

10A, 60Vdc Optically Isolated, Short-Circuit Protected DC Solid-State Relay

Part Number*	Relay Description
KD00CK	5A Solid-State Relay (SSR)
KD02CK	5A SSR with Switch Status
KD20CK	5A SSR with Short-Circuit Protection
KD22CK	5A SSR with Short-Circuit Protection and Switch Status
LD00CM	10A Solid-State Relay
LD02CM	10A SSR with Switch Status
LD20CM	10A SSR with Short-Circuit Protection
LD22CM	10A SSR with Short-Circuit Protection and Switch Status

^{*} The Y suffix denotes parameters tested to MIL-PRF-28750 specifications. The W suffix denotes parameters tested to Teledyne specifications.

ELECTRICAL SPECIFICATIONS

(-55°C TO +105°C UNLESS OTHERWISE NOTED)

INPUT (CONTROL) SPECIFICATION

When used in 2 terminal configuration (TTL or direct control) (See Fig. 1)

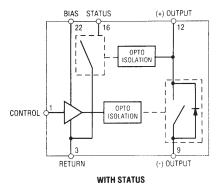
Input Current @ $V_{BIAS} = 5 \text{ Vdc (See Fig. 2)}$				mAdc	
Turn-Off Voltage (Guaranteed Off)			1.5	Vdc	
Turn-On Voltage (Guaranteed On)	3.8			Vdc	
Reverse Voltage Protection			-32	Vdc	
Input Supply Range (See Note 1)	3.8		32	Vdc	
INPUT (CONTROL) SPECIFICATION When used in 3 terminal configuration (CMOS or open collector TTL) (See Fig. 1) Min Typ Max Units					
(CMOS or open collector TTL) (See Fig. 1) Control Current	i, iviiii	Тур	IVIGA	Office	
Control Carrent					
			250	μAdc	
$\frac{V_{CONTROL}}{V_{CONTROL}} = 5 \text{ Vdc}$ $\frac{V_{CONTROL}}{V_{CONTROL}} = 18 \text{ Vdc}$			250 1	μAdc mAdc	
$V_{CONTROL} = 5 \text{ Vdc}$	0			•	
$V_{CONTROL} = 5 \text{ Vdc}$ $V_{CONTROL} = 18 \text{ Vdc}$	0 3.8		1	mAdc	
$\frac{V_{CONTROL}}{V_{CONTROL}} = 5 \text{ Vdc}$ $V_{CONTROL} = 18 \text{ Vdc}$ Control Voltage Range			1	mAdc Vdc	
$\frac{V_{CONTROL}}{V_{CONTROL}} = 5 \text{ Vdc}$ $\frac{V_{CONTROL}}{V_{CONTROL}} = 18 \text{ Vdc}$ Control Voltage Range Bias Supply Voltage (See Note 1)			1 18 32	mAdc Vdc Vdc	
$\frac{V_{CONTROL}}{V_{CONTROL}} = 5 \text{ Vdc}$ $\frac{V_{CONTROL}}{V_{CONTROL}} = 18 \text{ Vdc}$ Control Voltage Range Bias Supply Voltage (See Note 1) Bias Supply Current	3.8		1 18 32	mAdc Vdc Vdc mAdc	

FEATURES

- Available with short-circuit/current overload protection
- · Available with switch status output
- · TTL and CMOS compatible control
- · Low ON resistance power FET output
- · Fast switching speed
- Meets 28 Vdc system requirements of MIL-STD-704
- · Optical isolation
- · Low profile hermetic package
- Built and tested to the requirements of MIL-PRF-28750

DESCRIPTION

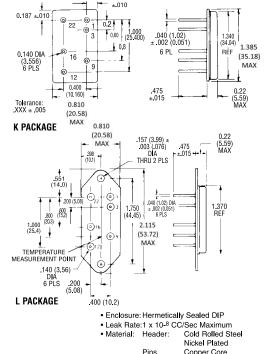
The Series KD and LD solid-state relays are screened utilizing MIL-PRF-28750 test methods and are packaged in low profile hermetically sealed cases. These relays are constructed with state-of-theart solid state techniques and feature fully floating power FET output technology. This allows the load to be connected to either output terminal and provides a low ON resistance. The input (control) and output are optically isolated to protect input logic circuits from output transients. Available options include short circuit and current overload protection, which provides complete protection for both the relay and system wiring. This feature not only provides protection should a short or overload occur while the relay is on, but will also provide protection should the relay be switched into a short. The second option is a status output line. Switch status returns the true status of the output switch and is optically isolated from the load. It provides status indication independent of the control circuit of the relay. The status line provides a logic 0 (low) when the relay output is off with load voltage and continuity present, and a logic 1 (high) when the output is on.


Max Units

Min Typ

	ур М	lax	Units
Continuous Load Current (See Fig. 3)			
KD and LD series without heat sink		5	Adc
LD series with heat sink		10	Adc
Leakage Current @ V _{LOAD} =60Vdc			
KD00CK, KD20CK	1	00	μΑ
LD00CM, LD20CM	1	00	μΑ
KD02CK, KD22CK		2	mΑ
LD02CM, LD22CM		2	mA
Output Voltage Drop			
KD00CK, KD02CK		60	Vdc
KD20CK, KD22CK		70	Vdc
LD00CM, LD02CM @10A		1.2	Vdc
LD20CM, LD22CM @10A	-	1.4	Vdc
Continuous Operating Load Voltage		60	Vdc
Transient Blocking Voltage @25°C		80	Vdc
ON Resistance, $I_{LOAD} = 100 \text{ mA}$, $T_{J} = 25^{\circ}\text{C}$, (See	Note 3)	
KD00CK, KD02CK	.(075	Ohm
LD00CM, LD20CM	.(075	Ohm
KD20CK, KD22CK		100	Ohm
LD20CM, LD22CM		100	Ohm
Turn-On Time (See Fig. 5)		5	ms
Turn-Off Time (See Fig. 5)		2	ms
Electrical System Spike @25°C ±	600		Vpk
Output Capacitance at 25 Vdc, 100 KHz	1	600	pF
Isolation (Input to Output)			
KD00CK, KD20CK		10	рF
LD00CM, LD20CM		10	pF
KD02CK, KD22CK		15	pF
LD02CM, LD22CM		15	pF
Dielectric Strength 1000			Vac
			Ohm
Insulation Resistance @ 500 Vdc 109		30	°C
Insulation Resistance @ 500 Vdc 10 ⁹ Output Junction Temperature @ I _{LOAD} = I _{max rated}			
Output Junction Temperature		50	°C
Output Junction Temperature @ I _{LOAD} = I _{max rated}	1	50 30	°C/W

BLOCK DIAGRAM


NO STATUS

(-) OUTPUT

MECHANICAL SPECIFICATION

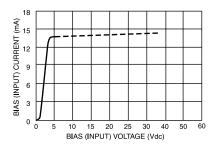
RETURN

DIMENSIONS ARE SHOWN IN INCHES (MILLIMETERS)

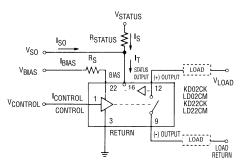
Can:
• Weight: 20 grams
• Tolerance: .XXX ± .005

Copper Core Grade A Nickel

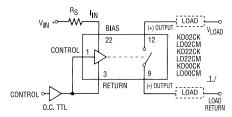
ENVIRONMENTAL SPECIFICATIONS

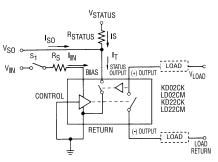

		Min	Тур	Max	Units
Temperatu	ire Range				
С	perating	-55		+105	°C
S	torage	-55		+125	°C
Vibration 1	00 g	10		3000	Hz
Constant A	Acceleration			5000	g
Shock 0	.5 ms pulse			1500	g

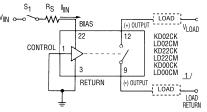
STATUS OUTPUT TRUTH TABLE (KD02CK, LD02CM, KD22CK, LD22CM)

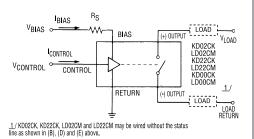

Control Voltage	Relay Output	State Status Output Level
High	Off	Low $(V_{SO} \le 0.4 \text{ Vdc})$
Low	On	$High (V_{SO} = V_{STATUS})$

STATUS OUTPUT SPECIFICATIONS (KD02CK, LD02CM, KD22CK, LD22CM)

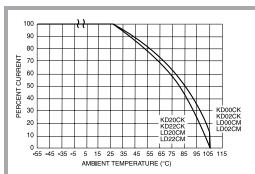

	Min	Тур	Max	Units
Status Supply Voltage			30	Vdc
Status Leakage Current				
@16Vdc			10	μAdc
@30Vdc			100	μAdc
Status (sink) Current (V _{SO} < 0.4 Vdc)			600	μAdc
Status Turn-On Time (See Fig. 6)			3.5	ms
Status Turn-Off Time (See Fig. 6)			8.0	ms


BIAS (INPUT) CURRENT VS BIAS (INPUT) VOLTAGE FIGURE 2 (See Note 1)

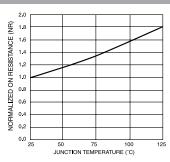

(A) 3 TERMINAL INPUT WITH STATUS (See Note 5)


(B) 2 TERMINAL INPUT (OPEN COLLECTOR TTL DRIVE)

(C) 2 TERMINAL INPUT (DIRECT DRIVE) WITH STATUS

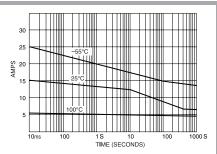


(D) 2 TERMINAL INPUT (DIRECT DRIVE)

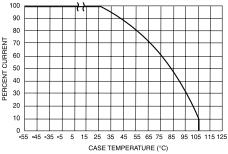


(E) 3 TERMINAL INPUT WITHOUT STATUS

WIRING CONFIGURATIONS FIGURE 1 (See Note 1)

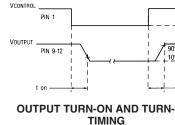


LOAD CURRENT DERATING CURVE FOR **KD/LD SERIES WITHOUT A HEAT SINK**



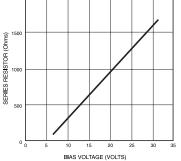
NORMALIZED ON RESISTANCE VS **JUNCTION TEMPERATURE**

FIGURE 4 (See Note 3)


OVERLOAD CURRENT VS TIME TO TRIP (TYPICAL) KD20CK, KD22CK, LD20CM, LD22CM FIGURE 7

LOAD CURRENT DERATING CURVE FOR LD SERIES

(B)


THERMAL DERATING CURVES FIGURE 3

PINS 9-12

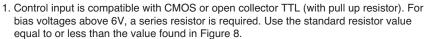
OUTPUT TURN-ON AND TURN-OFF

FIGURE 5

SERIES LIMIT BIAS RESISTOR VS

HIGH

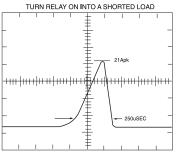
10% ON

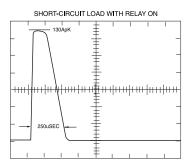

BIAS VOLTAGE FIGURE 8 (See Note 1)

STATUS TURN-ON AND TURN-OFF

NOTES:

FIGURE 6


- 2. The rated input voltage is 5V for all tests unless otherwise specified.
- 3. To calculate the maximum ON resistance for a given junction temperature, find the normalized ON resistance factor (NR) from Figure 4. Calculate the new ON resistance as follows:


$$\begin{aligned} R_{(ON)} &= NR \cdot R_{ON} @ 25^{\circ}C \\ & (KD00CK, LD00CM, KD02CK, LD02CM) \\ R_{(ON)} &= & NR(R_{ON} @ +25^{\circ}C) + .025 \text{ ohm} \\ & (KD20CK, LD20CM, KD22CK, LD22CM) \end{aligned}$$

- 4. Overload testing to the requirements of MIL-PRF-28750 is constrained to the limits imposed by the short circuit protection characteristics as defined in this specification. System series inductance for "shorted-load" mode of operation should be 50 μ H. Maximum repetition rate into a shorted load should not exceed 10 Hz.
- 5. A status pull up resistor is required for proper operation of the status output. Determine the current (Iso) required by the status interface. Calculate the current (Is) through the status resistor such that the sink current through the status output is 0.6 mA. Select the status resistor such that it does not allow more than 0.6 mA to flow through the status output.

$$R_{STATUS} = \frac{V_{STATUS} - 0.4V}{Iso}$$

6. Inductive loads should be diode suppressed. Input transitions should be ≤1 ms duration and the input drive should be a bounceless contact type.

TYPICAL TRIP CURRENT CHARACTERISTICS FOR SHORT **CIRCUIT CONDITIONS**

FIGURE 9

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Solid State Relays - PCB Mount category:

Click to view products by Teledyne manufacturer:

Other Similar products are found below:

M86F-2W M90F-2Y G2-1A07-ST G2-1A07-TT G2-1B02-TT G2-DA06-ST 923812OCAS PLA134S DS11-1005 AQH3213J AQV212J AQY412EHAJ EFR1200480A150 901-7 LCA220 LCB110S 1618400-5 SR75-1ST AQH2213AJ AQV112KLJ AQV212AJ AQV212SXJ AQV238AD01 AQW414TS AQY221N2SYD01 AQY221R2VJ AQY275AXJ AQY414SXE01 G2-1A02-ST G2-1A03-ST G2-1A03-TT G2-1A05-ST G2-1A06-TT G2-1B01-ST G2-1B01-TT G2-1B02-ST G2-DA03-ST G2-DA03-TT G2-DA06-TT CPC1333GR 3-1617776-2 CTA2425 TLP3131(F) LBA110S LBB110S LCA110LSTR LCB126S WPPM-0626D WPPM-3526D