loads rated for 10,000 operations

Overload Current - 50 AMPS DC, 80 AMPS 400Hz
Rupture Current - 60 AMPS DC, 100 AMPS 400Hz
Contact Make Bounce - 1 MILLISECOND AT NOMINAL VOLTAGE
Auxiliary Contact Bounce - 4 MILLISECONDS MAX.
Max. Contact Drop at 25 Amps - INITIAL 0.150 VOLTS
End of Life - 0.175 VOLTS
in both states over that of a spring return nonpolar design. We also manufacture other versions of this relay:
FCA-125 - 25 Ampere SPDT Relay
FCA-325-25 Ampere DPDT Relay

General Specifications
Temperature Rating -
$-70^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}$
Altitude - 300,000 Feet
Shock* -
Z, Y, \& V Enclosures -
200 g for 6 mS
W, X \& M Enclosures -
100 g for 6 mS
Vibration, Sinusoidal*
Z, Y, \& VEnclosures -
$30 \mathrm{~g} 33-3000 \mathrm{~Hz}$
W, X \& M Enclosures -
$20 \mathrm{~g} 33-3000 \mathrm{~Hz}$
Vibration, Random* -
Z, Y, \& V Enclosures $0.4 \mathrm{~g} / \mathrm{Hz} 50-2000 \mathrm{~Hz}$
W, X \& M Enclosures -
$0.2 \mathrm{~g} / \mathrm{Hz} 50-2000 \mathrm{~Hz}$
Dielectric Strength -
At Sea Level -
All circuits to ground and circuit to
circuit - 1250 V rms
Coil to ground - 1000 V rms
At 80,000 Feet - 350 V rms

Insulation Resistance -

Initial (500 VDC) - $100 \mathrm{M} \Omega$ Min. After Life or Environmental Tests $50 \mathrm{M} \Omega \mathrm{Min}$.
Operate Time at Nominal
Voltage -
DC Relays - 15 ms or less
AC Relays - 10 ms or less
Release Time at Nominal
Voltage -
DC Relays - 15 ms or less
AC Relays - 50 ms or less

* Max. contact opening under vibration or shock 10 microseconds

Coil Data

Coil Code	Nominal Voltages	Freq. Hz	DC Res. AC Amps (B)	Over Temperature RangePickup or Below Volts		
1	6	DC	18Ω	Dropout or Above Volts	Must Hold Voltage (C)	
2	12	DC	70Ω	9.5	0.3	2.5
3	28	DC	290Ω	18.0	1.5	
$4(\mathrm{~A})$	28	DC	290Ω	18.0	7.0	
5	48	DC	865Ω	32.0	2.5	7.0
6	28	400 Hz	225 mA	22.0	1.25	10.0
7	28	$50 / 400 \mathrm{~Hz}$	120 mA	22.0	1.25	10.0
8	115	400 Hz	40 mA	90.0	5.0	40.0
9	115	$50 / 400 \mathrm{~Hz}$	30 mA	95.0	5.0	40.0

A. CODE 4 COILS HAVE BACK EMF SUPPRESSION TO 42 VOLTS MAX.
B. DC COIL RESISTANCE $\pm 10 \%$ AT $25^{\circ} \mathrm{C}$; AC COIL MAX. CURRENT AT NOMINAL VOLTAGE.
C. RELAY WILL STAY IN PICKED-UP STATE DOWN TO MUST HOLD VOLTAGES SHOWN.
D. MAX. OVERVOLTAGE: 6 \& 12 VDC COILS 120\% OF NOMINAL; ALL OTHERS 110\% OF NOMINAL.
E. COILS AVAILABLE FOR OTHER VOLTAGES AND FOR AC 50/60HZ.

FCAC-325 Series (Continued)
Below are shown the standard terminal types and the enclosures available. Specify the assembly as indicated under How To Order. Dimensions are shown in inches $\pm .010$ and (Millimeters $\pm .25$).

Terminals

CODE "A"
Socket Pin Terminals Pin Terminals are Gold Plated

CODE "B"
Solder Pin Terminals Pin Terminals are Tin/Lead Plated

All Enclosures have cupro-Nickel cans bright acid tin/lead plated after assembly to terminal headers.

Dimensions: Inches $\pm .010(\mathrm{~mm} \pm .25)$
For socket pin terminals: specify " Y " enclosures with DC coils and "V" enclosures with AC coils.

CODE "C"
Solder Hook Terminals Hook Terminals are Tin/Lead Plated

*Metric threads available, To specify useTV in place otW

FCAC-325 Series (Continued)

Terminal Wiring

DC COILS WITH
TRANSIENT SUPPRESSION

AC COILS

NOTE: Polarity must be observed with DC coil supply. Relay is polarized with a permanent magnet and will not operate or be damaged by reverse polarity.

Diodes used in transient suppression and in AC rectifier circuits have peak inverse voltage rating of 600 VDC minimum. Zener diodes have a minimum rating of 1 watt.

Terminal designations are for reference only and do not appear on the header.

TERMINAL VIEW

HOW TO ORDER

FCAC-325-A Y 4

RELAY TYPE

TERMINALS (Socket Pins, DC Coil) \qquad
ENCLOSURE (With Flanges and DC Coil)
COIL (28 VDC With Transient Suppression)

FCA-150 Series, 50 Amps, 1PST/N0 (DM) Relay

The FCA-150 series relay from TE Connectivity (TE) is a polarized, single-side stable design, where the flux from a permanent magnet provides the armature holding force in the deactivated state, and its flux path is switched and combined with the coil flux in the operated state. This results in appreciably increased contact force in both states over that of a spring return non-polarized

Performance Data

Electrical Characteristics

Initial Insulation Resistance - 100
$\mathrm{M} \Omega$, minimum, at 500 Vdc , between each pin and case
Insulation Resistance After Life or Environmental Test - $50 \mathrm{M} \Omega$, minimum,
at 500 Vdc , between each pin and case
Dielectric Strength at Sea Level:
Contacts to Ground and Between Contacts - 1250 Vrms, 60 Hz
Coil to Ground - $1000 \mathrm{Vrms}, 60 \mathrm{~Hz}$
Dielectric Strength at $80,000 \mathrm{ft}(25,000$
m) - 500 Vrms, 60 Hz (all points)

Environmental

Ambient Temperature Range,
Operating- $70^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Altitude- $300,000 \mathrm{ft}$
Shock Resistance-50 G, 11 ms
Vibration Resistance,
Sinusoidal- 20 G, $75-3000 \mathrm{~Hz}$

Specifications

Contact Data				
Contact Form	1 Form X (SPST-NO-DM)			
Contact Rating in Amps (Continuous Duty)				
	Type of Load	Life (Min.) Cycles	28 Vdc	
	Resistive Inductive $(\mathrm{L} / \mathrm{R}=5 \mathrm{~ms})$ Motor None	$\begin{gathered} 50,000 \\ 20,000 \\ 200,000 \\ 100,000 \\ \hline \end{gathered}$	$\begin{gathered} 50 \\ 20 \\ 20 \\ - \end{gathered}$	
Overload Current (Resistive)	$200 \mathrm{~A}, 50$ cycles			
Max. Contact Drop at 10A	Initial 150mV; After Life 175mV			
Operate Time at Nominal Voltage	15 ms			
Release Time	15 ms			
Bounce Time	1 ms			
Coil Data				
Coil Code	1	2	3	4
Nominal Operating Voltage (Vdc)	6	12	28	28
Maximum Operating Voltage (Vdc)	7.3	14.5	29	29
Maximum Pick-Up Voltage at $+125^{\circ} \mathrm{C}$	4.5	9	18	18
Maximum Pick-Up Voltage at $+125^{\circ} \mathrm{C}$, continuous current test (Vdc)	5.7	11.25	22.5	22.5
Drop-Out Voltage at $+125^{\circ} \mathrm{C}$	$0.3-2.5$	0.75-4.5	1.5-7.0	1.5-7.0
Maximum Coil Current at $+25^{\circ} \mathrm{C}(\mathrm{mA})$. 50	. 26	. 15	. 15
Back EMF Suppressed to (Vdc) (Max)	N/A	N/A	N/A	-42
Coil Resistance $\pm 10 \%$	18Ω	70Ω	290Ω	290Ω

FCA-150 Series, 50 Amps, 1PST/N0 (DM) Relay (Continued)
Specifications

Electrical Data	
Initial Insulation Resistance (note 1)	100 megohms, minimum, at 500 Vdc, between each pin and case
Insulation Resistance After Life or Environmental Test (note 1)	50 megohms, minimum, at 500 Vdc, between each pin and case
Dielectric Strength At Sea Level	
Contacts to Ground and Between Contacts	$1,250 \mathrm{Vrms}, 60 \mathrm{~Hz}$.
Coil to Ground	$1,000 \mathrm{Vrms}, 60 \mathrm{~Hz}$.
Dielectric Strength at 80,000 ft (25,000m), All Points (note 4)	$500 \mathrm{Vrms}, 60 \mathrm{~Hz}$
Environmental Data	
Ambient Temperature Range, Operating	$-70^{\circ} \mathrm{C} \mathrm{to}+125^{\circ} \mathrm{C}$
Altitude	$300,000 \mathrm{feet}$
Shock Resistance	$50 \mathrm{G} \mathrm{\prime s}, 11 \mathrm{~ms}$.
Vibration Resistance, Sinusoidal	$20 \mathrm{G} \mathrm{\prime} \mathrm{~s}, 75-3000 \mathrm{~Hz}$.
Mechanical Data	
Approximate Weight	$3.202 .(90 \mathrm{~g}) \mathrm{Max}.$.

NOTES

1. All wired terminals must be connected together during this test. Dielectric withstanding voltage and insulation resistance are measured between all mutually insulated wired terminals and between all these terminals and case.

Terminals

CODE "B"
Solder Pin Terminals - Tin/Lead Plated FCA-150

FCAC-150

CODE "K"

Terminal Shield

FCA-150

CODE "C"

Solder Hook Terminals - Tin/Lead Plated FCA-150

FCA-150 Series, 50 Amps, 1PST/NO (DM) Relay (Continued)

Outline Dimensions

The standard terminal types and enclosures are illustrated below with dimensions in inches ± 0.010 and (millimeters ± 0.25).

Enclosures

CODE "U"

CODE "Y"

CODE "X"

CODE "R"

CODE "Z"

FCA-150 Series, 50 Amps, 1PST/NO (DM) Relay (Continued)

Terminal Wiring

DC Coils with Transient Suppression FCA-150

FCAC-150

Terminal View

 FCA-150

FCA-150 - B Y 3

How to Order

Series And Contact Arrangement
FCA-150 1 Form X Main Contacts
FCAC-150 1 Form X Main Contacts and
1 Form C Auxiliary Contacts
Terminals (see drawings for details)
B Solder Pin Coil Terminals, Stud Power Terminals
C Solder Hook Coil Terminals, Stud Power Terminals
K Terminal Block, Stud Power Terminals
Enclosure (see drawings for details)
R Horizontal Flange Mount, Rotated
U Flush Vertical Flange Mount
X Horizontal Flange Mount
Y Raised Vertical Flange Mount
Z No Mount
Coil Voltage (NOMINAL)
16 VDC
212 VDC
328 VDC
428 VDC Nominal, with Back EMF Suppression

FCA-150NC Series, 50 Amps, 1PST/NC (DB) Relay

Product Facts

■ Non latching hermetically sealed relay

- Balanced force design
- Hermetically sealed, corrosion protected metal can
- All welded construction
- 6, 12 and 28 Vdc coils available.

■ Weight 90 grams

- Designed and built in accordance to MIL-PRF-6106

Specifications

[^2]FCA-150NC Series, 50 Amps, 1PST/NC (DB) Relay (Continued)
Contact Electrical Characteristics

Contact Type	Rated Current	Rated Voltage
Main Contact	50 A	28Vdc
Minimum Operating cycles	Contact rating per pole and load type MAIN Contact	Load Currents in Amps
50,000 cycles	Resistive load	50
20,000 cycles	Inductive load (L/R=5ms)	20
20,000 cycles	Motor load	20
50 cycles	Resistive overload	200
100,000 cycles	No Load	

All endurance ratings are subject to validation - consult factory

Terminals

CODE "B"
Solder Pin Terminals
Tin/Lead Plated

CODE "C"
Solder Hook Terminals Tin/Lead Plated

CODE "K"
Terminal Shield

FCA-150NC Series, 50 Amps, 1PST/NC (DB) Relay (Continued)

Outline Dimensions

The standard terminal types and enclosures are illustrated below with dimensions in inches ± 0.010 and (millimeters ± 0.25).

Enclosures

CODE "Z"

CODE "X"

"R"

FCA-150NC Series, 50 Amps, 1PST/NC (DB) Relay (Continued)

Terminal Wiring

NOTE: Polarity must be observed with DC coil supply. Relay is polarized with a permanent magnet and will not operate or be damaged by reverse polarity.
Diodes used in transient suppression and in AC rectifier circuits have peak inverse voltage rating of 600 VDC minimum. Zener diodes have a minimum rating of 1 watt.
Terminal designations are for reference only and do not appear on the header.

TERMINAL VIEW

PART NUMBERING SYSTEM

RELAY TYPE

FCA - 150NC

TERMINALS
ENCLOSURE \qquad
COIL

Selection and Application Guide

This selection and application guide is suggested practices from ARP (Aerospace Recommended Practice) 4005 Concerning proper performance of relays.

Caution:

The use of any coil voltage less than the rated coil voltage may compromise the operation of the relay. Choosing the proper relay depends primarily on matching the relay to the load, power supply, and environment. Selection should be limited to items that meet the following requirements:
A. Contacts must be rated for the load. Current rating, type of load (resistive, lamp, motor, inductive, and so forth), impedance range, voltage rating, DC or AC , frequency, single phase or polyphase, polyphase load balance, and type of switching or transfer should all be considered. Each of the following switching and transfer functions places a different requirement on each of the relay contacts and must be considered when selecting a relay with the proper contact rating:
(1) On-Off Switching - DC, single phase or polyphase
(2) Motor Reversing (AC or DC)
(3) Transferring load between phases of same source
(4) Transferring load between unsynchronized AC sources
B. Power supply characteristics must be taken into account. Voltage regulation, variations in frequency, ripples and spikes, as well as steady state conditions, should be included. If more than one power supply is involved, not only must each be suitable but interaction between them also should be investigated.
C. Coil (or coils) should be rated so as to have proper operation under all anticipated conditions.
D. Consideration of environmental conditions anticipated throughout the service of life, as well as those expected during storage and transportation before installing the relays in equipment, is mandatory. Electrical parameters, environmental factors, mechanical stresses, and compatibility are among the categories for which the relay must be reviewed.
E. The circuit in which the relay is used, the interlocking feature employed, the wiring harness, and the associated components should all be reviewed for assuring mutual suitability.
F. Relays should be hard wired whenever possible, to avoid the need for additional contact points associated with the relay plug-in socket arrangement. (Plug-in types should be considered for quick turnaround times).
G. To permit "safe" isolation of relay circuit in the OFF condition, and better eliminate an electrical shock hazard, an electromechanical switching device should be placed between the positive terminal of the power source and relay coil.
H. Proper transistor control of the relay coil requires a stable |reference voltage. This can be done by connecting the plus side of the coil to the positive side of the power source, the minus side of the relay coil to the collector of an NPN transistor, the emitter of the transistor to the grounded side of the power source, and the transistor base to the control voltage. For example, see MIL-R-28776/1.
I. Any switching device controlling the relay coil circuit must be capable of withstanding, without damage, the sum of the maximum coil circuitry voltage and the peak value of transient voltage that results when the coil circuit is opened; for example, a switch controlling a relay coil that is supplied with a 28 V DC line and subjected to a transient voltage suppressed to 42 V must be capable of withstanding $28 \mathrm{~V}+42 \mathrm{~V}$ or a 70 V surge without damage.
J. In selecting solid state electronic switching devices to control relay coil circuits, care must be used in selecting a solid state device with a leakage current (in the "off state") that is sufficiently low to permit the relay to drop out.
K. Control of the relay coil circuit by other than step-function switching may invalidate published relay performance properties such as pickup and dropout voltages, pickup, dropout, and bounce times.

Cross Reference - Socket to Relay

NOTE:

TE Connectivity Does Not Manufacture Relay Sockets.

This Socket to Relay cross reference is provided for additional design assistance. Several of TE Authorized Distributors carry relay sockets for your convenience. Relay sockets come with a variety of profiles, mounting styles, and mounting hardware options, so please contact the relay socket supplier of your choice or one of our Authorized Distributors who carry relay sockets for additional information.

Military Socket P/N

M12883/40-01
M12883/40-05
M12883/40-07
M12883/40-11
M12883/40-13
M12883/40-17
M12883/40-19
M12883/40-23
M12883/40-02
M12883/40-08
M12883/40-14
M12883/40-20
Relay Part Number

Relay Type

M83536/15-022
M83536/16-006, 014, 031, 034

M12883/41-01
M12883/41-04
M12883/41-06
M12883/41-09 M83536/9-006, 015, 024, 035 2 Pole, 10 Amp

M12883/41-11
M12883/41-14
M12883/41-16
M12883/41-19
FCA-410-DY8 (Catalog Version) 4 Pole, 10 Amp, AC
FCA-410-DY9 (Catalog Version)

M12883/41-02
M12883/41-07 FCA-210-DY8 (Catalog Version) 2 Pole, 10 Amp, AC
M12883/41-12
FCA-210-DY9 (Catalog Version)
M12883/41-17

M12883/44-01	M83536/5-006, 014, 022, 030	
	M83536/6-006, 014, 022, 032	4 Pole, 5 Amp
M12883/45-01	M83536/1-006, 015, 024, 033	
	M83536/2-006, 015, 024, 035	2 Pole, 5 Amp

M12883/47-01
M12883/47-04 FCA-610-AY3 (Catalog Version)
M12883/47-07
FCA-610-AY4 (Catalog Version)
6 Pole, 10 Amp
M12883/47-10
M12883/47-02
M12883/47-05
FCA-610-DY8 (Catalog Version)
6 Pole, 10 Amp
AC
M12883/47-08
M12883/47-11

M12883/48-01	M83536/32-003L	
M12883/48-02	M83536/33-003L	3 Pole, 25 Amp
M12883/48-03		

M1283/400
M83536/33-003L

M12883/48-05		
M12883/48-06	FCA-325-AV8 (Catalog Version)	3 Pole, 25 Amp
M12883/48-07	FCA-325-AV9 (Catalog Version)	AC
M12883/48-08	M83536/2-028	2 Pole, 5 Amp M12883/52-01
Track Mount		

Engineering Notes

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Industrial Relays category:
Click to view products by TE Connectivity manufacturer:
Other Similar products are found below :
6-1617801-8 6-1618107-9 7-1618273-3 EV250-4A-02 EV250-6A-01 FCA-125-CX8 FCA-325-159 FCA-410-138 8000-S3121 8-1618273-6 8-1618393-1 GCA63A220VAC60HZ GCA63A277VAC60HZ GCA63A600VAC60HZ 1-1672275-3 1-1833005-4 H-16/S1 A711Z H-8C H-8/S11 H-8/S68 ACC530U20 ACC730U30 RF303ZM4-12 DH18DA 1423675-8 AR4-15F13-C01 AR7-41F11 AVR907 15732A200 B07B032AC1-0329 B329 B490A 1618279-1 BHR124Y 1810DDB-SX N417 P30C42A12D1-120 2-1617748-6 2-1618375-1 2-1618396-6 2-1618398-1 JMAPD-5XL JMGACD-5M JMGSC-5LW JMGSCD-5L PBO-18A1218 PBO-40A3040 K8DSPH1200480VAC KA-3C-12A

[^0]: * The part number example shown on this page is for catalog items. For a list of specific QPL part numbers, please see the index in Section 15.

[^1]: * The part number example shown on this page is for catalog items. For a list of specific QPL part numbers, please see the index in Section 15.

[^2]: For other coil voltages, consult factory.

