SSRD Series

Dual AC Output "Hockey Puck" Solid State Relay With Paired SCR Outputs

${ }_{c} \mathbf{N I}_{\text {us }} \quad$ File E29244

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Features

- Two independent AC output solid state relays in one
standard package.
- Inverse parallel SCR outputs.
- 25A rms \& 40A rms versions available.
- Zero voltage and random voltage turn-on versions.
- 4000 V rms optical isolation.
- Quick connect style terminals.

Engineering Data

Form: 2 Form A (2 SPST-NO).
Duty: Continuous.
Isolation: 4000 V rms input-to-output;
2500 V rms input or output to ground.

Temperature Range:

Storage: $-30^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Operating: $-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Case Material: Plastic, UL rated 94V-0.
Case and Mounting: Refer to outline dimension.
Termination: Refer to outline dimension.
Approximate Weight: 3.17 oz (90 g)

Ordering Information					
Typical Part Number	SSRD	-240	D	25	R
1. Basic Series: SSRD = Dual output SSR - 2 SPST - NO					
2. Line Voltage: $240=24-280$ VAC					
$\text { 3. Input Type \& Voltage: } \begin{aligned} & D=4-15 \mathrm{VDC} \\ & D E=18-32 \mathrm{VDC} \end{aligned}$					
4. Maximum Switching Rating/Output: $25=.1-25 \mathrm{Arms} @ 25^{\circ} \mathrm{C}$, mounted to heatsink $40=.1-40 \mathrm{Arms} @ 25^{\circ} \mathrm{C}$, mounted to heatsink					
5. Options: Blank = Zero voltage turn-on (both outputs) $R=$ Random voltage turn-on (both outputs)					

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.
SSRD-240D25 SSRD-240D40

Input Specifications
$\left.\begin{array}{|l|c|c|c|}\hline & & \text { Units } & \begin{array}{c}\text { SSRD-240D25 } \\ \text { SSRD-240D25R }\end{array} \\ \text { Parameter } & & \begin{array}{c}\text { SSRD-240DE25 } \\ \text { SSRD-240D40 }\end{array} & \begin{array}{c}\text { SSRD-240DE25R } \\ \text { SSRD-240DE40 }\end{array} \\ \text { SSRR-240DE40R }\end{array}\right]$

SSRD Series (Continued)

Output Specifications (@ $25^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter	Conditions	Units	25A Models	40A Models
Load Voltage Range VL	$\mathrm{f}=47-63 \mathrm{~Hz}$.	V rms	24-280	
Peak Voltage (Min.)	$\mathrm{t}=1 \mathrm{Min}$.	\checkmark peak	600	
Load Current Range I L*	Resistive	A rms	. $1-25$. 1 - 40
Single Cycle Surge Current (Max.)		A peak	300	800
Leakage Current (Off-State) (Max.)	V L $=280 \mathrm{~V} \mathrm{mms}$	mA rms	5.0	
On-State Voltage Drop (Max.)	l = Max.	\checkmark peak	1.6	1.8
Static dv/dt (Off-State) (Min.)		V/us	300	500
Thermal Resistance, Junction to Baseplate (Rou-c) (Max.)	Both sections On	${ }^{\circ} \mathrm{C} / \mathrm{W}$	2.35	. 86
Turn-On Time (Max.)	$\mathrm{f}=60 / 50 \mathrm{~Hz}$.	ms	8.3 / 10 for Zero Voltage Turn-On Models 0.1 for Random Voltae Turn-On Models	
Turn-Off Time (Max.)	$\mathrm{f}=60 / 50 \mathrm{~Hz}$.	ms	10 for Zero \& 8.3 for Random Voltage turn ON	
${ }^{2} \mathrm{~T}$ Rating	$\mathrm{t}=8.3 \mathrm{~ms}$	$\mathrm{A}^{2} \mathrm{Sec}$.	510	3745
Load Power Factor Rating	$\mathrm{L}=$ Max.		0.5-1.0	

* See Derating curve

Electrical Characteristics (Thermal Derating Curves)

Operating Diagram

Random Turn-on units have a Random Turn-on circuit instead of zero voltage circuit

Heatsink Recommendations

- We recommend that solid state relay modules be mounted to a heatsink sufficient to maintain the module's base temperature at less than $85^{\circ} \mathrm{C}$ under worst case ambient temperature and load conditions.
- The heatsink mounting surface should be a smooth (30-40 micro-inch finish), flat (30-40 micro-inch flatness across mating area), un-painted surface which is clean and free of oxidation.
- An even coating of thermal compound (Dow Corning DC340 or equivalent) should be applied to both the heatsink and module mounting surfaces and spread to a uniform depth of .002" to eliminate all air pockets.
- The module should be mounted to the heatsink using two \#10 screws.

Outline Dimensions

Input Terminal Connectors are available from several different manufacturers.

TE P/N: 103976-3 or 640440-4
Methode P/N: 1300-004-422
Consult your local distributor for these or equivalent connectors.

DIMENSION IN mm only together with the 'Definitions' section. are subject to change.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Solid State Relays - Industrial Mount category:
Click to view products by TE Connectivity manufacturer:

Other Similar products are found below :
D2440-C H10CA4890 D4875C 1395831-1 1616010-6 BR312BY A-1326 H10CA4850 H12CA4890VL RA2410-D06 RA2410HA06T D1202F D53TP50-10 W230E-1-12 W230T-3-12 1-1617030-3 1-1617033-7 MS2-D2420 MS2-D2430 A-1440 RJ1P60V50E HS501DRD2425 RN1F48I50 70.362.1028.0 7-1393030-8 Z5.509.0828.0 G3DZ-4B DC24 G3DZ-F4B DC12 2912138 SSRDAC10 SSR-10048RD1 RV8S-L-A240-D24 RV8S-L-A240-D6 RV8S-S-A240-D24 RV8S-S-A240-D6 RV8S-S-A240Z-D24 RV8S-S-D24-A240 RV8S-S-D48-A120 RN1F12V50 RJ1P60I30E RJ1P60V30E SO967860 SMT8628521 SO869970 SOD867180 SAL961360 SO867970 SOB863860 SOB867640 SOB942360

