

SKJ Cable Actuated Sensor J1939 CANBus Output Signal

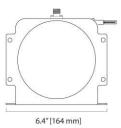
The SKJ is an easily customizable linear position sensor for applications from mobile construction equipment to hydraulic lift tables and anything else in between. Available in both 250 and 400-inch stroke ranges, this model offers ease-of-use, compact design and user flexibility. Need to mount it upside down? Simply rotate its stainless mounting bracket to where you want it. Need the electrical connector to point in a different direction? Just rotate the rear cover to point the connector to the desired direction.

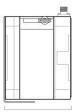
Our unique electronic circuitry and an extremely durable spring-loaded stainless steel measuring cable deliver an accurate reliable "absolute" position feedback signal over the entire stroke.

FEATURES

- Flexibility Every unit offers linear position up to 400" (10m) providing flexibility to work across a wide range of aerial applications. This off-theshelf series offers a wide selection of industry standard output signals (4-20mA, 0-10Vdc, CANOpen and J1939 CANbus).
- Ease of use A compact design, a stainless-steel mounting bracket for multiple installation options and an easily-adjustable measuring cable orientation make this sensor easy to install and manage.
- Superior engineering TE provides engineering partnership to customize for specific applications. There is also an option to have two sensors elements in the same package with no additional space requirement. This provides fail-safe security for aerial applications.

APPLICATIONS

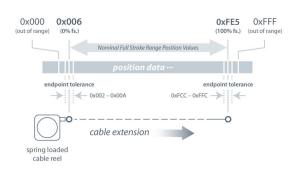

Accurate measurement in customized applications industrial and commercial transportation like:


- Fork lifts
- Telescopic arms
- Boom lifts
- Scissor lifts

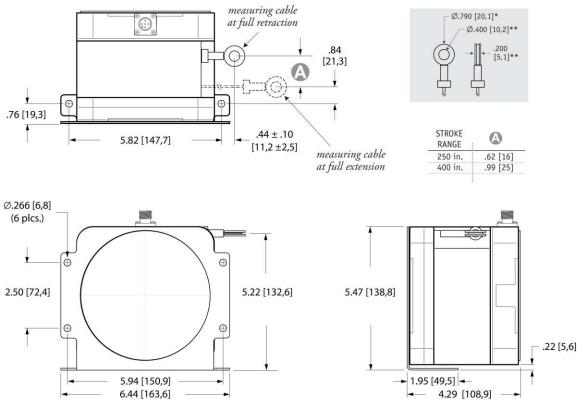
Linear Position to 400 inches (10 m) Compact Design • Simple To Install User Adjustable Measuring Cable orientation

Specifications

Stroke Range Options	250 inches (6.4 m), 400 inches (10.2 m)
Accuracy	0.35% FS.
Repeatability	0.05% FS.
Resolution	12-bit
Input Voltage	10-36 VDC
Input Current	100 mA, max.
Measuring Cable	0.031-inch dia. bare stainless steel
Maximum Cable Velocity	60 inches per second
Maximum Cable Acceleration	5 g
Measuring Cable Tension	23 oz. (6,4 N) ±40%
Sensor	plastic-hybrid precision potentiometer
Cycle Life	≥ 250,000
Electrical Connection	M12 connector, mating plug included
Enclosure	glass-filled polycarbonate
Environmental	IP67
Operating Temperature	-40° to 185° F (-40° to 85° C)

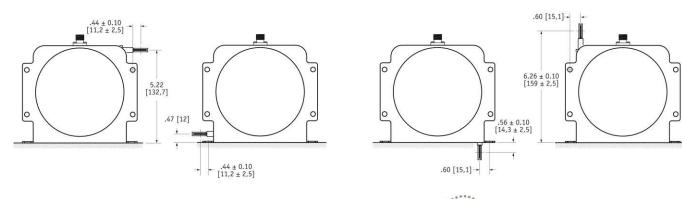


4.3" [109 mm]


CANopen Specifications

Communication Profile	CANbus SAE J1939
Protocol	Proprietary B
Node ID	Adjustable via dipswitch (0-63), default set to 0
Baud Rate Options	125K (default), 250K, 500K
Data Rate	5ms (default), 20ms, 50ms, 100ms

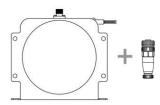
Output Signal

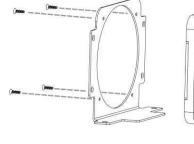


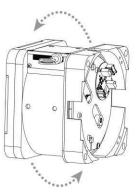
Outline Drawing

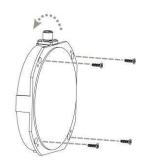
DIMENSIONS ARE IN INCHES [MM] tolerances are 0.04 IN. [1,0 MM] unless otherwise noted. * tolerance = +.005 -.001 [+0,1 -0,0] ** tolerance = +.005 -.005 [+0,1 -0,1]

Mounting Options

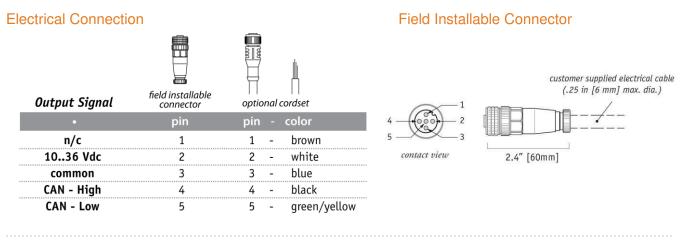



To change cable exit direction:


simply remove the 4 bracket mounting screws and rotate sensor body to desired direction.


To change electrical connector orientation: remove the 4 rear screws and carefully remove the rear cover and rotate cover.

Ordering Information



Part Number	full stroke range	accuracy	max. acceleration	measuring cable tension (± 40%)
SKJ-250-4	250 in (6.4 m)	.35%	5 g	23 oz. (6,4 N)
SKJ-400-4	400 in (10.2 m)	.35%	5 g	23 oz. (6,4N)

includes mounting bracket & mating connector.

Optional Cordsets	Part Number	length	wire size	connector
	9036810-0030	13 ft (4 m)	22 AWG (.34mm²)	straight 5-pin M12
	9036810-0031	13 ft (4 m)	22 AWG (.34mm²)	90° 5-pin M12

Position Data Overview

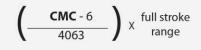
Identifier

	Mess	age Pr	iority		ure se				J1939 Reference Proprietary B Data Fiel					ield Type*				Not Used Node ID**											
Example –	1	0	0	0	0	1	1	1	1	1	1	1	1	0	1	0	1	0	0	1	1	0	0	1	1	1	1	1	1
Identifier Bit No. –	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Hex Value –			(0				F				F			ļ	5			:	3				3				-	

*Sensor field data can be factory set to customer specific value. **Customer defined, set via Dips 1-6. Bit values shown for example only, see Address Setting below.

Data Field

B₇ B₆ B₅ B₄ B₃ B₂ B₁ B₀


Current Measurement Count

The Current Measurement Count (CMC) is the output data that indicates the present position of the measuring cable. The CMC is a 12-bit value that occupies bytes B_0 and B_1 of the data field. B_0 is the LSB (least significant byte) and B_1 is the MSB (most significant byte).

The CMC starts at 0x006 with the measuring cable fully retracted and continues upward to the end of the stroke range stopping at 0xFE5. This holds true for all ranges.

Converting CMC to Linear Measurement

To convert the current measurment count to inches or millimeters, simply divide the count by 4061 (total counts over the range) and then multiply that value by the full stroke range:

Sample Conversion:

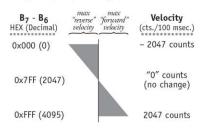
If the full stroke range is **250 inches** and the current position is **0x4FF** (1279 Decimal) then,

$$\left(\frac{1279-6}{4061}\right)$$
 x 250 = 78.8 inches

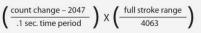
B₇ B₆ B₅ B₄ B₃ B₂ B₁ B₀

Error Flags

RED and GREEN Indicator LEDS (controller board)


0x00 (GREEN - ON, RED - OFF) indicates the sensor is operating within normal calibrated limits.

0x33, 0x55, 0xAA, 0xCC (RED or GREEN - FLASHING) indicates sensor is at or beyond it's calibrated measurment range. Should any of these conditions occur within calibrated range, return unit to factory for evaluation or service.


B₇ B₆ B₅ B₄ B₃ B₂ B₁ B₀

Velocity

Data in bytes $\mathbf{B_7}$ - $\mathbf{B_6}$ is the change in the CMC (current measurement count) over a 100 msec time period. This data can then be used to calculate velocity in a post processing operation.

Velocity Calculation

Sample Calculations

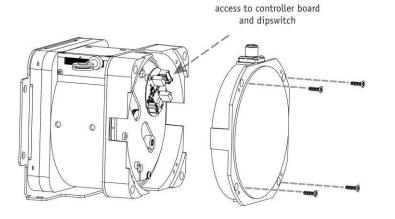
Cable Extension (positive direction): B₇..B₆ = 0x8D3 (2259Dec), full stroke = 250 in.

.....

Cable Retraction (negative direction):

$$\left(\frac{2000 - 2047}{.1 \text{ sec}}\right) \times \left(\frac{250 \text{ in.}}{4063}\right) = -28.92 \text{ in.} / \text{ sec.}$$

Baud, Node ID and Data Rate


Baud Rate, Node ID and Data Rate settings are set via dip switch found on the internal controller board. To gain access to the controller board, remove the 4 cover attaching screws and carefully separate the sensor cover from the main body. Be careful not to damage the small gage wires that connect the controller board to the connector mounted directly to the rear cover.

on [

Follow the instructions below for desired settings and reinstall sensor cover.

							off 1234	5 6 7 8 9 10
	9	node ID	SW1	SW2	SW3	SW4	SW5	SW6
	De	ec. Hex	(2 ⁰)	(2 ¹)	(2 ²)	(2 ³)	(24)	(2 ⁵)
nadalD	(0	0x00	off	off	off	off	off	off
	1	0x01	on	off	off	off	off	off
node ID	2	0x02	off	on	off	off	off	off
options 0–63 (0x00–0x3F)	З	0x03	on	on	off	off	off	off
(0×00 0×25)								
(0x00-0x3F)	62	0x3E	off	on	on	on	on	on
	63	0x3F	on	on	on	on	on	on

		off 123	4 5 6 7 8 9 10
	baud rate	SW7	SW8
BAUD	125 kbps	off	off
rate {	250 kbps	on	off
options	500 kbps	off	on

	on		
	off [SW9	510 SW10
(5 ms	off	off
Data Rate 👌	20 ms	on	off
options	50 ms	off	on
	100 ms	on	on

NORTH AMERICA

Measurement Specialties, Inc., a TE Connectivity Company Phone: +1-800-522-6752 Email: customercare.hmpt@te.com

EUROPE

MEAS Deutschland GmbH (Europe) a TE Connectivity Company Phone: +31 73 624 6999 Email: customercare.dtmd@te.com

ASIA

Measurement Specialties (China), Ltd., a TE Connectivity Company Phone: +86-400-820-6015 Email: customercare.shzn@te.com

TE.com/sensors

Measurement Specialties, TE Connectivity, TE Connectivity (logo) and EVERY CONNECTION COUNTS are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2019 TE Connectivity Ltd. family of companies All Rights Reserved.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Industrial Motion & Position Sensors category:

Click to view products by TE Connectivity manufacturer:

Other Similar products are found below :

595002M9474 01071901 D02318603 70U1N048S104U FE-41164 G8652 G8744 GA1T040F103UA GA1T100F502UA-A GA2E056P102UA GA2G140F252UA-A GA2T044S103UA-B GPS8627 GS2T032F253BA GS4P048F503UC GS4T040F503UC GS8367B GS8819 9811405 JA3G032P501UA-A KJ5-M18MB60-AZS 27M226 9810825 9870706 F07008036 SPSN048P202U F65118112 GA2G042F103UA GA2M028S102MC GA2M028S502RA GA2T056F502UA GH8810 25M921 GS8368B CM47070 CR121250 31M573 380000M8643 385500M9303 388037M6962 388281M9646 388517025480039 388580038670069 388818078120022 388860073800031 388C11M9548 388C24160090003 389504075810001 389767001230861 389A85084750001