Type TYC Series

Key Features

- Choice of Dielectrics (NP0, X7R, X5R, Y5V)
- 0402 to 1812 sizes as standard
- Other sizes available. 0201 available soon
- 6.3 V to 50 V in standard range
- Voltage ratings to 3 kV on selected products
- Range of tolerances available
- RoHS Compliant
- Excellent thermal stability
- Low dissipation factor
 liquid and casting into a thin green sheet from 0 mm in wick. ss to 5 mm or thinner.
Metal electrodes are sieved printed onto sel heets, which are later stacked to form a laminated structure. The metal electroder are arrans d so that the termination alternates from one edge to another of the capacitor Upon sintering at high temperature on pa becomes a monolithic block, which can provide an extremely high capacitance in small, schap al volumes.
Finally, the termination electro are forms , composite of outer metal-glass electrode and followed by a barrier layer and , re-tin phting to permit MLCC to be soldered directly onto printed circuit board.

Class 1

No	Specifications	Material
1		Ceramic dielectric
2	Internal Electrode	Barium titanate base
3		Inner Layer
4	End Terminal	Middle Layer
		Outer Layer
5		$\mathrm{~Pb}, \mathrm{PdAg}$

Class 2

No	Specifications	Material		
1		Ceramic dielectric	Barium titanate base	
2	Internal Electrode		$\mathrm{Pb}, \mathrm{PbAg}$	
3		Ag	Ni	
4	End Terminal	Inner Layer	Cu	
	Middle Layer	Ni		
	Outer Layer	Sn		

Dimensions in millimetres unless otherwise specified

Dimensions Shown for reference purposes only. Specifications subject to change

For Email, phone or live chat, go to: www.te.com/help

Multi-Layer Ceramic Chip Capacitor

Type TYC Series

Capacitance \& Voltage (NPO)

Multi-Layer Ceramic Chip Capacitor

Type TYC Series

Capacitance \& Voltage (HI-Voltage NPO)

EA.	Size	0603	0005				1206						1210						1808			1812						
Code	VDCW	100	100	200	250	500	100	200	250	500	1000	2000	100	200	250	500	1000	2000	1000	2000	3000	100	200	250	500	1000	2000	3000
OR5	0.5 pF	S	A	A	A	A																						
1R0	1	S	A	A	A	A																						
1R2	1.2	S	A	A	A	A																						
1P5	1.5	S	A	A	A	A	B	B	B	B	B	B																
1R8	1.8	S	A	A	A	A	B	B	B	B	B	B																
2R2	2.2	S	A	A	A	A	B	B	B	B	B	B																
2R7	2.7	S	A	A	A	A	B	B	B	B	B	B																
$3 \mathrm{P}^{3}$	3.3	S	A	A	A	A	B	B	B	B	B	B																
3R9	3.9	S	A	A	A	A	B	B	B	B	B	B																
$4 \mathrm{R7}$	4.7	S	A	A	A	A	B	B	B	B	B	B																
5R6	5.6	S	A	A	A	A	B	B	B	B	B	B																
6R8	6.8	S	A	A	A	A	B	B	B	B	B	B																
8R2	8.2	S	A	A	A	A	B	B	B	B	B	B																
100	10pF	S	A	A	A	A	B	B	B	B	B	B	C	C	C	C	C	C	D	D	D	D	D	D	D	D	D	D
120	12	S	A	A	A	A	B	B	B	B	B	B	C	C	C	C	C	C	D	D	D	D	D	D	D	D	D	D
150	15	S	A	A	A	A	B	B	B	B	B	B	C	C	C	C	C	C	D	D	D	D	D	D	D	D	D	D
180	18	S	A	A	A	A	B	B	B	B	B	B	C	C	C	C	C	C	D	D	D	D	D	D	D	D	D	D
220	22	S	A	A	A	A	B	B	B	B	B	B	C	C	C	C	C	C	D		D	D	D	D	D	D	D	D
270	27	S	A	A	A	A	B	B	B	B	B	B	C	C	C	C	C	C		D	D	D	D	D	D	D	D	D
330	33	S	A	A	A	A	B	B	B	B	B	B	C	C	C	C	C	C		D	0	D	D	D	D	D	D	D
390	39	S	A	A	A	A	B	B	B	B	B	B	C	C	C	C	C	O	L		D	D	D	D	D	D	D	D
470	47	S	A	A	A	A	B	B	B	B	B	B	C	C	C	C	C	-	D			D	D	D	D	D	D	D
560	56	S	A	A	A	A	B	B	B	B	B	B	C	C	C	C			D	D	0	D	D	D	D	D	D	D
680	68	S	A	A	A	A	B	B	B	B	B	C	C	C	C	C	C		D	D	D	D	D	D	D	D	D	D
820	82	S	A	A	A	B	B	B	B	B	B	C	C	C	C		C	D		D	D	D	D	D	D	D	D	D
101	100pF	S	A	A	A	B	B	B	B	B	B	C	C	C	C	C	8	D	D	D	D	D	D	D	D	D	D	D
121	120	S	A	A	A	D	B	B	B	B	B	D	C	C	0		c	D	D	D	D	D	D	D	D	D	D	D
151	150	S	A	B	B	D	B	B	B	B	C	D	C	C	C		C		D	D	D	D	D	D	D	D	D	D
181	180	S	A	B	B	D	B	B	B	B	C	G	C	C	C	2		D	D	D	K	D	D	D	D	D	D	D
221	220	S	A	D	D	D	B	B	B	B	D	G	C		C	C	,	D	D	D	K	D	D	D	D	D	D	D
271	270	S	A	D	D	D	B	B	B	C	D		C		C		C	D	D	D	K	D	D	D	D	D	D	K
331	330	S	A	D	D	D	B	B	B	C			C				D		D	D		D	D	D	D	D	D	K
391	390	S	B	D	D	D	B	B	B	C			C	¢	C	C	D		D	K		D	D	D	D	D	D	K
471	470	S	B	D	B	C	C	C					C	C	C	C	D		D	K		D	D	D	D	D	D	K
561	580	S	B	D	B	C	C	C					C		C	C			K	K		D	D	D	D	D	D	
681	680	B	D	B	C	C	C							c	C	C			K	K		D	D	D	D	D	K	
821	820	B	D	B	C	D	D						C	C	C	C			K	K		D	D	D	D	D	K	
102	1000pF	B	B		C								C	C	C	C			K			D	D	D	D	K	K	
122	1200	B	B	C									C	D	D	D						D	D	D	D	K		
152	1500	B	B	C									C	D	D	D						D	D	D	D	K		
182	1800	B	B	C									C	D	D	D						D	D	D	D			
222	2200	B	B	D									C	D	D							D	D	D	D			
272	2700	D	B										C	D	D							D	D	D	D			
332	3300	D	B										C	D								D	D	D	D			
392	3900	D	B										C	D								D	D					
472	4700	B											C									D	D					
562	5600	B											C									D	D					
682	6800	C											C									D	D					
822	8200	C											C									D						
103	$0.01 \mu \mathrm{~F}$												C									D						
123	0.012												D									D						
153	0.015												D									D						
183	0.018																					D						
223	0.022																					D						
273	0.027																					D						
333	0.033 $\mu \mathrm{F}$																					D						
Size Unit: Inch (mm) 0402 (1005)							0603 (1608)			0805 (2012)				1206 (3216)				1210 (3225)				1808 (4520)			1812 (4532)			
$\mathrm{A}=0$.	60 ± 0.10	mm	-				-			Paper 4Kp/reel				-				-				-			-			
$\mathrm{B}=0$.	80 ± 0.10	mm	-				-			Paper 4Kp/reel				Paper $4 \mathrm{Kp/reel}$				-				-			-			
$\mathrm{C}=0$.	95+0.10	mm		-				-		-				Plastic 3Kp/reel				Plastic 3Kp/reel				-			-			
$\mathrm{D}=1$.	25 ± 0.10	mm	-				-			Plastic 3Kp/reel				Plastic 3Kp/reel				Plastic 3Kp/reel				Plastic 2Kp/reel			Plastic 1Kp/reel			
$\mathrm{G}=1$.	60土0.20	mm	-				-			-				Plastic 2Kp/reel				Plastic 2Kp/reel				-			-			
$\mathrm{S}=0$.	. 80 ± 0.07	mm		-			Paper 4Kp/reel							-				-				-			-			
$\mathrm{N}=0$.	.50+0.05	mm	Paper 10Kp/roel				-			-				-				-				-			-			
$\mathrm{K}=2$.	. 00 ± 0.20	mm	-				-			-				-				Plastic 2Kp/reel				Plastic 1Kp/reel			Plastic 1 $\mathrm{Kp} /$ reel			
$\mathrm{M}=2$.	50 ± 0.30	mm	-				-			-								Plastic 1Kp/reel				-			Plastic 1Kp/reel			

Dimensions Shown for reference purposes only. Specifications subject to change

For Email, phone or live chat, go to: www.te.com/help

Type TYC Series

Capacitance \& Voltage (X7R/X5R)

ELA	Size	0402				0603					0805					1206					1210					1812				
Code	VDCW	10 V	16 V	25 V	50 V	6.3 V	10 V	16 V	25 V	50 V	6.3 V	10 V	16 V	25 V	50 V	6.3 V	10 V	16 V	25V	50 V	6.3 V	10 V	16 V	25 V	50V	6.3 V	10 V	16 V	25 V	50 V
101	100 pF	N	N	N	N		S	S	S	S		B	B	B	B															
121	120	N	N	N	N		S	S	S	S		B	B	B	B															
151	150	N	N	N	N		S	S	S	S		B	B	B	B															
181	180	N	N	N	N		S	S	S	S		B	B	B	B		BA	$\mathrm{B}^{\text {s }}$	B^{\wedge}	B^{\wedge}										
221	220	N	N	N	N		S	S	S	S		B	B	B	B		B ${ }^{\text {a }}$	B ${ }^{\wedge}$	B^{\wedge}	B^{\wedge}										
271	270	N	N	N	N		S	S	S	S		B	B	B	B		B	B^{\wedge}	B^{\wedge}	B^{\wedge}										
331	330	N	N	N	N		S	S	S	S		B	B	B	B		Br^{\prime}	B^{5}	$\mathrm{B}^{\text {A }}$	B^{\wedge}										
391	390	N	N	N	N		S	S	S	S		B	B	B	B		B ${ }^{\prime}$	B^{2}	B^{\wedge}	B^{\wedge}										
471	470	N	N	N	N		S	S	S	S		B	B	B	B		B^{\wedge}	B8	$\mathrm{B}^{\text {A }}$	B^{\wedge}										
561	560	N	N	N	N		S	S	S	S		B	B	B	B		BA^{\wedge}	B^{2}	B^{\wedge}	B^{\wedge}										
681	680	N	N	N	N		S	S	S	S		B	B	B	B		BA	BA^{\wedge}	$\mathrm{B}^{\text {a }}$	B^{\wedge}										
821	820	N	N	N	N		S	S	S	S		B	B	B	B		B	B	B	B										
102	10000F	N	N	N	N		S	S	S	S		B	B	B	B		B	B	B	B		C^{\wedge}	C^{\wedge}	C^{\wedge}	C^{\wedge}		$D^{\text {A }}$	$\mathrm{D}^{\text {A }}$	D^{\wedge}	D^{\wedge}
122	1200	N	N	N	N		S	S	S	S		B	B	B	B		B	B	B	B		C^{\wedge}	C^{\wedge}	C^{\wedge}	C^{\wedge}		D^{\wedge}	D^{\wedge}	D^{\wedge}	D^{\wedge}
152	1500	N	N	N	N		S	S	S	S		B	B	B	B		B	B	B	B		C^{\wedge}	C^{\wedge}	C^{\wedge}	C^{\wedge}		D^{\wedge}	$D^{\text {A }}$	$\mathrm{D}^{\text {A }}$	D^{\wedge}
182	1800	N	N	N	N		S	S	S	S		B	B	B	B		B	B	B	B		C^{\wedge}	C^{\wedge}	C^{\wedge}	C ${ }^{\text {a }}$		D^{\wedge}	D ${ }^{\wedge}$	D^{\wedge}	D^{\wedge}
222	2200	N	N	N	N		S	S	S	S		B	B	B	B		B	B	B	B		C^{\wedge}	C^{\wedge}	C^{\wedge}	C^{\wedge}		D^{\wedge}	D^{\wedge}	D^{\wedge}	$\mathrm{D}^{\text {® }}$
272	2700	N	N	N	N		S	S	S	S		B	B	B	B		B	B	B	B		C^{\wedge}	C^{\wedge}	C^{\wedge}	C^{\wedge}		D^{\wedge}	D^{\wedge}	D^{\wedge}	$\mathrm{D}^{\text {A }}$
332	3300	N	N	N	N		S	S	S	S		B	B	B	B		B	B	B	B		$\mathrm{C}^{\text {a }}$	C^{\wedge}	C^{\wedge}	C^{\wedge}		$D^{\text {A }}$	D^{\wedge}	D^{\wedge}	$\mathrm{D}^{\text {A }}$
392	3900	N	N	N	N		S	S	S	S		B	B	B	B		B	B	B	B		C^{\wedge}	CA	C^{\wedge}	C^{\wedge}		$\mathrm{D}^{\text {A }}$	D^{\wedge}	D^{\wedge}	D^{\wedge}
472	4700	N	N	N	N		S	S	S	S		B	B	B	B		B	B	B				C^{\wedge}	C^{\wedge}	C^{\wedge}		D^{\wedge}	D^{\wedge}	D^{\wedge}	D^{\wedge}
562	5600	N	N	N			S	S	S	S		B	B	B	B		B	B	B			$\mathrm{c}^{\text {A }}$	C^{\wedge}	C^{\wedge}	C^{\wedge}		D^{\wedge}	D^{\wedge}	D^{\wedge}	$\mathrm{D}^{\text {N }}$
682	6800	N	N	N			S	S	S	S		B	B	B	B		B	B		B		\%		$\mathrm{C}^{\text {c }}$	C^{\wedge}		$\mathrm{D}^{\text {¢ }}$	$\mathrm{D}^{\text {a }}$	D^{*}	D^{\wedge}
822	8200	N	N	N			S	S	S	S		B	B	B	B		B			B			c	C	C		D^{\wedge}	D ${ }^{\wedge}$	D^{\wedge}	D^{\wedge}
103	0.01 1 F	N	N	N			S	S	S	S		B	B	B	B		B	,	B	B		\checkmark	C	C	C		D^{\wedge}	D^{\wedge}	D^{\wedge}	D^{\wedge}
123	0.012	N	N				S	S	S	S		B	B	B	B		B	B	B			C	C	C	C		$\mathrm{D}^{\text {A }}$	D^{\wedge}	D^{\wedge}	D^{\wedge}
153	0.015	N	N				S	S	S	S		B	B	B	B			B	B	B		C	C	C	C		D^{\wedge}	D^{\wedge}	D^{\wedge}	D^{\wedge}
183	0.018	N	N				S	S	S	S		B	B	B	B		B		B	B		C	C	C	C		$D^{\text {a }}$	D^{\wedge}	D^{\wedge}	D^{\wedge}
223	0.022	N	N				S	S	S	S		B	B	B	B			B		B		C	C	C	C		D^{\wedge}	$\mathrm{D}^{\text {A }}$	D^{\wedge}	D^{\wedge}
273	0.027	N					S	S	S	S		B	B	B	B					B		C	C	C	C		D^{\wedge}	D^{\wedge}	D^{\wedge}	D^{\wedge}
333	0.033	N	N				S	S	S	S		B	B	B	B				B	B		C	C	C	C		$\mathrm{D}^{\text {a }}$	D^{\wedge}	D^{*}	D^{\wedge}
393	0.039	N					S	S	S	S		B	B	B			B	,	B	B		C	C	C	C		$D^{\text {a }}$	$D^{\text {a }}$	D^{\wedge}	D^{\wedge}
473	0.047	N	N				S	S	S	S		B	B					B	B	B		C	C	C	C		$\mathrm{D}^{\text {A }}$	$\mathrm{D}^{\text {a }}$	D^{\wedge}	D^{\wedge}
563	0.056	N					S	S	S	S		B		B			S	B	B	B		C	C	C	C		D^{\wedge}	$\mathrm{D}^{\text {a }}$	D^{\wedge}	D^{\wedge}
683	0.068	N					S	S	S	S		B	B	B			B	B	B	B		C	C	C	C		$\mathrm{D}^{\text {A }}$	D^{\wedge}	D^{\wedge}	D^{\wedge}
823	0.082	${ }^{\mathrm{N}}$					S	S	S	S		B	B	B	L		B	B	B	B		C	C	C	C		D	D	D	D
104	0.1, F	N					S	S	S	S		B		B			B	B	B	B		C	C	C	C		D	D	D	D
124	0.12						S					B			D		B	B	B	B		C	C	C	C		D	D	D	D
154	0.15						S	S						D	D		C	C	C	C		C	C	C	C		D	D	D	D
184	0.18						S					D		D	D^{\prime}		C	C	C	C		C	C	C	C		D	D	D	D
224	0.22						S	S				D	0	D	D^{\prime}		C	C	C	C		C	C	C	C		D	D	D	D
274	0.27												D	D			C	C	C			C	C	C	C		D	D	D	D
334	0.33						'S'					D	D	D			C	C	C			C	C	C	C		D	D	D	D
394	0.39											D	D				C	C				C	C	C	C		D	D	D	D
474	0.47											D	D	D^{\prime}			D	D	D^{\prime}	G^{\prime}		C	C	C			D	D	D	D
564	0.56											D	D				D	D									D	D	D	D
684	0.68											D	D^{\prime}				D	D									D	D	D	K
824	0.82											D					D	D									D	D	D	K
105	$1 \mu \mathrm{~F}$					${ }^{\circ} \mathrm{S} \text { " }$						D	D'	D'			D	D	G^{1}			G	G	G			D	D	D	K
225	22					${ }^{\prime} \mathrm{S}$ '					${ }^{*} \mathrm{D}$	${ }^{\circ} \mathrm{D}$ '					${ }^{\circ} \mathrm{D}$ '	${ }^{\text {' }{ }^{\prime} \text { ' }}$	G^{\prime}			K	K	K						
335	3.3										${ }^{\text {'D }}$ ' ${ }^{\text {d }}$	${ }^{\text {' }}$ '					${ }^{*} \mathrm{G}$	${ }^{*} \mathrm{G}$				K	K	K						
475	4.7										'D'					${ }^{\prime} \mathrm{G}$ '	${ }^{\text {'G' }}$	${ }^{*} \mathrm{G}$ '				K	K	K						
685	6.8																													
106	19.F										${ }^{\text {'D }}$					${ }^{\text {'G }}$ '	${ }^{+} \mathrm{G}^{\prime}$				${ }^{*} \mathrm{~K}$	${ }^{*} \mathrm{~K}$	${ }^{*} \mathrm{~K}$						M	
226	22,F															'G'	${ }^{*} \mathrm{G}$ '				${ }^{*} \mathrm{M}$	M						M		
107	$100 \mu \mathrm{~F}$																									U				

(1) [']. The sad items are made by NME (Nable Metal Bectrode).
(2) P): The sad teme are avelsble in $\times 5$ R.
(3) [S]: The trickness spec. d sad tems is specal defnedon $0.80+0.15-0.1 \mathrm{~mm}$.
(4) [D]: The trickess spec. of said tems is special detred on $1.25 \pm 0.2 \mathrm{~mm}$ for 0805 and 1.1540 .15 mm for 1206
(5) [G]: The thickress spec. of sad tems is specal defned on $1.60+0.34 .0 .1 \mathrm{~mm}$.

Size Unit: Inch (mm) 0402 (1005)	0603 (1608)	0805 (2012)	1206 (3216)	1210 (3225)	1808 (4520)	1812 (4532)
$\mathrm{A}=0.60 \pm 0.10 \mathrm{~mm}$ -	-	Paper $4 \mathrm{Kp} /$ teel	-	-	-	-
$\mathrm{B}=0.80 \pm 0.10 \mathrm{~mm}$ -	-	Paper $4 \mathrm{~K} p / r e e l$	Paper $4 \mathrm{Kp} /$ reel	-	-	-
$\mathrm{C}=0.95 \pm 0.10 \mathrm{~mm}$ -	-	-	Plastic 3Kp/reel	Plastic 3Kproel	-	-
$\mathrm{D}=1.25 \pm 0.10 \mathrm{~mm}$ -	-	Plastic 3Kpreal	Plastic 3Kp/reel	Plastic 3Kp/reel	Plastic 2Kp/reel	Plastic 1Kp/reel
$\mathrm{G}=1.60 \pm 0.20 \mathrm{~mm}$ -	-	-	Plastic 2Kp/reel	Plastic 2Kp/reel	-	-
$\mathrm{S}=0.80 \pm 0.07 \mathrm{~mm} \mathrm{-}$	Paper 4Kpreel	-	-	-	-	-
$\mathrm{N}=0.50 \pm 0.05 \mathrm{~mm}$ Paper 10Kp/reel	-	-	-	-	-	-
$\mathrm{K}=2.00 \pm 0.20 \mathrm{~mm}$ -	-	-	-	Plasic 2Kp/reel	Plastic 1Kp/reel	Plastic 1Kp/reel
$\mathrm{M}=2.50 \pm 0.30 \mathrm{~mm}$	-	-	-	Plastic 1 Kp/reel	-	Plastic 1Kp/reel
$\mathrm{U}=2.80 \pm 0.30 \mathrm{~mm}$ -	-	-	-	-	-	Plastic 0.5Kprreel

Dimensions Shown for reference purposes only. Specifications subject to change

Multi-Layer Ceramic Chip Capacitor

Type TYC Series

Capacitance \& Voltage (HI-Voltage X7R)

EA	Stan	0603	0805				1206							1210					1808			1812						
Code	VDCW	100	100	200	250	550	100	200	250	500	1000	1500	2000	100	200	250	500	1000	1000	1500	2000	100	200	250	500	1000	2000	3000
101	100 pF	S	B	B^{\wedge}	B^{\wedge}	$\mathrm{B}^{\text {a }}$																						
121	120	S	B	B^{\wedge}	B^{\wedge}	B^{\wedge}																						
151	150	S	B	B^{\wedge}						D^{\wedge}	$\mathrm{D}^{\text {A }}$	D^{\wedge}																
181	180	S	B	B^{\wedge}	B^{\wedge}	$\mathrm{B}^{\text {a }}$	B^{\wedge}	B^{\wedge}	B^{\wedge}	B^{\wedge}	B^{\wedge}	B^{\wedge}	B^{\wedge}						D^{\wedge}	D^{\wedge}	D^{\wedge}							
221	220	S	B	B^{\wedge}	B^{\wedge}	B^{\wedge}	B^{\wedge}	B^{\wedge}	B^{\wedge}	$\mathrm{B}^{\text {A }}$	$B^{\text {A }}$	$B^{\text {A }}$	B^{\wedge}						D^{\wedge}	D^{\wedge}	$\mathrm{D}^{\text {a }}$							
271	270	S	B	B^{\wedge}	B^{\wedge}	B^{\wedge}	B^{\wedge}						DA	$\mathrm{D}^{\text {A }}$	D^{\wedge}					D ${ }^{\wedge}$	D^{\wedge}							
331	330	S	B	B^{\wedge}	B^{\wedge}	B^{\wedge}	B^{\wedge}	B^{\wedge}	B^{\wedge}	B^{\wedge}	B^{\wedge}	B^{\wedge}	B^{\wedge}						D^{\wedge}	$\mathrm{D}^{\text {A }}$	D^{\wedge}					D^{\wedge}	D^	
391	390	S	B	B^{\wedge}	B^{\wedge}	B^{\wedge}	B^{\wedge}	B^{\wedge}	B^{\wedge}	B^{\wedge}	B^{\wedge}	B^{\wedge}	$\mathrm{C}^{\text {A }}$						D^{\wedge}	D^{\wedge}	D^{\wedge}					D^{\wedge}	D^{\wedge}	
471	470	S	B	B^{\wedge}	B^{\wedge}	$B^{\text {a }}$	$\mathrm{B}^{\text {A }}$	$\mathrm{C}^{\text {A }}$						D^{\wedge}	$\mathrm{D}^{\text {A }}$	D^{\wedge}					D*	$D^{\text {A }}$						
561	560	S	B	B^{\wedge}	$\mathrm{B}^{\text {A }}$	$\mathrm{B}^{\text {A }}$	B^{\wedge}	B^{\wedge}	$\mathrm{B}^{\text {c }}$	B^{\wedge}	B^{\wedge}	C^{\wedge}	C^{\wedge}						D^{\wedge}	$\mathrm{D}^{\text {A }}$	D^{\wedge}					D^	D^{*}	
681	680	S	B	B^{\wedge}	B^{\wedge}	B^{\wedge}	B^{\wedge}	B^{\wedge}	B^{\wedge}	B^{\wedge}	B^{\wedge}	C^{\wedge}	C^{\wedge}						D^{\wedge}	D^{\wedge}	D^{\wedge}					D^{\wedge}	D^{\wedge}	K^{\wedge}
821	820	S	B	B^{\wedge}	B^{\wedge}	B^{4}	B	B^{\wedge}	B^{\wedge}	B^{\wedge}	B^{\wedge}	G^{\wedge}	G^{\wedge}						$\mathrm{D}^{\text {s }}$	$\mathrm{D}^{\text {A }}$	D^{\wedge}					D^{\wedge}	DA	K^{\wedge}
102	1000pF	S	B	B^{\wedge}	B^{\wedge}	B^{\wedge}	B	B^{\wedge}	$\mathrm{B}^{\text {a }}$	B^{\wedge}	$\mathrm{B}^{\text {a }}$	G^{\wedge}	G^{\wedge}	C^{\wedge}	C^{\wedge}	C^{\wedge}	C^{\wedge}	$\mathrm{C}^{\text {a }}$	D^{\wedge}	$D^{\text {A }}$	K^{\wedge}	$\mathrm{D}^{\text {A }}$	$\mathrm{D}^{\text {A }}$	D^{\wedge}	D*	D^{\wedge}	$D^{\text {A }}$	K^{\wedge}
122	1200	S	B	B^{\wedge}	B^{\wedge}	B^{\wedge}	B	B^{\wedge}	$\mathrm{B}^{\text {a }}$	B^{\wedge}	B^{\wedge}	G^{\wedge}		C^{\wedge}	C^{\wedge}	$\mathrm{C}^{\text {a }}$	C^{\wedge}	$\mathrm{C}^{\text {a }}$	D^{\wedge}	$\mathrm{D}^{\text {A }}$	$\mathrm{K}^{\text {A }}$	D^{\wedge}	$D^{\text {a }}$	$\mathrm{D}^{\text {A }}$	D^{\wedge}	D^{\wedge}	$\mathrm{D}^{\text {A }}$	
152	1500	S	B	B^{\wedge}	B^{\wedge}	B^{\wedge}	B	B^{\wedge}	B^{\wedge}	B^{\wedge}	C^{\wedge}	G^{\wedge}		$\mathrm{C}^{\text {A }}$	C^{\wedge}	$\mathrm{C}^{\text {A }}$	C^{\wedge}	$\mathrm{C}^{\text {a }}$	D^{\wedge}	$\mathrm{D}^{\text {a }}$	K^{\wedge}	D^{\wedge}	D^{\wedge}	D^{\wedge}	D^{\wedge}	D^{\wedge}	$\mathrm{D}^{\text {A }}$	
182	1800	S	B	B^{\wedge}	B^{\wedge}	B^{\wedge}	B	$\mathrm{B}^{\text {A }}$	$\mathrm{B}^{\text {A }}$	B^{\wedge}	$\mathrm{C}^{\text {A }}$	G^{\wedge}		C^{\wedge}	C^{\star}	C ${ }^{\text {a }}$	C^{\wedge}	$\mathrm{C}^{\text {A }}$	D^{\wedge}	$\mathrm{D}^{\text {A }}$	K^{\wedge}	D^{\wedge}	$D^{\text {A }}$	D^{\wedge}	D^{\wedge}	D^{\wedge}	$D^{\text {A }}$	
222	2200	S	B	B^{\wedge}	B^{\wedge}	B^{\wedge}	B	B^{\wedge}	$\mathrm{B}^{\text {a }}$	B^{\wedge}	D^{\wedge}	G^{\wedge}		C^{\wedge}	C^{\wedge}	C^{\wedge}	C^{\wedge}	$\mathrm{C}^{\text {a }}$	D^{\wedge}	DA	K^{\wedge}	D^{\wedge}	$D^{\text {A }}$	D^{\wedge}	Ds	D^{\wedge}	$\mathrm{D}^{\text {A }}$	
272	2700	S	B	B^{\wedge}	B^{\wedge}	B^{\wedge}	B	$\mathrm{B}^{\text {A }}$	$\mathrm{B}^{\text {A }}$	B^{\wedge}	G^{\wedge}			CA^{\wedge}	C^{\wedge}	$\mathrm{C}^{\text {a }}$	C^{\wedge}	C^{\wedge}	D^{\wedge}	λ		D^{\wedge}	$D^{\text {A }}$	$\mathrm{D}^{\text {A }}$	D^{\wedge}	D^{\wedge}	D^{\wedge}	
332	3300	S	B	B^{\wedge}	B^{\wedge}		B	B^{\wedge}	B^{\wedge}	B^{\wedge}	G^{\wedge}			C^{\wedge}	C^{\star}	C^{\wedge}	C^{\wedge}	$\mathrm{D}^{\text {a }}$		1		D^{\wedge}	D^{\wedge}	D^{\wedge}	D^{\wedge}	D^{\wedge}	K^{\wedge}	
392	3900	S	B	B^{\wedge}	B^{\wedge}		B	B^{\wedge}	$\mathrm{B}^{\text {a }}$	B^{\wedge}	G^{\wedge}			C^{\wedge}	C^{\wedge}	C^{\wedge}	C^{\wedge}					D^{\wedge}	$\mathrm{D}^{\text {A }}$	D^{\wedge}	D^{\wedge}	D^{\wedge}	K^{\wedge}	
472	4700	S	B	BA^{\wedge}	B^{\wedge}		B	B^{\wedge}	$\mathrm{B}^{\text {a }}$	B^{\wedge}				C^{\wedge}	C^{\wedge}	$\mathrm{C}^{\text {a }}$	C^{\wedge}					8	$D^{\text {A }}$	D^{\wedge}	D^{\wedge}	D^{\wedge}	K^{\wedge}	
562	5600	S	B	D^{\wedge}	D^{\wedge}		B	B^{\wedge}	B^{\wedge}	B^{\wedge}				C^{\wedge}	C^{\wedge}	$\mathrm{C}^{\text {A }}$	C^{\wedge}		K^{\wedge}			D*	$\mathrm{D}^{\text {A }}$	D^{\wedge}	D*	D^{\wedge}		
682	6800	S	B	D*	D^{\wedge}		B	B^{\wedge}	$\mathrm{B}^{\text {A }}$	B^{\wedge}				CA	C^{\wedge}	CA			$\mathrm{K}^{\text {a }}$			D^{\wedge}	D^{\wedge}	D^{\wedge}	D^{\wedge}	D^{\wedge}		
822	8200	S	B	D^{\wedge}	D^{\wedge}		B	B^{\wedge}	$\mathrm{B}^{\text {a }}$	C^{\wedge}				C	C^{\wedge}	C	O		k^{\wedge}			D^{\wedge}	D^{\wedge}	$\mathrm{D}^{\text {A }}$	D ${ }^{\text {A }}$	D^{\wedge}		
103	$0.01 \mu \mathrm{~F}$	S	B	D^	D^{\wedge}		B	B^{\wedge}	B^{\wedge}	C^{\wedge}				C	C^{\wedge}		C^{\wedge}					D^{\wedge}	$D^{\text {A }}$	D^{\wedge}	D^{\wedge}	D^{\wedge}		
123	0.012		B				B	B^{\wedge}	B^{\wedge}					C	C^{\prime}	${ }^{\wedge}$	$9)$					D^{\wedge}	D^{\wedge}	D^{\wedge}	D^{\wedge}	K^{\wedge}		
153	0.015		B				B	C^{\wedge}	C^{\wedge}					C	C.		${ }^{\circ}$					$\mathrm{D}^{\text {a }}$	$\mathrm{D}^{\text {A }}$	$\mathrm{D}^{\text {A }}$	D^{\wedge}	K^{\wedge}		
183	0.018		B				B	C^{\wedge}	C^{\wedge}					C	C^{\wedge}		C^{\wedge}					D^{\wedge}	D^{\wedge}	D^{\wedge}	Ds			
223	0.022		B				B	C^{\wedge}	C^{\wedge}					C	C^{\wedge}	C						D^{\wedge}	D^{\wedge}	D^{\wedge}	D^{\wedge}			
273	0.027		D				B	C^{\wedge}	c^{\wedge}						C^{\wedge}	C^{\wedge}						D^{\wedge}	$\mathrm{D}^{\text {A }}$	D^{\wedge}	D^{\wedge}			
333	0.033		D				B	G^{\wedge}	$\mathrm{G}^{\text {a }}$						C^{\wedge}	C						D^{\wedge}	$\mathrm{D}^{\text {a }}$	D^{\wedge}	D^{\wedge}			
393	0.039						B	G^{\wedge}	$\mathrm{G}^{\text {a }}$													D^{\wedge}	$D^{\text {A }}$	D^{\wedge}	D^{\wedge}			
473	0.047						B	G^{\wedge}	G^{\wedge}						D	D^{\wedge}						D^{\wedge}	D^{\wedge}	D^{\wedge}	$\mathrm{D}^{\text {A }}$			
563	0.056						B							C	$\mathrm{D}^{\text {a }}$	$\mathrm{D}^{\text {A }}$						D^{\wedge}	D^{\wedge}	D^{\wedge}	K^{\wedge}			
683	0.068						B															D^{\wedge}	$D^{\text {A }}$	D ${ }^{\text {A }}$	K^{\wedge}			
823	0.082						D															D	D^{\wedge}	D^{\wedge}	K^{\wedge}			
104	$0.1 \mu \mathrm{~F}$						D							C								D	D^{\wedge}	D^{\wedge}	K^{\wedge}			
124	0.12													C								D	$\mathrm{D}^{\text {A }}$	$\mathrm{D}^{\text {A }}$				
154	0.15													D								D	K^{\wedge}	K^{\wedge}				
184	0.18													D								D	K^{*}	K^{\wedge}				
224	0.22													D								D	$\mathrm{K}^{\text {A }}$	K^{\wedge}				
274	0.27																					D						
334	0.33																					D						
394	0.39																					D						
474	0.47																					K						
564	0.56																					K						
684	0.68																					K						
824	0.82																											
105	$1 \mu \mathrm{~F}$																											
(1) [1]: The seid items are made by NME (Noble Metal Electrode).																												
Size Unit: Inch (mm) 0402 (1005)							0603 (1608)			0805 (2012)				1206 (3216)				1210 (3225)				1808 (4520)			1812 (4532)			
$\mathrm{A}=0$.	60 ± 0.10	mm		-				-		Paper 4Kp/reel				-				-				-			-			
$\mathrm{B}=0$.	80 ± 0.10	mm		-				-		Paper 4Kp/reel				Paper 4Kp/reel				-				-			-			
$\mathrm{C}=0$.	.95*0.10	mm		-				-				-		Plastic 3Kp/reel				Plastic 3Kp/reel				-			-			
$\mathrm{D}=1$.	.25+ 0.10	mm		-				-		Plastic 3Kp/reel				Plastic 3Kp/reel				Plastic 3Kp/reel				Plastic 2Kp/reel			Plastic 1Kp/reel			
$\mathrm{G}=1$.	.60土0.20	mm		-				-		-				Plastic 2Kpireel				Plastic 2Kp/reel				-			-			
$\mathrm{S}=0$.	.80 ± 0.07	mm		-			Pape	4Kp	roel			-		-				-				-			-			
$\mathrm{N}=0$.	. $50 \pm \pm .05$	mm	Paper	or 10 K	Kp/ree			-				-		-				-				-			-			
$\mathrm{K}=2$.	00 ± 0.20	mm		-				-				-		-				Plastic 2Kp/reel				Plastic 1 Kp/reel			Plastic $1 \mathrm{Kp} /$ reel			
$\mathrm{M}=2$.	.50 ± 0.30	mm		-				-				-		-				Plastic 1Kp/reel				-			Plastic 1Kp/reel			

Dimensions Shown for reference purposes only. Specifications subject to change

For Email, phone or live chat, go to: www.te.com/help

Multi-Layer Ceramic Chip Capacitor

Type TYC Series

Capacitance \& Voltage (Y5V)

EA	Stes	0402					0603					006					1206					1210				1812			
Code	VDCW	63V	10 V	16 V	25	5 V	6.3 V	10 V	16 V	25 V	50V	6.3V	10 V	16 V	2 V	50 V	10 V	16 V	25 V	35 V	50 V	10 N	16 V	25 V	50 V	10 V	16 V	25	50 V
102	1000pF																												
122	1200																												
152	1500																												
182	1800																												
222	2200																												
272	2700																												
332	3300																												
392	3900																												
472	4700																												
562	5600																												
682	6800																												
822	8200																												
103	$0.01 \mu \mathrm{~F}$		N	N	N	N		S	S	S	S		A	A	A	A	B	B	B		B								
123	0.012		N	N	N	N		S	S	S	S		A	A	A	A	B	B	B		B								
153	0.015		N	N	N	N		S	S	S	S		A	A	A	A	B	B	B		B								
183	0.018		N	N	N	N		S	S	S	S		A	A	A	A	B	B	B		B								
223	0.022		N	N	N	N		S	S	S	S		A	A	A	A	B	B	B		B								
273	0.027		N	N	N	N		S	S	S	S		A	A	A	A	B	B	B		8								
333	0.033		N	N	N	N		S	S	S	S		A	A	A	A	B	B	B		B								
393	0.039		N	N	N			S	S	S	S		A	A	A	A	B	B	B										
473	0.047		N	N	N			S	S	S	S		A	A	A	A	B	B											
563	0.056		N	N				S	S	S	S		A	A	A	A	B		B										
683	0.068		N	N				S	S	S	S		A	A	A	A	B												
823	0.082		N	N				S	S	S	S		A	A	A	A		B			B								
104	$0.1 \mu \mathrm{~F}$		N	N				S	S	S	S		A	A	A	A	B	B	B		B	C	C	C	C	D	D	D	D
154	0.15		N					S	S	S	S		A	A	A		B	3	B		B	C	C	C	C	D	D	D	D
224	0.22		N					S	S	S	S		A	A	A			B	β		B	C	C	C	C	D	D	D	D
334	0.33	N	N					S	S	S			B	B	B	B		B	B		B	C	C	C	C	D	D	D	D
474	0.47	N	N					S	S	S			B	8	B				B		B	C	C	C	C	D	D	D	D
684	0.68							S					B		D			B	B		B	C	C	C	C	D	D	D	D
105	$1 \mu \mathrm{~F}$	N						S	S				R	B		D'		C	C		C	C	C	C	C	D	D	D	D
155	1.5												D	L			C	C	C			C	C	C		D	D	D	D
225	2.2						S						D	D			C	C	C		D^{\prime}	C	C	C		D	D	D	D
335	3.3												D				D	D	D			C	C	C		D	D	D	D
475	4.7						S										D	D	D'	D		C	C	D	G	D	D	D	D
685	6.8																D	D^{\prime}				C	C			D	D	D	D
106	$10 \mu \mathrm{~F}$												${ }^{\prime}$				D	D^{\prime}				D	D	G		D	D	D	
226	$22 \mu \mathrm{~F}$																G^{\prime}					K	K						
476	$47 \mu \mathrm{~F}$																					K							
(1) [DT: The thickness spec. of said tems is special need of . 2 mm for 0805 and $1.15 \pm 0.15 \mathrm{~mm}$ for 1206 . (2) [G]: The trickness spec. of said tems is special del on $1.60 \mathrm{t} ~ 3 / 0.1 \mathrm{~mm}$.																													
Size Unit: Inch (mm) 0402 (1005)								031	08)		0805 (2012)				1206 (3216)				1210 (3225)			1808 (4520)				1812 (4532)			
$\mathrm{A}=0$.	.60 ± 0.10	mm									Paper 4Kp/reel				-				1210, 32)			-				-			
$\mathrm{B}=0$.	.80 ± 0.10	mm		-							Paper $4 \mathrm{Kp} /$ reel				Paper 4Kp/reel				-			-				-			
$\mathrm{C}=0$.	.95 ± 0.10	mm		-				-				-			Plastic 3Kp/reel			P	Plastic 3Kpreel			-				-			
$\mathrm{D}=1$.	25 ± 0.10	mm		-				-			Plasti	tic 3Kpry	p/reel		Plastic 3Kp/reel				Plasic 3Kp/reel			Plastic 2Kp/reel				Plastic 1Kp/reel			
$\mathrm{G}=1$.	60 ± 0.20	mm		-				-				-			Plastic 2Kp/reel				Plastic 2Kphreel			-				-			
$\mathrm{S}=0$.	. $80 \pm \pm 0.07$	mm		-			Pape	er 4 K	Mp/reel			-			-				-			-				-			
$\mathrm{N}=0$.	50 ± 0.05	mm	Pap	er 10	Kp/r			-				-				-			-			-				-			
$\mathrm{K}=2$.	00 ± 0.20	mm		-				-				-				-			Plastic 2Kpheel			Plastic 1Kp/reel				Plastic 1Kp/reel			

Dimensions Shown for reference purposes only. Specifications subject to change

Type TYC Series

Capacitance \& Voltage (HI -Voltage Y5V)

SIZE CODE	L	W	A
0402	1.00 ± 0.05	0.50 ± 0.05	$0.25+0.05 /-0.10$
0603	1.60 ± 0.10	0.80 ± 0.07	0.40 ± 0.15
0805	2.00 ± 0.15	1.25 ± 0.10	0.50 ± 0.20
1206	3.20 ± 0.15	1.60 ± 0.15	0.60 ± 0.20
1210	3.20 ± 0.30	2.50 ± 0.20	0.75 ± 0.25
1808	4.50 ± 0.40	2.03 ± 0.25	0.75 ± 0.25
1812	4.50 ± 0.40	3.20 ± 0.30	0.75 ± 0.25

Dimensions Shown for reference purposes only. Specifications subject to change

For Email, phone or live chat, go to: www.te.com/help

Type TYC Series
Packaging (continued)

OA	OB	${ }^{\circ} \mathrm{C}$	W
178 ± 1 (7)	60.5 ± 1		9.0 ± 1
178ı1 (7)	80 ± 1		13.5 ± 1
250 ± 1 (10)	62.5 ± 1		9.0 ± 1
330 ± 1 (13)	100 ± 1		9.0 ± 1

How to Order

TYC	0201	A	101	B	C	T
Common Part	Size	Dielectric	Capacitres Code	Tolerance	Voltage	Packaging
TYC - Multhayer Ceramic Chip Capacitor	0201	$A=N P O$	101-100pF		$\mathrm{C}=6.3 \mathrm{~V}$	
				$\mathrm{B}=0.1 \mathrm{pF}$	$\mathrm{D}=10 \mathrm{~V}$	
				C $=0.25 \mathrm{pF}$	$\mathrm{E}=16 \mathrm{~V}$	
	0402	$\mathrm{B}=\mathrm{X} 7 \mathrm{R}$		$\mathrm{D}=0.5 \mathrm{pF}$	$\mathrm{F}=25 \mathrm{~V}$	
	0603		102-1000pF	$\mathrm{F}=+\mathrm{l} / \mathrm{H} \%$	$\mathrm{G}=50 \mathrm{~V}$	$T=\operatorname{Paper}\left(7^{*}\right)$
		$\mathrm{C}=\mathrm{X} 5 \mathrm{R}$		$\mathrm{G}=+1.2 \%$	$\mathrm{H}=100 \mathrm{~V}$	
	0805			$J=41.5 \%$	$\mathrm{J}=200 \mathrm{~V}$	$\mathrm{P}=$ Plastic (7^{*})
			103-0.014F	$\mathrm{K}=+1 \cdot 10 \%$	$\mathrm{L}=500 \mathrm{~V}$	P=Pastor
					$\mathrm{P}=1 \mathrm{KV}$	
	1206			$\mathrm{M}=+1.20 \%$	$\mathrm{Q}=2 \mathrm{KV}$	
				$Z=+80 \% / 20 \%$	$\mathrm{R}=3 \mathrm{KV}$	
					$\mathrm{S}=4 \mathrm{KV}$	

Dimensions Shown for reference purposes only. Specifications subject to change

For Email, phone or live chat, go to: www.te.com/help

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:
Click to view products by TE Connectivity manufacturer:
Other Similar products are found below :
D55342E07B523DR-T/R NCA1206X7R103K50TRPF NCA1206X7R104K16TRPF NIN-FB391JTRF NIN-FC2R7JTRF
NMC0402NPO220J50TRPF NMC0402X5R105K6.3TRPF NMC0402X5R224K6.3TRPF NMC0402X7R103J25TRPF
NMC0402X7R153K16TRPF NMC0603NPO330G50TRPF NMC0603NPO331F50TRPF NMC0603X5R475M6.3TRPF
NMC0805NPO270J50TRPF NMC0805NPO681F50TRPF NMC0805NPO820J50TRPF NMC0805X7R224K25TRPF
NMC1206X7R102K50TRPF NMC1210Y5V105Z50TRPLPF NMC-H0805X7R472K250TRPF NMC-L0402NPO7R0C50TRPF NMC-
L0603NPO2R2B50TRPF NMC-Q0402NPO8R2D200TRPF C1206C101J1GAC C1608C0G2A221J C1608X7R1E334K C2012C0G2A472J
2220J2K00562KXT KHC201E225M76N0T00 1812J2K00332KXT CCR06CG153FSV CDR14BP471CJUR CDR31BX103AKWR CDR33BX683AKUS CGA2B2C0G1H010C CGA2B2C0G1H040C CGA2B2C0G1H050C CGA2B2C0G1H060D CGA2B2C0G1H070D CGA2B2C0G1H120J CGA2B2C0G1H151J CGA2B2C0G1H1R5C CGA2B2C0G1H2R2C CGA2B2C0G1H390J CGA2B2C0G1H391J CGA2B2C0G1H3R3C CGA2B2C0G1H680J CGA2B2C0G1H6R8D CGA2B2C0G1H820J CGA2B2X8R1H152K

