

HIRSCHMANN MOBILITY

Cellular (2G/3G/4G)/
GNSS (GPS/GLONASS)/
WLAN (2.4GHz/5.8GHz) Screw Antenna
CGNW 702659 LP S/Series
Part Number 920-630-XXX

Features

- Combination antenna for positioning, data-services and short range radio services
- Terrestrial based transmission and satellite-based positioning
- Embedded high performance LNA with dual feed ceramic patch antenna and phase shift network for optimized cross polarization discrimination(XPD)
- Screw mounting on metallic and nonmetallic ground
- Designed for installation in harsh environment

Some technical optimization with minor effect to the overall performance of this product are still pending. This document will be updated according the finalization of the optimization measures without prior information.

Technical Data

Dimensions	124 mm x 80 mm x 31 mm	
Temperature range	-40°C - +85°C	
Protection class	IP6k6	
Cable type	RG 174	

Technical Data

reemmed Bata			
Cellular			
Frequency range	Low:	698 - 960 MHz	
	High:	1710 - 2690 MHz	
Services	2G:	GSM 850/900 MHz	
		GSM 1800/1900 MHz	
	3G:	UMTS	
	4G:	LTE-bands (1 - 10; 12 - 20; 23, 25; 26 - 30; 33 - 41; 44)	
Impedance		50 Ohm	
Load capacity	max.	. 10 W pulsed acc. GSM standard	
VSWR		≤ 2.0	
Gain		0 dBi ¹⁾	
Diagnostic resistor		10 kOhms	
GNSS			
Frequency range	GPS:	1563 - 1587 MHz (L1)	
	Galileo:	1559 - 1591 MHz (E1)	
	Beidou:	1559 - 1591 MHz (B1C)	
	GLONASS:	1593 - 1610 MHz (G1)	
Impedance		50 Ohm	
VSWR		≤ 2.0	
Gain		1 dBic ²⁾	
Amplification		27 ±1 dB	
Noise figure (50 Ohm)		≤ 2.2 dB	
Voltage supply		3.0 - 5.5 VDC (remotely fed)	
Current consumption		24 mA ± 1 mA at 5 V	
WLAN			
Frequency range	IEEE 802.11 b, g:	2400 - 2484 MHz	
	IEEE 802.11 a,h:	5150 - 5725 MHz	
	IEEE 802.11 n:	2400 - 2484 MHz	
		and 5150 - 5725 MHz	
	IEEE 802.11 p:	5755 - 5925 MHz	
Polarization		linear	

Technical Data

Load capacity IEEE 802.11 b, g: \leq 200 mW

IEEE 802.11 a,h: ≤ 1000 mW

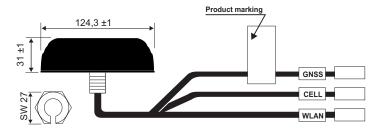
IEEE 802.11 n: \leq 200 (2.4-2.84 GHz)

≤ 1000 (5.1-5.72 GHz)

IEEE 802.11 p: \leq 8 W EIRP (5.79 - 5.81 GHz)

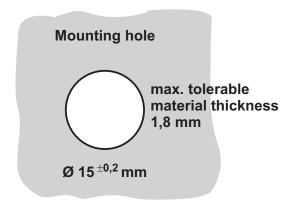
≤ 2 W EIRP (5.85 - 5.92 GHz)

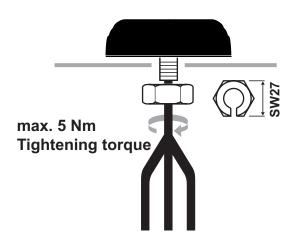
Diagnostic resistor 10 kOhms


¹⁾ dBi: referenced to an isotropic radiator

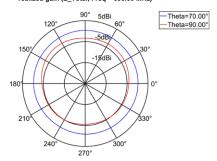
²⁾ dBic: referenced to an isotropic radiator, circular polarization

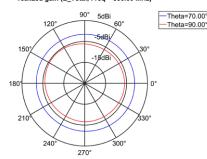
Versions


PN	Description	CELL	GNSS	WLAN
920-630-001	CGNW 702659 LP S/FAKRAm/0.2	200 mm FAKRAm, D	200 mm FAKRAm, C	200 mm FAKRAm, E
920-630-002	CGNW 702659 LP S/FAKRAf/3.0	3000 mm FAKRAf, D	3000 mm FAKRAf, C	3000 mm FAKRAf, E

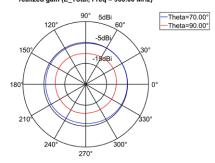

Technical Drawing

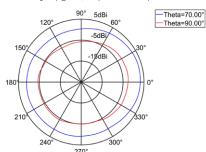
Installation

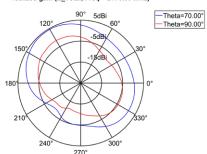


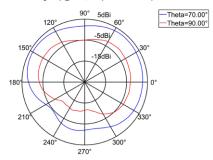

Antenna diagrams

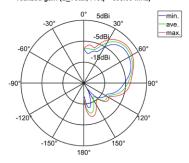
4G antenna measurement on Sirius GND plane

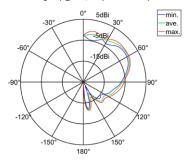

radiation pattern of the antenna (azimuth cut) realized gain (E_Total, Freq = 698.00 MHz)

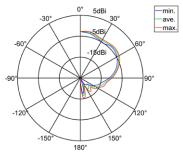

radiation pattern of the antenna (azimuth cut) realized gain (E_Total, Freq = 830.00 MHz)

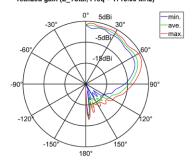

radiation pattern of the antenna (azimuth cut) realized gain (E_Total, Freq = 960.00 MHz)

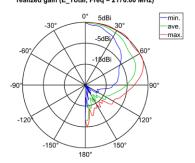

radiation pattern of the antenna (azimuth cut) realized gain (E_Total, Freq = 1710.00 MHz)

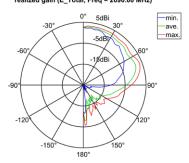

radiation pattern of the antenna (azimuth cut) realized gain (E_Total, Freq = 2170.00 MHz)


radiation pattern of the antenna (azimuth cut) realized gain (E_Total, Freq = 2690.00 MHz)

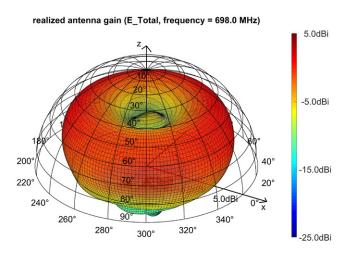

radiation pattern of the antenna (elevation cut)

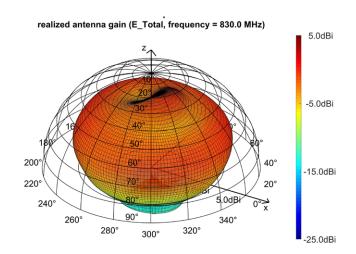

radiation pattern of the antenna (elevation cut) realized gain (E_Total, Freq = 830.00 MHz)

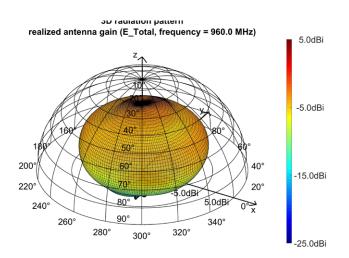

radiation pattern of the antenna (elevation cut) realized gain (E_Total, Freq = 960.00 MHz)

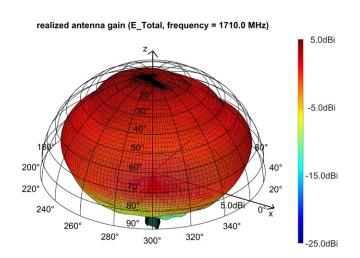

radiation pattern of the antenna (elevation cut) realized gain (E_Total, Freq = 1710.00 MHz)

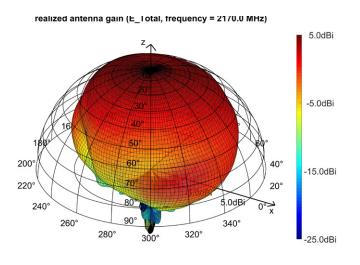
radiation pattern of the antenna (elevation cut realized gain (E_Total, Freq = 2170.00 MHz)

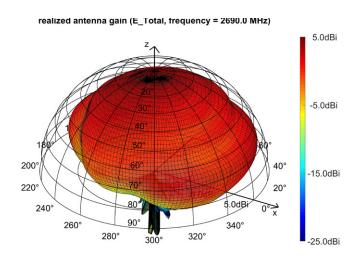


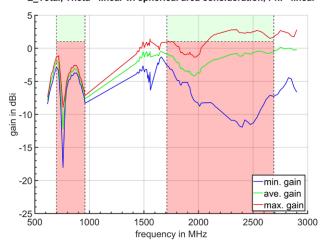

radiation pattern of the antenna (elevation cut) realized gain (E_Total, Freq = 2690.00 MHz)




Antenna diagrams


4G antenna measurement on Sirius GND plane

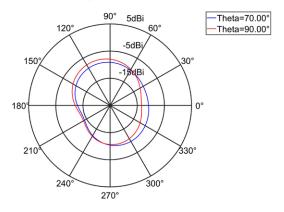


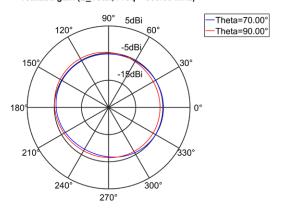


Antenna diagrams

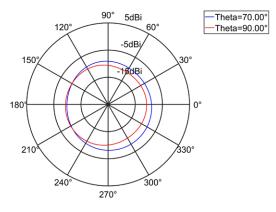
4G antenna measurement on Sirius GND plane

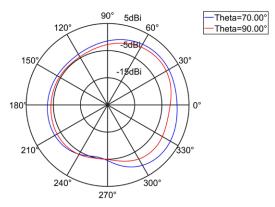
partial average antenna gain (Theta=[70.00 - 90.00]°; Phi=[0.00 - 360.00]°) E_Total, Theta - linear w. spherical area consideration, Phi - linear

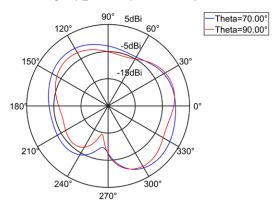


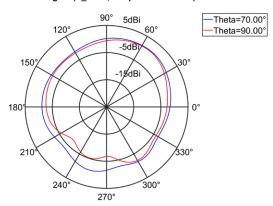

Antenna diagrams

4G antenna measurement in air

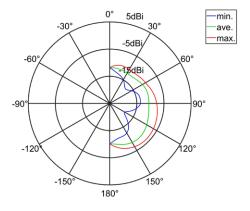

radiation pattern of the antenna (azimuth cut) realized gain (E_Total, Freq = 698.00 MHz)

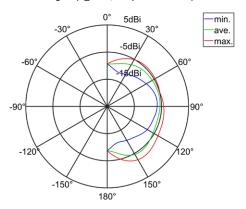

radiation pattern of the antenna (azimuth cut) realized gain (E_Total, Freq = 830.00 MHz)


radiation pattern of the antenna (azimuth cut) realized gain (E_Total, Freq = 960.00 MHz)

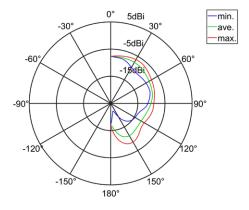

radiation pattern of the antenna (azimuth cut) realized gain (E_Total, Freq = 1710.00 MHz)

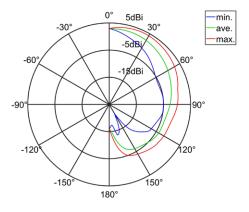
radiation pattern of the antenna (azimuth cut) realized gain (E_Total, Freq = 2170.00 MHz)

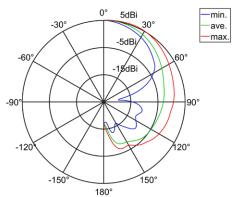

radiation pattern of the antenna (azimuth cut) realized gain (E_Total, Freq = 2690.00 MHz)

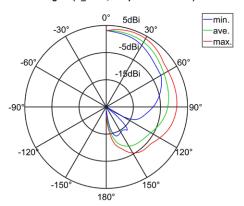

Antenna diagrams

4G antenna measurement in air

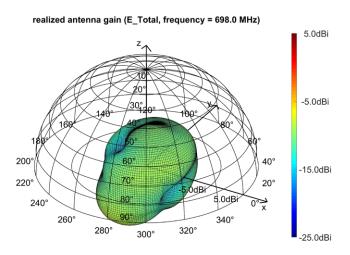

radiation pattern of the antenna (elevation cut) realized gain (E_Total, Freq = 698.00 MHz)

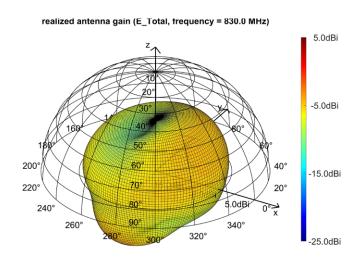

radiation pattern of the antenna (elevation cut) realized gain (E_Total, Freq = 830.00 MHz)

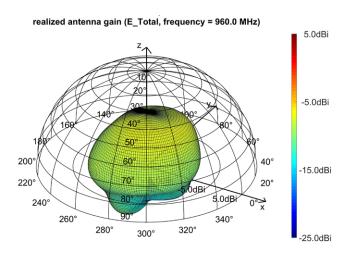

radiation pattern of the antenna (elevation cut) realized gain (E_Total, Freq = 960.00 MHz)

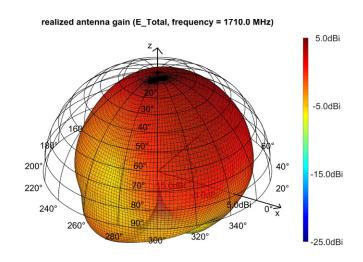

radiation pattern of the antenna (elevation cut) realized gain (E_Total, Freq = 1710.00 MHz)

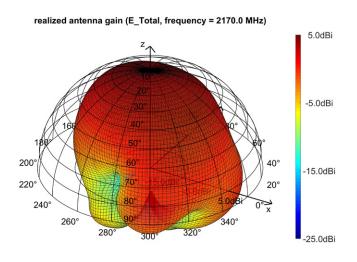
radiation pattern of the antenna (elevation cut) realized gain (E_Total, Freq = 2170.00 MHz)

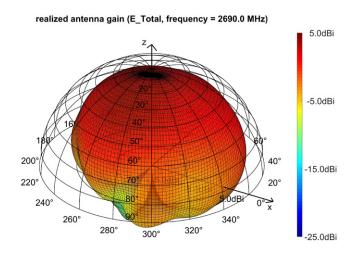


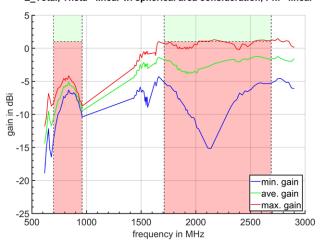

radiation pattern of the antenna (elevation cut) realized gain (E_Total, Freq = 2690.00 MHz)

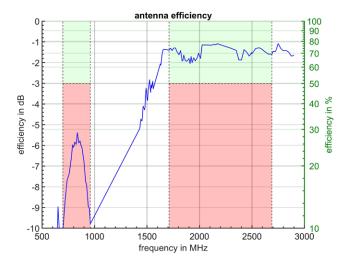



Antenna diagrams


4G antenna measurement in air



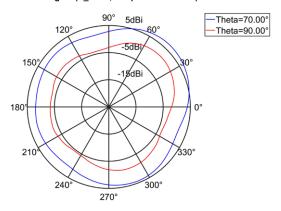


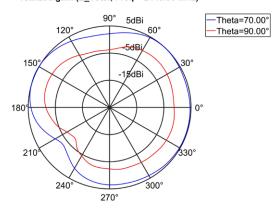


Antenna diagrams

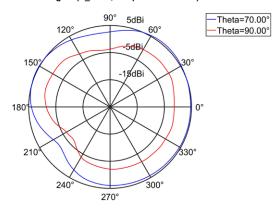
4G antenna measurement in air

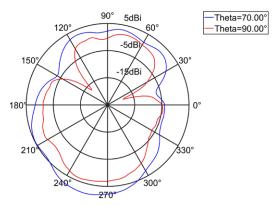
partial average antenna gain (Theta=[70.00 - 90.00]°; Phi=[0.00 - 360.00]°) E_Total, Theta - linear w. spherical area consideration, Phi - linear

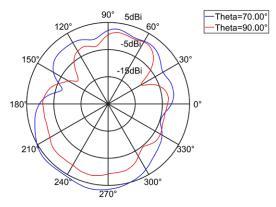


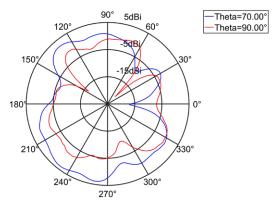

Antenna diagrams

WLAN antenna measurement on Sirius GND plane

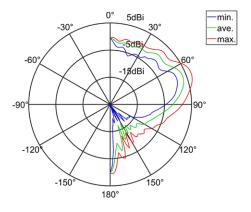

radiation pattern of the antenna (azimuth cut) realized gain (E_Total, Freq = 2400.00 MHz)

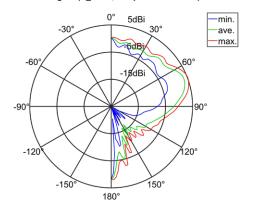

radiation pattern of the antenna (azimuth cut) realized gain (E_Total, Freq = 2440.00 MHz)


radiation pattern of the antenna (azimuth cut) realized gain (E_Total, Freq = 2483.00 MHz)


radiation pattern of the antenna (azimuth cut) realized gain (E_Total, Freq = 5150.00 MHz)

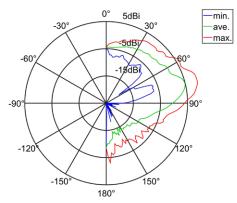
radiation pattern of the antenna (azimuth cut) realized gain (E_Total, Freq = 5550.00 MHz)

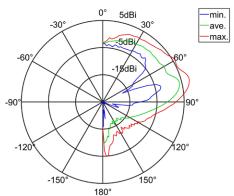

radiation pattern of the antenna (azimuth cut) realized gain (E_Total, Freq = 5925.00 MHz)

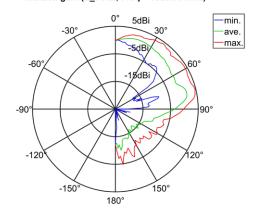

Antenna diagrams

WLAN antenna measurement on Sirius GND plane

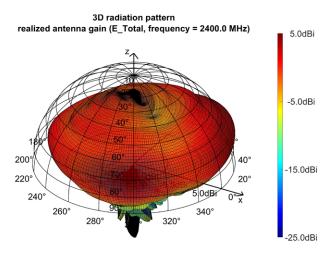
radiation pattern of the antenna (elevation cut) realized gain (E_Total, Freq = 2400.00 MHz)

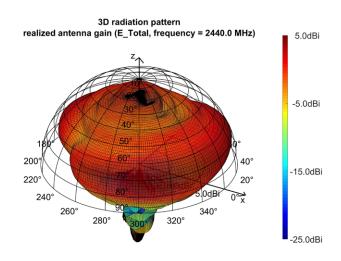

radiation pattern of the antenna (elevation cut) realized gain (E_Total, Freq = 2440.00 MHz)

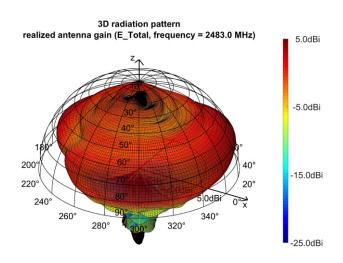

radiation pattern of the antenna (elevation cut) realized gain (E_Total, Freq = 2483.00 MHz)

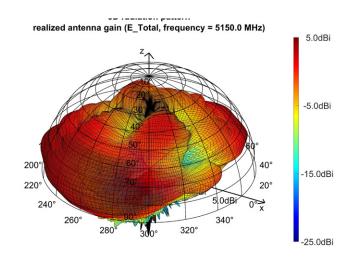

radiation pattern of the antenna (elevation cut) realized gain (E_Total, Freq = 5150.00 MHz)

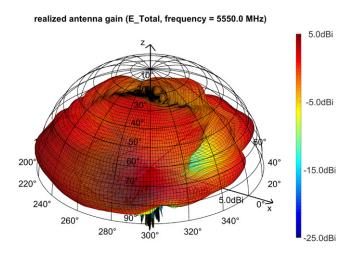
radiation pattern of the antenna (elevation cut) realized gain (E_Total, Freq = 5550.00 MHz)

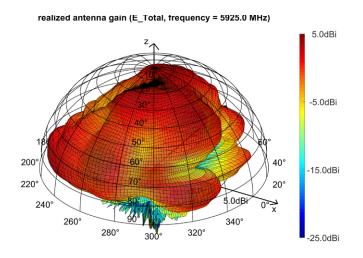


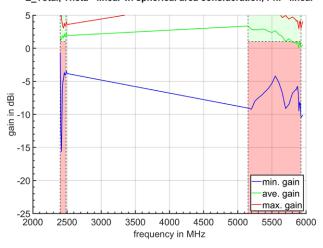

radiation pattern of the antenna (elevation cut) realized gain (E_Total, Freq = 5925.00 MHz)




Antenna diagrams


WLAN antenna measurement on Sirius GND plane



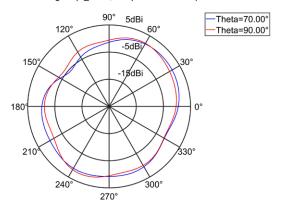


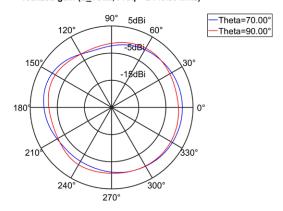


Antenna diagrams

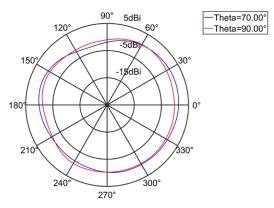
WLAN antenna measurement on Sirius GND plane

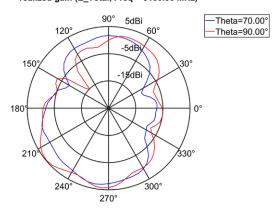
partial average antenna gain (Theta=[70.00 - 90.00]°; Phi=[0.00 - 360.00]°) E_Total, Theta - linear w. spherical area consideration, Phi - linear

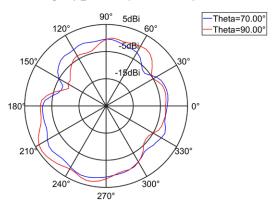


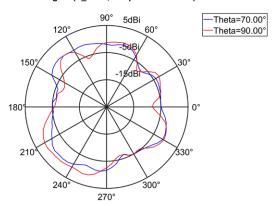

Antenna diagrams

WLAN antenna measurement in air

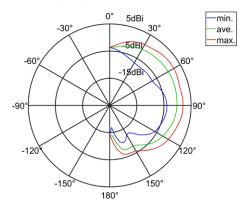

radiation pattern of the antenna (azimuth cut) realized gain (E_Total, Freq = 2400.00 MHz)

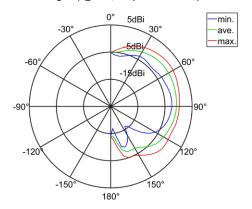

radiation pattern of the antenna (azimuth cut) realized gain (E_Total, Freq = 2440.00 MHz)


radiation pattern of the antenna (azimuth cut) realized gain (E_Total, Freq = 2483.00 MHz)

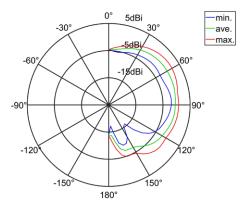

radiation pattern of the antenna (azimuth cut) realized gain (E_Total, Freq = 5150.00 MHz)

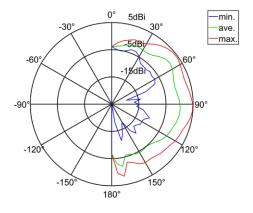
radiation pattern of the antenna (azimuth cut) realized gain (E_Total, Freq = 5550.00 MHz)

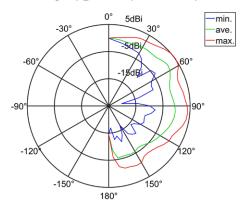

radiation pattern of the antenna (azimuth cut) realized gain (E_Total, Freq = 5925.00 MHz)

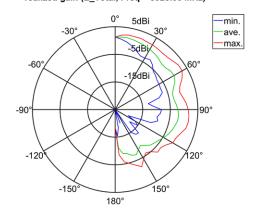

Antenna diagrams

WLAN antenna measurement in air

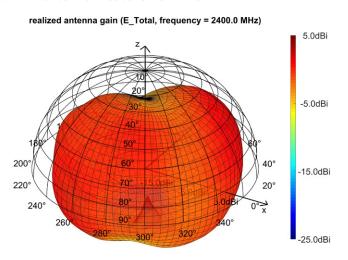

radiation pattern of the antenna (elevation cut) realized gain (E_Total, Freq = 2400.00 MHz)

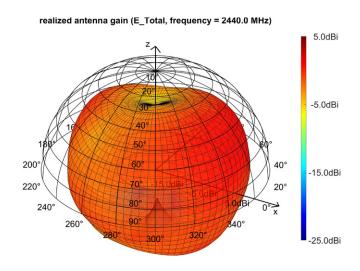

radiation pattern of the antenna (elevation cut) realized gain (E_Total, Freq = 2440.00 MHz)

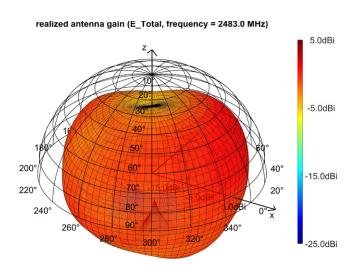

radiation pattern of the antenna (elevation cut) realized gain (E_Total, Freq = 2483.00 MHz)

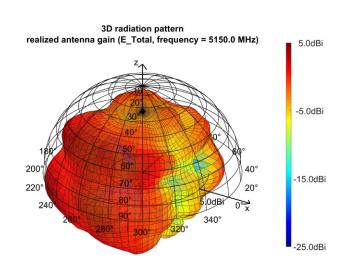

radiation pattern of the antenna (elevation cut) realized gain (E_Total, Freq = 5150.00 MHz)

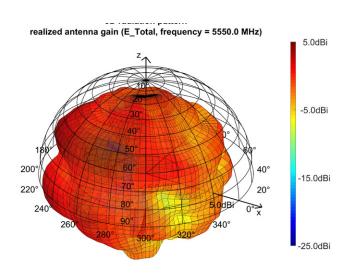
radiation pattern of the antenna (elevation cut) realized gain (E_Total, Freq = 5550.00 MHz)

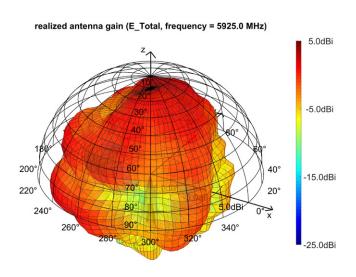


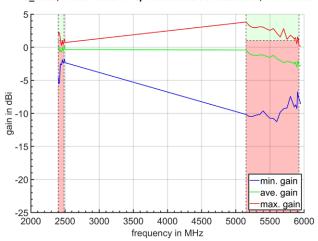

radiation pattern of the antenna (elevation cut) realized gain (E_Total, Freq = 5925.00 MHz)




Antenna diagrams


WLAN antenna measurement in air





Antenna diagrams

WLAN antenna measurement in air

partial average antenna gain (Theta=[70.00 - 90.00]°; Phi=[0.00 - 360.00]°) E_Total, Theta - linear w. spherical area consideration, Phi - linear

te.com/hirschmann-mobility

hirschmann-mobility@te.com

Hirschmann Car Communication GmbH.

a TE Connectivity Company Stuttgarter Strasse 45-51 72654 Neckartenzlingen | Germany Phone: +49 7127 14-0 | Fax: +49 7127 14-1428

TE, TE Connectivity, and TE connectivity (logo) are trademarks. Hirschmann, LTE, GSM, UMTS, GLONASS and FAKRA are trademarks. Other products and/or company names might be trademarks of their respective owners.

DISCLAIMER While TE Connectivity (TE) has made every reasonable effort to ensure the accuracy of the information in this data sheet, TE does not guarantee that it is error-free, nor does TE make any other representation, warranty or guarantee that the information is accurate, correct, reliable or current. TE reserves the right to make any adjustments to the information contained herein at any time without notice. TE expressly disclaims all implied warranties regarding the information contained herein, including, but not limited to, any implied warranties of merchantability or fitness for a particular purpose. The dimensions in this data sheet are for reference purposes only and are subject to change without notice. Specifications are subject to change without notice. Consult TE for the latest dimensions and design specifications.

© 2020 TE Connectivity. All Rights Reserved. | Published 07-2020

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Antennas category:

Click to view products by TE Connectivity manufacturer:

Other Similar products are found below:

GAN30084EU 930-033-R GW17.07.0250E 1513563-1 EXE902SM APAMPG-117 MAF94383 W3908B0100 W6102B0100 YE572113-30RSMM 108-00014-50 66089-2406 SPDA17RP918 A09-F8NF-M A09-F5NF-M RGFRA1903041A1T W3593B0100 W3921B0100 SIMNA-868 SIMNA-915 SIMNA-433 W1044 W1049B090 A75-001 WTL2449CQ1-FRSMM CPL9C EXB148BN 0600-00060 TRA9020S3PBN-001 Y4503 GD5W-28P-NF MA9-7N GD53-25 GD5W-21P-NF C37 MAF94051 MA9-5N EXD420PL B1322NR QWFTB120 MAF94271 MAF94300 GPSMB301 FG4403 AO-AGSM-OM54 5200232 MIKROE-2349 WCM.01.0111 MIKROE-2393 MIKROE-2352