- \boldsymbol{A} - TELEDYNE
 RELAYS

A Unit of Teledyne Electronics and Communications

HIGH-SHOCK, HIGH-PERFORMANCE TO-5 RELAY DPDT

SERIES DESIGNATION	RELAY TYPE
412 K	DPDT high-shock relay
422 K	DPDT high-shock magnetic-latching relay

INTERNAL CONSTRUCTION

412K ENVIRONMENTAL AND PHYSICAL SPECIFICATIONS		
Temperature (Ambient)	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Vibration (General Note 1)	30 g's to 3000 Hz	
Shock	(General Note 1)	75 g's, 6 msec , half-sine
	(General Note 4)	4000 g's, 0.5 msec . axial plane, half-sine 1000 g's, 0.5 msec side planes, half-sine
	50 g's	
Enclosure	Hermetically sealed	
Weight	0.09 oz. (2.55g) max.	

422K ENVIRONMENTAL AND PHYSICAL SPECIFICATIONS		
Temperature (Ambient)	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Vibration (General Note 1)	30 g 's to 3000 Hz	
Shock	(General Note 1)	$100 \mathrm{g's}, 6$ msec, half-sine
	(General Note 4)	2100 g's, 0.5 msec. axial plane, half-sine 750 g's, 0.5 msec side planes, half-sine
	50 g's	
Enclosure	Hermetically sealed	
Weight	0.10 oz. (2.84g) max.	

DESCRIPTION

The TO- 5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for highdensity PC board mounting, its small size and low coil power dissipation make the TO-5 relay one of the most versatile subminiature relays available.

The K Series high-shock TO-5 relays are designed to withstand shock levels up to 4000 g's, .5 millisecond duration. Special material selection and construction details provide assurance that critical elements of the relay structure and mechanism will not be permanently displaced or damaged as a result of extremely high g level shocks.

Typical applications:

- Commercial avionics aircraft control
- Commercial aircraft control systems
- Transportation systems (rail/truck)

By virtue of their inherently low intercontact capacitance and contact circuit losses, the K Series relays have proven to be excellent subminiature RF switches for applications with frequency ranges well into the UHF spectrum. A typical RF application for the TO-5 relay is in handheld radio transceivers, wherein the combined features of good RF performance, small size, low coil power dissipation and high reliability make it a preferred method of T-R switching (see Figure 1 and 2).

PRINCIPLE OF OPERATION 422K

Energizing Coil B produces a magnetic field opposing the holding flux of the permanent magnet in Circuit B. As this net holding force decreases, the attractive force in the air gap of circuit A, which also results from the flux of the permanent magnet, becomes great enough to break the armature free of Core B, and snap it into a closed position against Core A. The armature then remains in this position upon removal of power from Coil B, but will snap
 back to position B upon energizing Coil A. Since operation depends upon cancellation of a magnetic field, it is necessary to apply the correct polarity to the relay coils as indicated on the relay schematic.

When latching relays are installed in equipment, the latch and reset coils should not be pulsed simultaneously. Coils should not be pulsed with less than rated coil voltage and the pulse width should be a minimum of three times the specified operate time of the relay. If these conditions are not followed it is possible for the relay to be in the magnetically neutral position.

SERIES 412K/422K
GENERAL ELECTRICAL SPECIFICATIONS ($-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ unless otherwise noted) (Notes 2 \& 3)

Contact Arrangement	2 Form C (DPDT)
Rated Duty	Continuous
Contact Resistance	$\left.\begin{array}{l}\text { 412K: } 0.1 \text { ohms max. before life; } 0.2 \text { ohms max. after life at } 1 \mathrm{~A} / 28 \mathrm{Vdc} \\ \text { 422K: } 0.15 \text { ohms max. before life; } .225 \text { ohms max after life at } 1 \mathrm{~A} / 28 \mathrm{Vdc}\end{array}\right\}$ measured $1 / 8^{\prime \prime}$ below header
Contact Load Ratings (DC) (See Fig. 3 for other DC resistive voltage/current ratings)	Resistive: $1 \mathrm{Amp} / 28 \mathrm{Vdc}$ Inductive: $200 \mathrm{~mA} / 28 \mathrm{Vdc}(320 \mathrm{mH})$ Lamp: $100 \mathrm{~mA} / 28 \mathrm{Vdc}$ Low Level: 10 to $50 \mu \mathrm{~A} / 10$ to 50 mV
Contact Load Ratings (AC)	Resistive: $250 \mathrm{~mA} / 115 \mathrm{Vac}, 60$ and 400 Hz (Case not grounded) $100 \mathrm{~mA} / 115 \mathrm{Vac}, 60$ and 400 Hz (Case grounded)
Contact Life Ratings (Note 6)	10,000,000 cycles (typical) at low level $1,000,000$ cycles (typical) at $0.5 \mathrm{~A} / 28 \mathrm{Vdc}$ resistive 100,000 cycles min. at all other loads specified above
Contact Overload Rating	2A/28Vdc Resistive (100 cycles min.)
Contact Carry Rating	Contact factory
Coil Operating Power	
Operate Time	412K: 2.0 msec max. 422K: 1.5 msec max.
Release Time	1.5 msec max. (412K only)
Contact Bounce	1.5 msec max.
Intercontact Capacitance	0.4 pf typical
Insulation Resistance	10,000 megohms min. between mutually isolated terminals
Dielectric Strength	Atmospheric pressure: $500 \mathrm{Vrms} / 60 \mathrm{~Hz} \times 70,000 \mathrm{ft}$.: $125 \mathrm{Vrms} / 60 \mathrm{~Hz}$
Minimum Operate Pulse	4.5 msec width @ rated voltage (422K only)

412K SERIES RELAY

DETAILED ELECTRICAL SPECIFICATIONS ($-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ unless otherwise noted) (Note 2)

	BASE PA NUMBER		412K-5	412K-6	412K-9	412K-12	412K-18	412K-26
Coil Voltage (Vdc)	Nom.		5.0	6.0	9.0	12.0	18.0	26.5
	Max.		5.8	8.0	12.0	16.0	24.0	32.0
Coil Resistance (Ohms $\pm 10 \%$ @ $25^{\circ} \mathrm{C}$)			50	80	160	300	600	1350
Pick-up Voltage (Vdc, Max.)			4.3	5.2	7.6	10.0	14.3	21.0
Drop-out Voltage (Vdc)		Min.	0.14	0.18	0.35	0.41	0.59	0.89
		Max.	2.5	3.2	4.9	6.5	10.0	13.0

422K SERIES RELAY

DETAILED ELECTRICAL SPECIFICATIONS ($-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ unless otherwise noted) (Note 2)

	BASE PART NUMBERS	422K-5	422K-6	422K-9	422K-12	422K-18	422K-26
Coil Voltage (Vdc)	Nom.	5.0	6.0	9.0	12.0	18.0	26.5
	Max.	5.8	8.0	12.0	16.0	24.0	32.0
Coil Resistance (Ohms $\pm 10 \%$ @ $25^{\circ} \mathrm{C}$)		61	120	280	500	1130	2000
Set \& Reset Voltage (Vdc, Max.)		3.5	4.5	6.8	9.0	13.5	18.0

OUTLINE DIMENSIONS

TERMINAL LOCATIONS AND PIN NUMBERS (REF. ONLY) (Viewed from Terminals)

\angle $-.017(.43)_{ \pm .001}^{+.002(.05)}(.03) \mathrm{DIA}$.

422K
dIMENSIONS ARE SHOWN IN INCHES (MILLIMETERS)

SCHEMATIC DIAGRAMS

SCHEMATICS ARE VIEWED FROM TERMINALS

GENERAL NOTES

1. Relay contacts will exhibit no chatter in excess of $10 \mu \mathrm{sec}$ or transfer in excess of $1 \mu \mathrm{sec}$.
2. "Typical" characteristics are based on available data and are best estimates. No on-going verification tests are performed.
3. Unless otherwise specified, parameters are initial values.
4. Survival only - contact chatter may occur.

Appendix A: Spacer Pads

Pad designation and bottom view dimensions

Appendix A: Spreader Pads

Pad designation and
bottom view dimensions

TO-5 Relays:

ER411T, ER412, ER412T, ER420, ER421, ER422, ER431T, ER432, ER432T, 712, 712TN, 400H, 400K, 400V, RF300, RF303, RF341, RF312, RF310, RF313, RF320, RF323

Centigrid ${ }^{\circledR}$ Relays:
RF180, ER116C, 122C, ER136C

TO-5 Relays:
ER411, ER431, RF311, RF331

Centigrid ${ }^{\circledR}$ Relays:

RF100, RF103, ER114, ER134, 172

NOTES

1. Terminal views shown
2. Dimensions are in inches (mm)
3. Tolerances: $\pm .010(\pm .25)$ unless otherwise specified
4. Ground pin positions are within $.015(0.38)$ dia. of true position
5. Ground pin head dia., $0.035(0.89)$ ref: height $0.010(0.25)$ ref.
6. Lead dia. 0.017 (0.43) nom.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Frequency / RF Relays category:
Click to view products by Teledyne manufacturer:
Other Similar products are found below :
134M4-26 134YZM4-12 136CM9-5 ER136CZM9-5B ER412DYM-12B ARA200A4HM01 3SBH1020A2 400-192-10 412TM-18 ARN12A12 422DM-26 411T-12 LB363-100-5 D3210 ARN10A12 ER116C-26A ER114ZM4-5A/SQ ER114ZM4-12A/SQ ER412-26B/Q ER134DYZ-12A 36 AT5 25-200ZA 36 T5 48-000ZA 27 T5 24-200ZA 27 T5 26-200ZA 27 T5 28-200ZA ER411DM4-12A/SQ 732-5/Q R591362640 R591723400 R595867120 HF3 02 R594873417 R595863115 IM43TS IMB03CTS 732TN-26 1-1462038-1 IMB06CTS 1462051-5 1462050-1 1462050-2 G6K-2F-RF-S-DC5 ARE10A4H ARE1024 ARS1012 ARJ22A12 ARS104H FTR-B3GA4.5Z-B10 FTR-B3CA024Z 1-1462039-7

