
Electromechanical Relays Selection Guide

4PST

Environmental

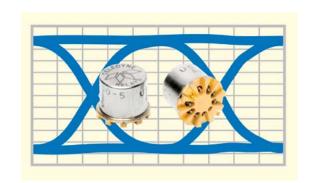
Switching Solutions

Teledyne Relays has been the world's innovative leader in the manufacture of ultraminiature, hermetically sealed, electromechanical and solid-state switching products for more than 50 years. The company's comprehensive product line meets a wide range of requirements for defense and aerospace, industrial, commercial, medical and RF & wireless applications.

Business Focus

- MIL QPL & COTS Solid-State Relays
- MIL QPL & COTS Electromechanical Relays
- HiRel (Space) Electromechanical Relays
- RF & Microwave Relays & Coaxial Switches
- Industrial Solid-State Relays
- Switching Matrices

Markets


- Commercial & Military Aviation
- Defense & Aerospace
- Telecom/Communications (Wireless)
- Instrumentation & Test
- Industrial Power & Motion Control
- Medical Applications

Product Assurance

Under an aggressive Total Quality Management (TQM) program, Teledyne Relays has embraced a "continuous improvement" culture. With recognized certifications such as Boeing D6-82479, MIL-STD-790, AS/EN/ JISQ9100:2009 (Rev C) and ISO 9001:2008 Teledyne Relays has become a primary supplier of switching solutions with the highest quality and reliability to industry leaders around the world.

Technical Service & Customer Support

Teledyne Relays provides easy access to technical service and customer support. Our websites make it easy to find technical information, buy products and even get e-mail responses within 24 hours. Switching solutions are only a mouse click away at www.teledynerelays.com or at teledyne-europe.com. Information about coax switches is available at www.teledynecoax.com.

Teledyne Relays offer superior signal integrity up to 12 Gbps. See the RF relays section in our website.

Table of Contents

	RF RELAYS	
Series	Description	Page
LB/GLB/SGLB363	LoopBack Relay with Built-in AC Bypass Capacitors	4-5
RF/GRF/SGRF/SRF300 RF/GRF/SGRF/SRF303		6
RF/GRF/SGRF312 RF/GRF/SGRF332	High Repeatability, Broadband TO-5 Relays, Non-Latching DPDT	7
RF/GRF/SGRF100 RF/GRF/SGRF103	High Repeatability, Broadband Centigrid® Relays, Non-Latching DPDT	8
GRF172	Surface-Mount Centigrid® RF Relays, Non-Latching DPDT	8
RF/GRF311 RF/GRF331	High Repeatability, Broadband TO-5 Relays, Non-Latching SPDT	9
RF341/GRF341	Broadband TO-5 RF Relays, Magnetic-Latching SPDT	9
RF255/257	High Power DPDT Half-Size Crystal Can Relay	10
GRF342	Surface-Mount TO-5 RF Relays, Magnetic-Latching DPDT	10
RF180/GRF180	Broadband RF Relays, Magnetic-Latching DPDT	11
RF/GRF/SGRF424	Surface-Mount 4PST TO-5 Relay	12
RF310/RF313	High Repeatability TO-5 Relays, Normally Closed, Bypass	13
RF320/RF323	High Repeatability TO-5 Relays, Normally Open, Bypass	13
A150/GA150	Broadband Attenuator RF Relay	14
A152/GA152	Broadband Attenuator RF Relay	14
	COMMERCIAL RELAYS	
122C	Centigrid® Relays (CMOS Compatible), Magnetic-Latching DPDT	15
172	Centigrid® Relays, Non-Latching DPDT	15
712	TO-5 Relays, Non-Latching DPDT	16
722	TO-5 Relays, Magnetic-Latching DPDT	14
732	TO-5 Relays, Non-Latching Sensitive DPDT	17
	COMMERCIAL SURFACE-MOUNT RELAYS	
S114	Surface-Mount Centigrid® Relays, Non-Latching DPDT	18
S134	Surface-Mount Centigrid® Relays, Non-Latching Sensitive DPDT	18
S172	Surface-Mount Centigrid® Relays, Non-Latching DPDT	19
S422	Surface-Mount TO-5 Relays, Magnetic-Latching DPDT	19

See specific series for additional features and options

Table of Contents

	ESTABLISHED RELIABILITY RELAYS	
Series	Description	Page
ER114	Centigrid® Relays, Non-Latching DPDT	20
ER116C	Centigrid® Relays (CMOS Compatible), Non-Latching DPDT	20
ER134	Centigrid® Relays, Non-Latching Sensitive DPDT	21
ER136C	Centigrid® Relays (CMOS Compatible), Non-Latching Sensitive DPDT	21
ER411	TO-5 Relays, Non-Latching SPDT	22
ER431	TO-5 Relays, Non-Latching Sensitive SPDT	20
ER412	TO-5 Relays, Non-Latching DPDT	23
ER432	TO-5 Relays, Non-Latching Sensitive DPDT	23
255/257	Half-Size Crystal Can, Magnetic-Latching DPDT	24
ER421	TO-5 Relays, Magnetic-Latching SPDT	24
ER420	TO-5 Relays, Magnetic-Latching DPDT	25
ER422	TO-5 Relays, Magnetic-Latching DPDT	25
	MILITARY QUALIFIED (JAN) RELAYS	
J114	Centigrid® Relays, Non-Latching DPDT	26
J116C	Centigrid® Relays (CMOS Compatible), Non-Latching DPDT	26
J134	Centigrid® Relays, Non-Latching Sensitive DPDT	27
J136C	Centigrid® Relays (CMOS Compatible), Non-Latching Sensitive DPDT	27
J411	TO-5 Relays, Non-Latching SPDT	28
J431	TO-5 Relays, Non-Latching Sensitive SPDT	28
J412	TO-5 Relays, Non-Latching DPDT	29
J432	TO-5 Relays, Non-Latching Sensitive DPDT	29
J255	Half-Size Crystal Can, Magnetic-Latching DPDT	30
J421	TO-5 Relays, Magnetic-Latching SPDT	30
J420	TO-5 Relays, Magnetic-Latching DPDT	31
J422	TO-5 Relays, Magnetic-Latching DPDT	31

See specific series for additional features and options

Continued on next page

© 2013 TELEDYNE RELAYS

Table of Contents

	HIGH-PERFORMANCE RELAYS	
	Description	Page
412H/432H	High-Temperature (200°C) TO-5 Relays, Non-Latching DPDT	32
422H	High-Temperature (200°C) TO-5 Relays, Magnetic-Latching DPDT	32
412K	High-Shock TO-5 Relays, Non-Latching DPDT	33
422K	High-Shock TO-5 Relays, Magnetic-Latching DPDT	33
412V/432V	High-Vibration TO-5 Relays, Non-Latching DPDT	34
	APPENDIX	
	Signal Integrity Eye Diagrams	35-44
	RoHS and Reach Certificate of Compliance	45
	Part Numbering System	46-47
	Handling Guidelines	48
	Relay Operation	49
	Spacer Pad Options	50
	Spreader Pad Options	51
	Ground Pin Options	52
	Established Reliability Program	53-54
	Teledyne Relays HI-REL Program	55

GRF Option TO-5 Relays with straight butt pins for surfacemount applications * RF Relays Only

SGRF Option TO-5 Relays with Gull-Wing (J-Lead) pins for surface-mount applications * RF Relays Only

GRF Option Centigrid® Relays with straight butt pins for surface-mount applications * RF Relays Only

SGRF Option TO-5 Relays with Gull-Wing (J-Lead) pins for surface-mount applications * RF Relays Only

SRF Option Relays with Gull-Wing (J-Lead) pins for surface-mount applications * RF Relays Only

/S Option Relays with 0.187" trimmed leads See Appendix: Part Numbering System

Spacer Pad Option Relays with polyester film pad to space between PCB and Relay Header See Appendix: Spacer Pad Options

Spreader Pad Option Relays with Diallyl Phthalate pad to spread pins See Appendix: Spreader Pad Options

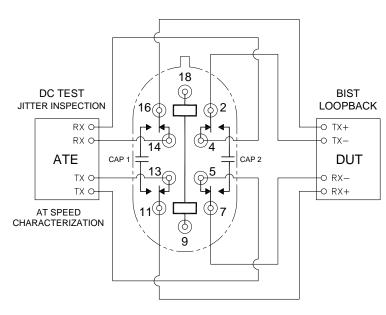
/Q, /R Option Relays with solder dipped leads. Pb/Sn (60/40) or RoHS solder available See Appendix: Part Numbering System

See specific series for additional features and options

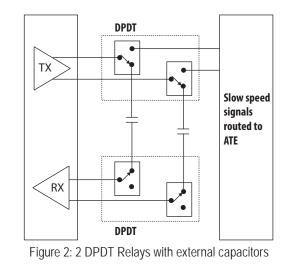
LOOPBACK RELAYS

Series LB363/GLB363/SGLB363 Electromechanical Relays

The LoopBack Series relays combines to DPDT electromechanical relays in one package that includes an internal bypass path for Automated Test Equipment (ATE) applications. The LoopBack combines the technology of two Teledyne SGRF303 Series relays and eliminates the need for external PCB traces in loop back appliations. This innovation results in superior signal integrity and RF performance while taking minimal board space. The internal structure of the LoopBack relays reduces the number of discontinuities and shortens the signal path during loop back testing, providing lower insertion loss and higher signal integrity performance than two SGRF303 Series relays. This LoopBack Relay is available with surface mount ground shield and J-lead configuration to provide improved high data rate and high frequency performance and ease of surface mount attachment.


• Excellent Signal integrity up to 16Gbps

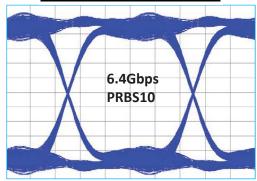
- Hermetically Sealed
- High Resistance to ESD
- Metal Enclosure for EMI shielding
- High Repeatability
- Broader bandwidth
- Through-hole or surface-mount
- configurations


Relay Type
Two DPDT Relays
Capacitor Value
100 = 100nF
010 = 10nF
Mounting
LB = Thru-hole
GLB = Surface-Mount
Ground Shield (Stub)
SGLB = Surface-Mount
Ground Shield(J-Lead)
Temperature
Storage: -65°C to +125°C
Operating: -55°C to +85°C

Part Number		and the second	
	LB363	GLB363	SGLB363
Voltage (Vdc)	5,12	5,12	5,12
Coil Resistance (Ω)	56, 400	56, 400	56, 400
Frequency (GHz)	DC-6	DC-6	DC-6

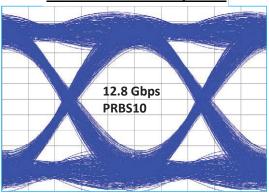
	AC Bypass Path (Thru-CAP)			Through Path				C Bypas (Thru-C		Through Path			
Single-Ended Bit Rate @ 12 Gbps		Single-Ended Bit Rate @ 12 Gbps				le-Ende e @ 16 G			•	gle-Ended e @ 16 Gbps Eye Jitter Width p-p (ps) (ps) 49.8 11.33			
	Eye Height (mV)	Eye Width (ps)	Jitter p-p (ps)	Eye Height (mV)	Eye Width (ps)	Jitter p-p (ps)	Eye Height (mV)	Eye Width (ps)	Jitter p-p (ps)	Eye Height (mV)	Width	р-р	
LB363	289	75	8.53	385	70.5	10.67	170	46.0	16.44	262	49.8	11.33	
GLB363	318	74.1	8.8	398	73.1	10.4	157	49.4	14.22	251	49.2	10.67	
SGLB363	329	74.2	7.2	395	73	11.2	173	48.3	12.67	288	47.9	11.56	

(Contacts shown in De-Energized position) Figure 1: Single LoopBack Relay

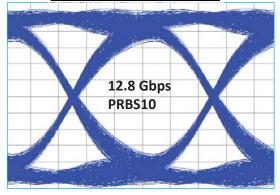


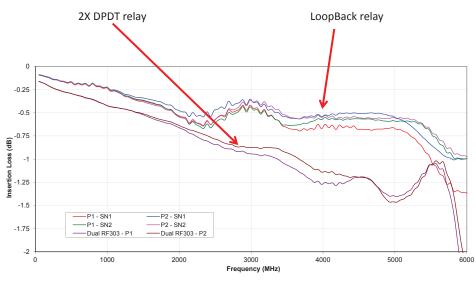
Schematics as viewed from terminals

Ľ


LOOPBACK RELAYS

Dual SGRF303 Loopback




Single LB363 Loopback 6.4Gbps PRBS10

Dual SGRF303 Loopback

Single LB363 Loopback

A single LB363 has better Insertion Loss performance than 2 SGRF303 relays in a LoopBack application

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Series RF300/RF303 Electromechanical Relays

The RF300 and RF303 TO-5 relays are designed to provide improved RF signal repeatability over the frequency range. The RF300 Series is offered with a standard or sensitive coil.

The GRF300 and GRF303 TO-5 relays feature a unique ground shield that isolates and shields each lead to ensure excellent contact-to-contact and pole-to-pole isolation. This ground shield provides a ground interface that results in improved high-frequency performance as well as parametric repeatability.

The SGRF300 and SGRF303 TO-5 relays extend performance advantages over similar RF devices that simply offer formed leads for surface mounting.

- Excellent Signal integrity up to 18Gbps+
- Hermetically Sealed
- High Resistance to ESD
- Metal Enclosure for EMI shielding
- High Repeatability
- Broader bandwidth
- Through-hole or surface-mount configurations

Relay Type Nominal Coil Typical RF Performance DPDT Non-Latching Isolation (dB) Part No. Voltage Resistance Frequency VSWR Insertion Loss Pole to Pole Across Contacts (GHz) Coil Type (Vdc) **(**Ω**)** (max) (dB) (max) (min) (min) 300 = Standard Coil 5 DC-1 25 0.2 50 1.1:1 30 **RF300** 303 = Sensitive Coil **RF300D** 12 390 1-2 1.1:1 25 20 0.3 **Diode Option** 5 100 2-3 1.2:1 25 20 0.4 D = Internal diode for coil **RF303** transient suppression RF303D 12 850 DD = Internal diode for coil 5 50 DC-1 1.1 : 1 40 30 0.2 **GRF300** transient suppression and GRF300D 12 390 1-3 1.1 : 1 40 30 0.2 polarity reversal protection Mounting 5 100 3-4 1.3 : 1 30 30 0.6 **GRF303** RF = Thru-hole GRF303D 12 850 4-6 1.6:1 25 25 1.0 GRF = Surface-Mount (Stub) 5 50 DC-1 1.2:1 40 30 0.2 SGRF = Surface-Mount (J-Lead) SGRF300 SRF = Surface Mount (J-Lead) SGRF300D 12 390 1-3 1.2:1 40 30 0.4 Temperature 5 100 3-4 1.2:1 20 25 0.8 **SGRF303** Storage: -65°C to +125°C SGRF303D 12 850 4-6 1.8:1 10 20 1.0 Operating: -55°C to +85°C 5 50 DC-1 1.1:1 25 25 0.5 SRF300 SRF300D 12 1-3 25 25 390 1.5:1 0.5 5 100 3-4 2.0:1 15 15 3.0 SRF303

For RF300DD & RF303DD values please see Datasheet

10

4.0

SRF303D

12

850

303

4-6

2.5:1

10

300D 303D

300DD 303DD

Series RF312/RF332 Electromechanical Relays

The RF312/RF332 is designed to improve upon the RF300/RF303 relay's high frequency performance. The RF312/RF332 offers monotonic insertion loss over to 8GHz. This improvement in RF insertion loss over the frequency range, makes these relays highly suitable for use in attenuator and other RF circuits. The RF312/RF332 Series is offered with a standard or sensitive coil. The GRF312/GRF332 is designed to improve upon the GRF300/GRF303 relay's high frequency performance. The GRF312/GRF332 TO-5 relay features a unique ground shield that isolates and shields each lead to ensure excellent contact-to-contact and pole-to-pole isolation. This ground shield provides a ground interface that results in improved highfrequency performance as well as parametric repeatability. The SGRF312/SGRF332 feature a unique ground shield that isolates and shields each lead to ensure excellent contact-to-contact and pole-to-pole isolation.

• Excellent Signal integrity up to 20 Gbps+

- Hermetically Sealed
- High Resistance to ESD
- Metal Enclosure for EMI shielding
- High Repeatability
- Broader bandwidth
- Through-hole or surface-mount
- configurations

Relay Type	Part No.		Nom	inal Coil		Ту	pical RF P	erformance	
DPDT Non-Latching			Voltage	Resistance	Frequency	VSWR	Isola	tion (dB)	Insertion Loss
Coil Type			(Vdc)	(Ω)	(ĠHz)	(max)	Pole to Pole (min)	Across Contacts (min)	(dB) (max)
312 = Standard Coil	Res		-	50	DC-2	1.2 : 1	30	20	0.2
332 = Sensitive Coil	DCD3 Caf		5 12						
Mounting	22431	F312		000	2-4	1.2 : 1	25	20	0.4
RF = Thru-hole	22847 R	F332	5	100	4-6	1.3 : 1	25	20	0.6
GRF = Surface-Mount (Stub)			12	850	6-8	1.4 : 1	20	20	0.8
SGRF = Surface-Mount (J-Lead)					DC-2	1.4 : 1	40	30	0.3
Temperature	(ERE)	(E) E	5 12	50 390					
Storage: -65°C to +125°C	GF	RF312	12	390	2-4	1.4 : 1	40	30	0.5
Operating: -55°C to +85°C	974 B1 GF	RF332	5	5 100	4-6	1.5 : 1	35	30	1.0
			12	850	6-8	1.5 : 1	35	30	1.5
			5	50	DC-2	1.2 : 1	40	30	0.2
$7 \textcircled{0} \rightarrow 4 \textcircled{0}_{4} \textcircled{0}_{332} \textcircled{0}_{4}$	VZ-5 SGRE		12	390	2-4	1.2 : 1	35	30	0.5
	49244 SG		5	100	4-6	1.3 : 1	30	25	1.0
ematics as viewed from terminals	1 × 1 ×		12	850	6-8	1.5 : 1	30	25	1.5

Series RF100/RF103 Electromechanical Relays

The RF100 and RF103 Centigrid® relays are designed to provide improved RF signal repeatability over the frequency range.

The GRF100 and GRF103 Centigrid® relays feature a unique ground shield that isolates and shields each lead to ensure excellent contact-to-contact and pole-to-pole isolation. This ground shield provides a ground interface that results in improved high-frequency performance as well as parametric repeatability.

The SGRF100 and SGRF103 Centigrid® relays extend performance advantages over similar RF devices that

- Excellent Signal integrity up to 18Gbps
 Hermetically Sealed
- High Resistance to ESD
- Metal Enclosure for EMI shielding
- High Repeatability
- · Broader bandwidth
- Through-hole or surface-mount

 Ine SGRF100 and SGRF103 Centigrid® relays extend performance advantages over similar RF devices that simply offer formed leads for surface mounting.
 configurations

 Relay Type

 DPDT Non-Latching
 Part No.
 Voltage (Vdc)
 Resistance (GHz)
 VSWR (GHz)
 Isolation (dB)

 100 = Standard Coil
 103 = Sensitive Coil
 5
 50
 DC-1
 1.1 : 1
 35
 25

 Mounting
 RF100
 12
 390
 1-2
 1.5 : 1
 30
 20

 RF = Thru-hole
 DEctor
 5
 100
 2-3
 1.6 : 1
 30
 20

GRF = Surface-Mount (Stub) SGRF = Surface-Mount (J-Lead Temperature

Storage: -65°C to +125°C Operating: -55°C to +85°C

		100 103
--	--	------------

]	Part N	lo.	Voltage	Resistance	Frequency	VSWR	Isola	tion (dB)	Insertion Loss
			(Vdc)	(Ω)	(GHz)	(max)	Pole to Pole (min)	Across Contacts (min)	(dB) (max)
	E SP	BE100	5	50	DC-1	1.1 : 1	35	25	0.2
	RF100		12	390	1-2	1.5 : 1	30	20	0.5
	Z-5	RE103	5	100	2-3	1.6 : 1	30	20	0.6
unt (Stub) unt (J-Lead)	111	111105	12	800					
re	a TRA LOCAN	GRE100	5	50	DC-1	1.1 : 1	45	30	0.2
+125°C	Sec.E.		12	390	1-3	1.2 : 1	40	25	0.3
o +85°C	2.1.	GRE103	5	100	3-4	1.3 : 1	35	25	0.6
			12	800	4-6	2.2 : 1	30	25	1.2
		SGRE100	5	50	DC-1	1.2 : 1	35	30	0.2
00 03	100 83		12	390	1-3	1.3 : 1	30	30	0.7
03	A A A A A A A A A A A A A A A A A A A	RF100 RF103 GRF100 GRF103 SGRF100 SGRF103	5	100	3-4	1.4 : 1	25	25	0.8
	and the second sec		12	800	4-6	1.8 : 1	25	25	1.0

Series GRF172 Electromechanical Relays

The GRF172 Centigrid® relay is a hermetically sealed, armature relay for 2.5GHz RF applications. Its low profile height .330" (8.38 mm) and .100" (2.54 mm) grid spaced terminals make it an ideal choice where extreme packaging density and/or close PC board spacing are required. The GRF172 features a unique ground shield that isolates and shields each lead to ensure excellent contact-to-contact and pole-to-pole isolation. This ground shield provides a ground interface that results in improved high-frequency performance as well as parametric repeatability. The GRF172 extends performance advantages over similar RF devices that simply offer formed leads for surface mounting.

The Series GRF172D has an internal discrete silicon diode for coil suppression.

- Excellent Signal integrity up to 10Gbps
- Hermetically Sealed
- High Resistance to ESD
- Metal Enclosure for EMI shielding
- High Repeatability
- Broader bandwidth

GRF172D

Through-hole or surface-mount configurations

Relay Type		Nom	inal Coil		Typical RF Performance				
DPDT Non-Latching	Part No.	Voltage	Resistance	Frequency	VSWR (max)	Isolation (dB)		Insertion Loss	
Coil Type		(Vdc)	(Ω)	(GHz)		Pole to Pole (min)	Across Contacts (min)		
172 = Standard Coil		5	64	DC-1	1.1 : 1	45	30	0.2	
Diode Option	GRF172								
D = Internal diode for coil	GRF172D	12	400	1-2	1.2 : 1	40	25	0.3	
transient suppression	6 1	26	1600	2-2.5	1.2 : 1	40	25	0.3	
Mounting									
GRF = Surface-Mount (Stub)		_							
Temperature			10						
Storage: -65°C to +125°C		6 8				$^{\prime}$ \odot \odot $^{\circ}$ \odot $^{\circ}$			
Operating: -55°C to +85°C			₩ 3 3⊙			⁶ ♥ ♥ ² 5♥ ♥ ♥3	¥\$		
		● ⁵ ●				(+ ⁴ 0 ³			

Schematics as viewed from terminals

GRF172

Series RF311/RF331 Electromechanical Relays

The RF311/RF331 relays are designed to provide improved RF signal repeatability over the frequency range. These relays are highly suitable for use in attenuator and other RF circuits.

The GRF311 offers monotonic insertion loss to 8GHz. This improvement in RF insertion loss over the

frequency range makes these relays highly suitable for use in attenuator and other RF circuits. The GRF311 features a unique ground shield that isolates and shields each lead to ensure excellent

contact-to-contact isolation. This ground shield provides a ground interface that results in improved high-frequency performance as well as parametric repeatability.

- Excellent Signal integrity up to 10Gbps
- Hermetically Sealed
- High Resistance to ESD
- · Metal Enclosure for EMI shielding
- High Repeatability
- · Broader bandwidth
- Through-hole or surface-mount configurations

Nominal Coil Relay Type Typical RF Performance solation Across SPDT Non-Latching Part No. Voltage Resistance Frequency **Insertion Loss** VSWR Contacts (dB) (Vdc) (GHz) (max) (dB) (max) **(**Ω**)** Coil Type (min 311 = Standard Coil 5 63 DC-2 1.3 : 1 25 0.2 331 = Sensitive Coil 12 500 2-4 16.120 04 Mounting RF311 26 2000 4-6 20 0.6 16.1RF = Thru-hole GRF = Surface-Mount (Stub) 6-8 1.6:1 15 0.8 Temperature 63 DC-2 0.3 5 1.2:1 30 Storage: -65°C to +125°C 12 500 2-4 1.5:1 25 0.5 Operating: -55°C to +85°C **GRF311** 26 2000 4-6 25 0.7 1.5:1 6-8 1.6:1 20 1.0 5 125 DC-2 1.3:1 25 0.2 (6) (6) 311 () 12 1025 2-4 1.6:1 20 0.4 331 RF331 \bigcirc 6 26 4000 4-6 1.6:1 20 0.6 Schematics as viewed from terminals 1.6:1 08 6-8 15

Series RF341 Electromechanical Relays

The RF341 series relay is an ultraminiature, hermetically sealed, magnetic-latching relay featuring extremely low intercontact capacitance for exceptional RF performance well into the C band. Its low profile and small size make it ideal for applications where extreme packaging density and/or close PC board spacing are required. Due to its minimal mass, many relays may be used to configure replacements for bulkier switching solutions at substantial savings in weight. The RF341 design has been optimized by increasing the distance between the set/reset contacts. This design improvement makes these unique relays the perfect choice for use in RF attenuators, RF switching matrices and other RF applications requiring high isolation, low insertion loss and low VSWR.

• Excellent Signal integrity up to 10Gbps

- · Hermetically Sealed
- High Resistance to ESD
- Metal Enclosure for EMI shielding
- High Repeatability
- · Broader bandwidth
 - · Through-hole or surface-mount configurations

The GRF341 features a unique ground shield that isolates and shields each lead to ensure excellent contactto-contact isolation. This ground shield provides a ground interface that results in improved high-frequency performance as well as parametric repeatability.

Relay Type		Nomi	inal Coil	Typical RF Performance					
SPDT Magnetic-Latching	Part No.	Voltage	Resistance	Frequency	VSWR	Isolation Across	Insertion Loss		
Coil Type		(Vdc)	(Ω)	(GHz)	(max)	Contacts (dB) (min)	(dB) (max)		
341 = Standard Coil	00 341-5	5	61	DC-2	1.2 : 1	30	0.5		
Mounting	08111	12	500	2-4	1.2 : 1	25	0.8		
RF = Thru-hole GRF = Surface-Mount (Stub)	RF341	26	2000	4-6	1.4 : 1	20	2.0		
Temperature	1111								
Storage: -65°C to +125°C	and the second s	5	61	DC-2	1.2 : 1	35	0.3		
Operating: -55°C to +85°C	ANG.	12	500	2-4	1.3 : 1	30	0.7		
	GRF341	26	2000	4-6	1.4 : 1	25	1.5		

SCHEMATIC (Coil

© 2013 TELEDYNE RELAYS

Series RF255/RF257 Electromechanical Relays

The Series RF255/257 The Series RF255 is an industry-standard, half-size, latching crystal can relay. These relays are highly suitable for high RF power applications (RF Power Handling) and other RF circuits. Teledyne Relays' Series RF255 offers: all welded construction, wire leads, gold-plated or solder-coated, matched seal for superior hermeticity, gold-plated contact assembly, modernized assembly process and advanced cleaning techniques.

- Excellent Signal integrity up to 10Gbps
- Hermetically Sealed
- · High Resistance to ESD
- Metal Enclosure for EMI shielding
- High Repeatability
- Broader bandwidth
- Through-hole or surface-mount configurations
- **Nominal Coil Relay Type Typical RF Performance** DPDT Magnetic-Latching Insertion Isolation (dB) Part No. **Resistance** Frequency Voltage VSWR Loss Pole to Pole Across Contacts Mounting (Vdc) **(**Ω**)** (GHz) (max) (dB) (max) (min (min) RF = Thru-hole 5 45 DC-1 1.10:1 40 25 0.3 Temperature 6 63 1-2 1.60.135 20 06 Storage: -65°C to +125°C **RF255 RF257** Operating: -55°C to +85°C 12 254 2-3 1.90.130 20 08 1000 26

RF255

RF257

SCHEMATIC (Coil X Last Energized) (Bottom View)

<u>_</u>©

_⊙ 3 ⊙_4

COIL A

GRF342

SCHEMATIC

(Coil A Last Energized

80

70

Series GRF342 Electromechanical Relays

The Series GRF342 relay is a hermetically sealed, RF relay designed from inception for surface mount applications. This magnetic-latching relay features extremely low internal circuit losses for exceptional time and frequency domain response characteristics through and beyond the UHF spectrum and into the S band. The GRF342 features a unique ground shield that isolates and shields each lead to ensure excellent contact-to-contact and pole-to-pole isolation. This ground shield provides an RF ground interface that results in improved high-frequency performance as well as parametric repeatability. The GRF342 extends performance advantages over similar RF devices that simply offer formed leads for surface mounting.

- Excellent Signal integrity up to 10Gbps
- Hermetically Sealed
- High Resistance to ESD
- Metal Enclosure for EMI shielding
- High Repeatability
- Broader bandwidth
- Through-hole or surface-mount configurations

Relay Type		Nomi	Nominal Coil Typical RF Perform					
DPDT Magnetic-Latching	Part No.	Voltage	Resistance	Frequency	VSWR	Isola	tion (dB)	Insertion Loss
Coil Type		(Vdc)	(Ω)	(GHz)	(max)	Pole to Pole (min)	Across Contacts (min)	
342 = Standard Coil	ann an	5	61	DC-2	1.1 : 1	40	35	0.3
Mounting	A Mar	0	01	002		40	00	0.0
GRF = Surface-Mount (Stub)	GRF342	12	500	2-4	1.2 : 1	30	30	0.4
Temperature				4-6	1.4 : 1	25	25	0.8
Storage: -65°C to +125°C								
Operating: -55°C to +85°C								
					_			

Series RF180 Electromechanical Relays

The Series RF180 relay is a hermetically sealed, magnetic-latching relay featuring extremely low intercontact capacitance for exceptional RF performance over the full UHF spectrum. Its low profile height and .100" (2.54 mm) grid spaced terminals make it ideal for applications where extreme packaging density and/or close PC board spacing are required.

The GRF180 features a unique ground shield that isolates and shields each lead to ensure excellent contactto-contact and pole-to-pole isolation. This ground shield provides a ground interface that results in improved high-frequency performance as well as parametric repeatability.

- Excellent Signal integrity up to 10Gbps
 Hermetically Sealed
- High Resistance to ESD
- Metal Enclosure for EMI shielding
- High Repeatability
- Broader bandwidth

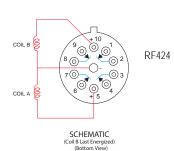
Through-hole or surface-mount configurations

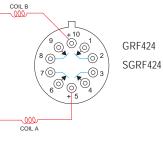
Relay Type		Nom	inal Coil		Ту	pical RF P	Performance	
DPDT Magnetic-Latching	Part No.	Voltage	Resistance	Frequency	VSWR	Isola	tion (dB)	Insertion Loss
Coil Type		(Vdc)	(Ω)	(ĠHz)	(max)	Pole to Pole (min)	Across Contacts (min)	(dB) (max)
180 = Standard Coil		5	61	DC-2	1.3 : 1	50	30	0.2
Mounting		0	01	002	1.0 . 1	00	00	0.2
RF = Thru-hole GRF = Surface-Mount (Stub)	RF180	12	500	2-4	1.3 : 1	45	30	0.3
Temperature		26	2000	4-6	2.0 : 1	30	25	1.5
Storage: -65°C to +125°C Operating: -55°C to +85°C	acount Sites	5	61	DC-2	1.2 : 1	50	35	0.2
COIL B	GRF18	0 12	500	2-4	1.3 : 1	35	30	0.4
	Sp. qq	26	2000	4-6	2.0 : 1	25	30	1.5
$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$								

SCHEMATIC (Coil B Last Energized)

6 💽 🍥

Series RF424/GRF424/SGRF424 Electromechanical Relays


The Series RF424/GRF424/SGRF424 relay is an ultraminiature, hermetically sealed, magnetic-latching relay featuring low intercontact capacitance for exceptional RF performance from DC-8 GHz. Its low profile and small size make it ideal for applications where extreme packaging density and/or close PC board spacing are required. The RF424 Series features a unique ground shield that isolates and shields each lead to ensure excellent contact-to-contact and pole-to-pole isolation. This ground shield provides a ground interface that results in improved high-frequency performance as well as parametric repeatability.

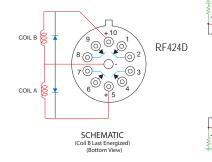

- Excellent Signal integrity up to 12Gbps
- Hermetically Sealed
- · High Resistance to ESD
- Metal Enclosure for EMI shielding
- · High Repeatability
- · Broader bandwidth
- · Through-hole or surface-mount configurations

Relay Type		Part No.		inal Coil		Ту	pical RF P	erformance		
4PST Magnetic-Latching	Part N			Resistance	Frequency	VSWR	Isola	tion (dB)	Insertion Loss	
Coil Type			(Vdc)	(Ω)	(GHz)	(max)	Pole to Pole (min)	Across Contacts (min)	(dB) (max)	
424 = Standard Coil				61	DC-2	1.10:1	50	30	0.2	
Mounting	The second	RF424 RF424D	5							
RF = Thru-hole			12	500	2-4	1.20:1	40	20	0.3	
GRF = Surface-Mount (Stub) SGRF = Surface-Mount (J-Lead)			26	2000	4-6	1.30:1	30	15	0.4	
Temperature					6-8	1.60:1	25	15	0.6	
Storage: -65°C to +125°C		GRF424 GRF424D								
Operating: -55°C to +85°C	A IL			61						
	10000			500	Contact Factory					
	an.			2000						
			5	61						
	SGRF424 SGRF424		12	500	Contact Factory					

2000

26

SCHEMATIC (Coil B Last Energized) (Bottom View)


+ 10

 \odot Ø

SCHEMATIC (Coil B Last Energized) (Bottom View)

COIL B 000

COIL A

Ц

Schematics as viewed from terminals

For GRF424 and SGRF424 case to be grounded

Page 12

Series RF310/RF313 Electromechanical Relays

The ultraminiature RF310 and RF313 relays are designed with an internal bypass (through path), when the coil is de-energized, to provide low insertion loss and VSWR through the bypass and simplicity of design for the user. Relays have improved RF insertion loss repeatability over the frequency range from DC to 3 GHz. Highly suitable for use in attenuator, linear amplifier and other RF circuits.

- N.C. bypass configuration
- Repeatable insertion loss
- · Broad Bandwidth

- Metal Enclosure for EMI shielding
- · Ground pin option to improve ground case RF grounding
- · High isolation between control and signal path

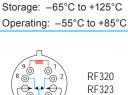
Relay Type		Part No.		inal Coil			Typical F	RF Perf	ormance		
Normally Closed Bypass	Part No			Resistance	Fraguanay	VS	WR	Isolat	ion (dB)		ion Loss dB)
Coil Type			Voltage (Vdc)	(Ω)	(GHz)	N.O.	Bypass	N.O.	Bypass	N.O.	Bypass
310 = Standard Coil						(max)	(max)	(min)	(min)	(max)	(max)
313 = Sensitive Coil	E RO		5	50	DC-1	1.2 : 1	1.3 : 1	35	25	0.2	0.3
Mounting	RF310										
RF = Thru-hole		RF310	12	390	1-2	1.2 : 1	1.3 : 1	25	25	0.3	0.4
Temperature					2-3	1.4 : 1	1.3 : 1	25	20	0.4	0.5
Storage: -65°C to +125°C Operating: -55°C to +85°C			5	100	DC-1	1.2 : 1	1.3 : 1	35	25	0.2	0.3
	RF 313	RF313	12	850	1-2	1.2 : 1	1.3 : 1	25	25	0.3	0.4
/8 0 0 2 RF310		Ш			2-3	1.5 : 1	1.3 : 1	25	20	0.5	0.4
$\begin{pmatrix} 8 & \textcircled{\ } & \end{array}{\ } & \textcircled{\ } & \textcircled{\ } & \textcircled{\ } & \end{array}{\ } & \end{array}{\ } & \textcircled{\ } & \textcircled{\ } & \textcircled{\ } & \end{array}{\ } & \end{array}{\ } & \r{\ } $											

Series RF320/RF323 Electromechanical Relays

The ultraminiature RF320 and RF323 relays are designed with an internal bypass (through path), when the coil is energized, to provide low insertion loss and VSWR through the bypass and simplicity of design for the user. The RF320 and RF323 relays have improved RF insertion loss repeatability over the frequency range from DC to 3 GHz. Highly suitable for use in attenuator, linear amplifier and other RF circuits.

- N.O. bypass configuration
- Repeatable insertion loss

Relay Type Normally Open Bypass **Coil Type** 320 = Standard Coil 323 = Sensitive Coil


Mounting

Temperature

Broad Bandwidth

- Metal Enclosure for EMI shielding
- · Ground pin option to improve ground case RF grounding
- · High isolation between control and signal path

		Nomi	nal Coil			Typical R	F Perfc	ormance		
Part No.		Voltage	Resistance	Frequency	VS	WR	Isolati	ion (dB)		ion Loss dB)
		(Vdc)	(Ω)	(GHz)	N.C. (max)	Bypass (max)	N.C. (min)	Bypass (min)	N.C. (max)	Bypass (max)
RF 3 20		5	50	DC-1	1.2 : 1	1.4 : 1	30	25	0.2	0.4
-1 2	F320	12	390	1-2	1.2 : 1	1.4 : 1	30	20	0.3	0.4
				2-3	1.4 : 1	1.4 : 1	25	20	0.4	0.6
RF 3 23		5	100	DC-1	1.2 : 1	1.4 : 1	30	25	0.2	0.4
-12	F323	12	850	1-2	1.2 : 1	1.4 : 1	30	20	0.3	0.4
				2-3	1.4 : 1	1.4 : 1	25	20	0.4	0.5

RF = Thru-hole

RF320 RF323

Series A150 Electromechanical Relays

The Series A150 ultraminiature Attenuator Relays are designed for attenuating RF signals in 50-ohm systems over a frequency range from DC to 3 GHz. Their low profile and small grid spacing makes them ideal for use when packaging density is a prime consideration. The A150 relays eliminate the need for additional external resistors.

These single section, switchable attenuator relays have internal matched thin film attenuator pads in "L," "T" or "Pi" configurations, as applicable. Relays are available in fixed increments of 1, 2, 3, 4, 5, 6, 8, 10, 16 and 20 dB, which can be used singly or in combination to achieve the attenuation levels desired.

The GA150 features a unique ground shield that isolates and shields each lead to ensure excellent contact-to-contact isolation. This ground shield provides a ground interface that results in improved high-frequency performance as well as parametric repeatability.

- Excellent phase linearity
 - Hermetically Sealed
 - High Resistance to ESD
 - Metal Enclosure for EMI shielding
- High Repeatability
- Broader bandwidth
- Through-hole or surface-mount configurations

Relay Type Nominal Coil Typical RF Performance Insertion Loss VSWR **RF** Attenuator Part No. Voltage Resistance Frequency (dB)Coil Type (Vdc) **(**Ω**)** (GHz) Thru Path (Max.) Attenuated Path (Typ.) Max. A150 = Standard Coil 5 50 DC-1 0.1 0.25 1.20:1 1.10:1 Mounting A = Thru-hole 12 390 1-2 130.1120.102 0.35 GA = Surface-Mount (Stub) A150 **Temperature** 15 610 2-3 1.40:1 1.25:1 0.3 0.55 Storage: -65°C to +125°C 26 1560 Operating: -55°C to +85°C 5 50 DC-1 1.20:1 1.20:1 0.1 0.25 ത്ത 12 390 1-2 1.20:1 1.20:1 0.2 0.35 150 GA150 610 2-3 1.20:1 1.30:1 0.3 0 45 15 26 1560 SCHEMATIC

Series A152 Electromechanical Relays

The Series A152 highly repeatable ultraminiature attenuator relays are designed for attenuating RF signals in 50-ohm systems over a frequency range from DC to 5 GHz. Their low profile and small grid spacing makes them ideal for use when packaging density is a prime consideration. The A152 relays eliminate the need for additional external resistors/attenuators.

These single section, switchable attenuator relays have an internal matched thin film attenuator pad in a "Pi" configuration. Relays are available in a fixed increment of 20 dB. (Other values available) The GA152 features a unique ground shield that isolates and shields each lead to ensure excellent contact-to-contact isolation. This ground shield provides a ground interface that results in improved high-frequency performance as well as parametric repeatability.

- Hermetically Sealed
- High Resistance to ESD
- · Metal Enclosure for EMI shielding
- High Repeatability
- · Broader bandwidth
- Through-hole or surface-mount
 - configurations

Relay Type		Nomii	nal Coil		Туріса	al RF Perfor	mance	
RF Attenuator	Part No.	Voltage	Resistance	Frequency	VS	WR	Insertic (d	on Loss B)
Coil Type A152 = Standard Coil		(Vdc)	(Ω)	(GHz)	Attenuated Path (Typ.)	Thru Path (Max.)	Тур.	Max.
Mounting		5	50	DC-1	1.20 : 1	1.10 : 1	0.1	0.25
A = Thru-hole GA = Surface-Mount (Stub)	A152	12	390	1-2	1.30 : 1	1.20 : 1	0.2	0.35
Temperature	Alle	15	610	2-3	1.40 : 1	1.25 : 1	0.3	0.55
Storage: -65°C to +125°C Operating: -55°C to +85°C	111111	26	1560	3-5				
3 5		5	50	DC-1	1.20 : 1	1.20 : 1	0.1	0.25
	GA152-10-12 GA152	12	390	1-2	1.20 : 1	1.20 : 1	0.2	0.35
Attenuator Pad 1 7 7	GA152-10-12 09091/2096 GA152	15	610	2-3	1.20 : 1	1.30 : 1	0.3	0.45
		26	1560	3-5	1.40 : 1	1.70 : 1	0.4	0.55

SCHEMATIC

COMMERCIAL RELAYS

Series 122C Electromechanical Relays

The 122C Centigrid® magnetic-latching relay is an ultraminiature, hermetically sealed, armature relay capable of being directly driven by most IC logic families. Its low profile height and .100" (2.54 mm) grid spaced terminals, which precludes the need for spreader pads, make it ideal for applications where extreme packaging density and/or close PC board spacing are required.

The basic operating function and internal structure are similar to Teledyne's TO-5, 422 relay series. The 122C is capable of meeting Teledyne Relays' T2R® requirements.

The Series 122C relay has internal silicon diodes for coil suppression, Zener diodes to protect the MOSFET gate inputs, and N-channel enhancement-mode MOSFET chips, which enable direct relay interfacing with most microprocessor and IC logic families (CMOS, TTL and MOS).

The 122C magnetic-latching relay is ideally suited for applications where coil operating power must be minimized. The relays can be operated with a short-duration pulse. After the contacts have transferred, no external coil power is required.

The magnetic-latching feature of the Series 122C relay provides a "memory" capability, since the relays will not reset upon removal of coil power.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- · High force/mass ratio for resistance to shock and vibration
- - Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay	/ Туре					Nom	inal Coil			
DPDT Magnet	ic-Latching	Part No	.	Voltage		urrent	Operating	Latch and	Contact Load Rating	
CMOS	CMOS Feature			(Vdc)			Power (mW)	Reset Voltage		
Internal power	MOSFET				Min.	Max.		(Vdc) (Max)		
driver and diod	de coil				82.2	114.9	505	3.5	Resistive: 1A/28Vdc	
suppression		TELEDYNE SEAN		6	41.6	57.0	296	4.5	Inductive: 200mA/28Vdc (320mH)	
Vibration	Shock	EM	122C	9	27.4	37.2	288	6.8	Lamp: 100mA/28Vdc	
30 g's	100 g's 6 msec,		1220	12	20.5	27.8	287	9.0	Low Level: 10 to 50 uA/10 to 50 m	
to 3000 Hz	half-sine			18	13.7	18.2	286	13.5		
	eration			26	11.4	15.2	351	18.0		
	0 g's					10+ 4	\ \			
	Ű				9					
Tempe	erature				8 0		PIN 4: GATE A			
Storage: -65°	°C to +125°C				7 q	3	PIN 5: – SUPPLY PIN 9: GATE B PIN 10: + SUPPLY	122C		
Operating: -5	5°C to +85°C				6 0					
					\square	5-	J			
						EMATIC				

Series 172 Electromechanical Relays

The 172 Centigrid® relay is an ultraminiature, hermetically sealed, armature relay for commercial applications. Its low profile height .280" (7.11 mm) and .100" (2.54 mm) grid spaced terminals, which preclude the need for spreader pads, make it an ideal choice where extreme packaging density and/or close PC board spacing are required.

The Series 172 relay has an internal discrete silicon diode for coil transient suppression. By virtue of its inherently low intercontact capacitance and contact circuit losses, the 172 relay is an excellent subminiature RF switch for frequencies well into the UHF spectrum. Applications include telecommunications, test instruments, mobile communications, attenuators, and automatic test equipment. All welded construction

- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- · High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay	/ Туре				Nomi	nal Coil		
DPDT Non-La	U	Part No.		Voltage (Vdc)	Resistance (Ω)	P.U.V (Vdc) (max.)	Operating Power (mW)	Contact Load Rating
Diode (Options			3	39	2.25	235	Resistive: 1A/28Vdc
D = Internal die		172-51	172	5	64	3.8	405	Inductive: 200mA/28Vdc (320mH)
transient supp	ression	458 32	172D	12	400	9.0	360	Lamp: 100mA/28Vdc
Vibration	Shock			26	1600	18.0	440	Low Level: 10 to 50 uA/10 to 50 mV
10 q's to 500 Hz	30 g's 6 msec,							
10 9 3 10 000 112	half-sine							
Tempe	erature							_
Storage: -65°	'C to +125°C				Ø		7@ 0 0	1
Operating: -5	5°C to +85°C				چ 172		⁶ و , و	2 1 72D
		I			⊚ [50 0 0 0	3
Schematics as view	ved from terminals							P.U.V = Pick-Up Voltage

COMMERCIAL

COMMERCIAL RELAYS

Series 712 Electromechanical Relays

The TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board mounting, the Series 712 relays are some of the most versatile ultraminiature relays available because of their small size and low coil power dissipation.

The Series 712D relay has an internal discrete silicon diode for coil transient suppression. The hybrid Series 712TN relay has an internal silicon diode and transistor driver. The integrated packaging of the relay with its associated semiconductor devices greatly reduces PC board floor space requirements as well as component installation costs.

By virtue of its inherently low intercontact capacitance and contact circuit losses, the 712 has proven to be excellent ultraminiature RF switch for frequency ranges well into the UHF spectrum. A typical RF application for the TO-5 relay is in handheld radio transceivers, wherein the combined features of good RF performance, small size, low coil power dissipation and high reliability make it a preferred method of Transmit-Receive switching.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay	Туре				Nom	inal Coil				
DPDT Non-Lat	tching	Part No).	Voltage	Resistance	P.U.V	Base Current	Contact Load Rating		
Diode 0	Options			(Vdc)	(Ω)	(Vdc) (max.)	to Turn On (712 TN only)			
D = Internal die	ode for coil	141000		5	50	3.6	3.00	Resistive: 1A/28Vdc		
transient suppl	ression	712	712	6	98	4.2	2.04	Inductive: 200mA/28Vdc (320mH)		
TN = Internal t	ransistor driver	-12	712D	9	220	6.5	1.36	Lamp: 100mA/28Vdc		
and coil transie	ent suppression			12	390	8.4	1.03	Low Level: 10 to 50 uA/10 to 50 mV		
diode			712TN	18	880	13.0	0.68			
Vibration	Shock	1111	1111		1560	17.0	0.50			
	30 g's 6 msec,									
10 g's to 500 Hz	half-sine		八			八	1a			
Tempe	erature		200 C				t a			
Storage: -65°	Storage: -65°C to +125°C			<u>€</u> 03		70+4+403				
Operating: -5	5°C to +85°C			94		60-04				
		712		712D				712TN		

Series 722 Electromechanical Relays

The magnetic-latching TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board mounting, the 722 relay has become one of the most versatile ultraminiature relays available because of its small size and low coil power dissipation.

The Series 722D relay has discrete silicon diodes for coil transient suppression.

The Series 722 magnetic-latching relays are ideally suited for applications where coil power dissipation must be minimized. The relays can be operated with a short duration pulse and after the contacts have transferred, no external coil power is required. The magnetic-latching feature of the Series 722 provides a "memory" capability, since the relays will not reset upon removal of coil power.

- Unique uni-frame design providing
- high magnetic efficiency and mechanical rigidity

- High force/mass ratio for resistance to shock
 and vibration
- and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay	/ Туре				Nominal C	oil	
DPDT Magnet	ic-Latching	Part No	0.	Voltage (Vdc)	Resistance	Set & Reset Voltage (Vdc)	Contact Load Rating
Diode (Options			5	(Ω) 61	3.5	Resistive: 1A/28Vdc
D = Internal die	ode for coil	722-12		6	120	4.5	Inductive: 200mA/28Vdc (320mH)
transient supp	ression	722 722D		9	280	4.5 6.8	
Vibration	Shock			9 12	280 500	0.0 9.0	Lamp: 100mA/28Vdc Low Level: 10 to 50 uA/10 to 50 mV
10 g's to 500 Hz	30 g's 6 msec,		1220	12	1130	9.0 13.5	
10 g S 10 500 HZ	half-sine	A 1 11			2000	18.0	
Tempe	erature		6	011 0			50% D
Storage: -65°	'C to +125°C		C C		L		
Operating: -5	5°C to +85°C				01		
					• <mark>√@</mark> 2) 722)	$\begin{pmatrix} 8 \otimes & & & & \\ 7 \otimes & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & $
				600			
					× g		
					COIL A		COIL A
	SCHEMATIC (Coil A Last Energized) (Bottom View)				SCHEMATIC (Coil A Last Energized) (Bottom View)		

COMMERCIAL RELAYS

Series 732 Electromechanical Relays

The TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board mounting, the Series 732 relay is one of the most versatile ultraminiature relays available because of their small size and low coil power dissipation. The sensitive 732 relay has a high resistance coil, thus requiring extremely low operating power (200 mW typical). The advantages of reduced heat dissipation and power supply demands are a plus.

The Series 732D relay has an internal discrete silicon diode for coil transient suppression. The hybrid Series 732TN relay has an internal silicon diode and transistor driver. The integrated packaging of the relay with its associated semiconductor devices greatly reduces PC board floor space requirements as well as component installation costs.

By virtue of its inherently low intercontact capacitance and contact circuit losses, the 732 has proven to be excellent ultraminiature RF switch for frequency ranges well into the UHF spectrum. A typical RF application for the TO-5 relay is in handheld radio transceivers, wherein the combined features of good RF performance, small size, low coil power dissipation and high reliability make it a preferred method of Transmit-Receive switching.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

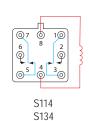
Relay	Туре				Nom	inal Coil		
DPDT Non-Lat	tching Coil	Part No.			Desistant		Base Current	Contact Load Rating
Diode (Options			Voltage (Vdc)	Resistance (Ω)	P.U.V (Vdc) (max.)	to Turn On	Contact Load Nating
D = Internal die	ode for coil						(712 TN only)	
transient supp	ression	11100		5	100	3.5	1.50	Resistive: 1A/28Vdc
TN = Internal t	ransistor driver	TELEDYNE	732	6	200	4.5	1.00	Inductive: 200mA/28Vdc (320mH)
and coil transie	ent suppression	And Arts		9	400	6.8	0.75	Lamp: 100mA/28Vdc
diode			732D 732TN	12	850	9.0	0.47	Low Level: 10 to 50 uA/10 to 50 mV
Vibration	Shock		13211	18	1600	13.5	0.38	
	30 q's 6 msec,	/////		26	3300	18.0	0.24	
10 g's to 500 Hz	half-sine							
Tempe	erature							
Storage: -65°	C to +125°C							
Operating: -5	5°C to +85°C							

732

COMMERCIAL SURFACE-MOUNT RELAYS

Series S114 & S134 Electromechanical Relays

The Series S114 Surface Mount Centigrid® Relay is an ultraminiature, hermetically sealed, armature relay. The low profile height .360" (9.14 mm) and .100" (2.54 mm) lead spacing make it ideal for applications where extreme packaging density and/or close PC board spacing are required. The specially formed leads are pre-tinned to make the relays ideal for most types of surface mount solder reflow processes.


The basic design and internal construction are identical to the Series 114 & 134 Centigrid® relays, and are capable of meeting Teledyne Relays' T2R® requirements.

The S114D and S114DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection.

The sensitive S134 surface mount Centigrid® Relay has a high resistance coil, thus requiring extremely low operating power (200 mW typical). The advantages of reduced heat dissipation and power supply demands are a plus.

- All welded construction
- Unique uni-frame design providing
- high magnetic efficiency and mechanical rigidity
- · High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures
- excellent high current and dry circuit switching capabilities

Relay	Туре				Nor	ninal Coil			
DPDT Non-Lat	ching	Part N	о.	Voltage	Resistance	P.U.V	D.O.V	(Vdc)	Contact Load Rating
Coil	Туре			(Vdc)	(Ω)	(Vdc) (max.)	min.	max.	
S114 = Standa	rd Coil			5	50	3.5	0.14	2.3	Resistive: 1A/28Vdc
S134 = Sensiti	ve Coil	2		6	98	4.5	0.18	3.2	Inductive: 200mA/28Vdc (320mH)
Diode C	Options	- 3 3 32	S114	9	220	6.8	0.35	4.9	Lamp: 100mA/28Vdc
D = Internal did	ode for coil	20.500	S114D	12	390	9.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 mV
transient suppr	ression	140		18	880	13.5	0.59	10.0	
DD = Internal o	liode for coil			26	1560	18.0	0.89	13.0	
transient suppr	ession and			5	39	4.0	0.6	2.8	Resistive: 1A/28Vdc
polarity reversa	al protection	2		6	78	5.0	0.7	3.4	Inductive: 200mA/28Vdc (320mH)
Vibration	Shock		S114DD	9	220	7.8	0.8	5.3	Lamp: 100mA/28Vdc
30 g's to 3000	75 g's 6 msec,	2000	•••••	12	390	10.0	0.9	6.5	Low Level: 10 to 50 uA/10 to 50 mV
Hz	half-sine			18	880	14.5	1.1	10.0	
Accele	ration			26	1560	19.0	1.4	13.0	
) g's			5	100	3.5	0.12	2.5	Resistive: 1A/28Vdc
	Ű			6	200	4.5	0.18	3.2	Inductive: 200mA/28Vdc (320mH)
Tempe		23 0 BE	S134	9	400	6.8	0.35	4.9	Lamp: 100mA/28Vdc
Storage: -65°		ANT P	S134D	12	800	9.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 mV
Operating: -5	5°C to +85°C			18	1600	13.5	0.59	10.0	
				26	3200	18.0	0.89	13.0	
				5	64	3.7	0.7	2.6	Resistive: 1A/28Vdc
				6	125	4.8	0.8	3.0	Inductive: 200mA/28Vdc (320mH)
			S134DD	9	400	8.0	0.9	4.5	Lamp: 100mA/28Vdc
			515400	12	800	11.0	1.0	5.8	Low Level: 10 to 50 uA/10 to 50 mV
		- All		18	1600	14.5	1.1	9.0	
				26	3200	19.0	1.3	13.0	

S114D S134D

S114DD S134DD

COMMERCIAL SURFACE-MOUNT RELAYS

Series S172 Electromechanical Relays

The S172 surface mount Centigrid® relay is an ultraminiature, hermetically sealed, armature relay for commercial applications. Its low profile height .470" (11.94 mm) and .100" (2.54 mm) grid spaced terminals make it an ideal choice where extreme packaging density and/or close PC board spacing are required. The specially formed surface-mount leads are pre-tinned to make the relays ideal for all types of surface-mount solder reflow processes.

The basic design and internal structure are similar to Teledyne's DPDT 114 Centigrid® relay. (see page 16) The S172D relay has an internal discrete silicon diode for coil transient suppression.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
 High force/mass ratio for resistance to
- shock and vibration
 Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay	Туре		DestAle		Nomin	al Coil		
DPDT Non-La	tching	Part No.		Voltage (Vdc)	Resistance (Ω)	P.U.V (Vdc) (max.)	Operating Power (mW)	Contact Load Rating
Diode (Options	(2152)		5	64	3.8	405	Resistive: 1A/28Vdc
D = Internal die			S172	12	400	9.0	360	Inductive: 200mA/28Vdc (320mH)
transient supp	ression		S172D	26	1600	18.0	440	Lamp: 100mA/28Vdc
Vibration	Shock							Low Level: 10 to 50 uA/10 to 50 mV
10 g's to 500 Hz	30 g's 6 msec, half-sine				2		, î_	
Tempe	erature				2			
Storage: -65° Operating: -5					· - 2			
Operating5	5 0 10 105 0			S172			S17	2D

Series S422 Electromechanical Relays

The magnetic-latching TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board surface mounting, its small size and low coil power dissipation make the S422 relay one of the most versatile ultraminiature relays available.

The Series S422D and S422DD utilize discrete diodes for coil suppression and polarity reversal protection. The Series S422 magnetic-latching relays are ideally suited for applications where power dissipation must be minimized. The relays can be operated with a short duration pulse. After the contacts have transferred, no external holding power is required.

The magnetic-latching feature of the Series S422 relays provide a "memory" capability, since the relays will not reset upon removal of coil power.

All welded construction

- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
 High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay	/ Туре				Nominal C	oil	
DPDT Magnet	ic-Latching	Part N	Part No.		Resistance (Ω)	Set & Reset	Contact Load Rating
Diode (Options			(Vdc) 5	(<u>1</u> 2) 61	Voltage (Vdc) 3.5	Resistive: 1A/28Vdc
D = Internal die	Internal diode for coil ansient suppression			6	120	4.5	Inductive: 200mA/28Vdc (320mH)
transient supp			54 S422	9	280	6.8	Lamp: 100mA/28Vdc
DD = Internal of	diode for coil	36	36 S422D	12	500	9.0	Low Level: 10 to 50 uA/10 to 50 mV
transient supp	ression and	2775	0	18	1130	13.5	
polarity revers	polarity reversal protection			26	2000	18.0	
Vibration	Shock			5	48	4.5	Resistive: 1A/28Vdc
10 q's to 500 Hz	30 g's 6 msec,			6	97	5.5	Inductive: 200mA/28Vdc (320mH)
10 9 3 10 300 112	half-sine	36	040000	9	280	7.8	Lamp: 100mA/28Vdc
Tempe	erature	36	S422DD	12	500	10.0	Low Level: 10 to 50 uA/10 to 50 mV
Storage: -65°	°C to +125°C	ALLE		18	1130	14.5	
Operating: -55°C to +85°C				26	2000	19.0	
		COIL B]	S422	COIL B		S422D

Schematics as viewed from terminals

COIL A SCHEMATIC (Coil A Last Energized)

(Coil A Last Energized

SCHEMATIC

COIL A

Series ER114 Electromechanical Relays

The Series ER114 Centigrid® relay is an ultraminiature, hermetically sealed, armature relay. Its low profile height .275" (7 mm) and .100" (2.54 mm) grid spaced terminals, which precludes the need for spreader pads, make it ideal for applications where extreme packaging density and/or close PC board spacing are required. The basic design and internal construction are similar to the standard Teledyne DPDT TO-5 relay (e.g., Series ER412).

The Series ER114D and ER114DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection.

By virtue of its inherently low intercontact capacitance and contact circuit losses, the ER114 relay has proven to be an excellent ultraminiature RF switch for frequency ranges well into the UHF spectrum. A typical RF application for the ER114 relay is in handheld radio transceivers, wherein the combined features of good RF performance, small size, low coil power dissipation and high reliability make it a preferred method of Transmit-Receive switching.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
 High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay	Туре	Part No.			Non	ninal Coil			
DPDT Non-Lat	ching			Voltage	Resistance	P.U.V	D.O.V	(Vdc)	Contact Load Rating
Diode C	Diode Options				(Ω)	(Vdc) (max.)	min.	max.	
D = Internal dic	ode for coil			5	50	3.5	0.14	2.3	Resistive: 1A/28Vdc
transient suppr	ression	17 TELEDING		6	98	4.5	0.18	3.2	Inductive: 200mA/28Vdc (320mH)
DD = Internal d	liode for coil	EA	ER114	9	220	6.8	0.35	4.9	Lamp: 100mA/28Vdc
transient suppression and			ER114D	12	390	9.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 mV
polarity reversa	al protection			18	880	13.5	0.59	10.0	
Vibration	Shock			26	1560	18.0	0.89	13.0	
30 q's	75 q's 6 msec,			5	39	4.0	0.6	2.8	Resistive: 1A/28Vdc
to 3000 Hz	half-sine	PTELEPTHE		6	78	5.0	0.7	3.4	Inductive: 200mA/28Vdc (320mH)
Acceleration	Temperature	E.	ER114DD	9	220	7.8	0.8	5.3	Lamp: 100mA/28Vdc
	Operating &		EK114DD	12	390	10.0	0.9	6.5	Low Level: 10 to 50 uA/10 to 50 mV
50 g's	Storage:			18	880	14.5	1.1	10.0	
00 90	–65°C to +125°C			26	1560	19.0	1.4	13.0	

Series ER116C Electromechanical Relays

The ER116C Centigrid® relay is an ultraminiature, hermetically sealed, armature relay capable of being directly driven by most IC logic families. Its low profile height and .100" (2.54 mm) grid spaced terminals, which preclude the need for spreader pads, make it ideal for applications where extreme packaging density and/or close PC board spacing are required.

The Series ER116C utilizes an internal silicon diode for coil suppression, a Zener diode to protect the MOSFET gate input, and an N-channel enhancement mode MOSFET chip, which enables direct relay interfacing with most Microprocessor and IC logic families (CMOS, TTL and MOS).

All welded construction

- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- High force/mass ratio for resistance to shock and vibration

Relay	Туре				Nomina	l Coil		
DPDT Non-Lat	tching	Part No.	Voltage		urrent nA)	Operating	P.U.V	Contact Load Rating
CMOSI	Feature		(Vdc)	Min.	Max.	Power (mW)	(Vdc) (max.)	
Internal power N			5	96.5	132.3	641	4.0	Resistive: 1A/28Vdc
	ode gate protec-	116C	6	60.3	83.9	462	4.9	Inductive: 200mA/28Vdc (320mH)
-	coil suppression		9	33.1	47.1	368	7.3	Lamp: 100mA/28Vdc
Vibration	Shock	ER116C	12	24.9	36.1	369	9.8	Low Level: 10 to 50 uA/10 to 50 mV
30 g's	75 g's 6 msec,		18	16.1	24.1	368	14.6	
to 3000 Hz	half-sine	1111111	26	12.9	19.9	450	19.5	
Acceleration	Temperature							
50 g's	Operating & Storage: –65°C to +125°C		7@				@ ¹	
								8 7 6 0 0 0 0 0 0 0 0 0 0
		ER114		ER114D		ER114DD		ER116C

P.U.V = Pick-Up Voltage

ESTABLISHED RELIABILITY

© 2013 TELEDYNE RELAYS

Series ER134 Electromechanical Relays

The ER134 sensitive Centigrid® relay retains the same features as the ER114 standard Centigrid® relay with only a minimal increase in profile height .375" (9.53 mm). Its .100" (2.54 mm) grid spaced terminals, which preclude the need for spreader pads, and its low profile make the ER134 relay ideal for applications where high packaging density is important.

The Series ER134D and ER134DD have internal discrete silicon diodes for coil suppression and polarity reversal protection.

The sensitive ER134 Centigrid® relay has a high resistance coil, thus requiring extremely low operating power (200 mw typical). The advantages of reduced heat dissipation and power supply demands are a plus.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
 High force/mass ratio for resistance to
- shock and vibration
 - Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay	Туре				Nom	inal Coil			
DPDT Non-Lat	ching	Part No.		Voltage	Resistance	P.U.V	D.O.V	(Vdc)	Contact Load Rating
Diode C	Diode Options				(Ω)	(Vdc) (max.)	min.	max.	
D = Internal dic	D = Internal diode for coil transient suppression			5	100	3.5	0.12	2.5	Resistive: 1A/28Vdc
transient suppr			ER134		200	4.5	0.18	3.2	Inductive: 200mA/28Vdc (320mH)
DD = Internal d	liode for coil	ER134		9	400	6.8	0.35	4.9	Lamp: 100mA/28Vdc
transient suppression and polarity reversal protection			ER134D	12	800	9.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 m
				18	1600	13.5	0.59	10.0	
Vibration	Shock	.[]],		26	3200	18.0	0.89	13.0	
30 q's	75 q's 6 msec,			5	64	3.7	0.7	2.6	Resistive: 1A/28Vdc
to 3000 Hz	half-sine	FRI34		6	125	4.8	0.8	3.0	Inductive: 200mA/28Vdc (320mH)
Acceleration	Temperature	ER134DD	EB424DD	9	400	8.0	0.9	4.5	Lamp: 100mA/28Vdc
recontration	romporatoro		12	800	11.0	1.0	5.8	Low Level: 10 to 50 uA/10 to 50 m	
	Operating &	Titl		18	1600	14.5	1.1	9.0	
50 g's Storage:	.111.		26	3200	19.0	1.3	13.0		
	-65°C to +125°C								

Series ER136C Electromechanical Relays

The sensitive ER136C Centigrid® relay is an ultraminiature, hermetically sealed, armature relay capable of being directly driven by most IC logic families. Its low profile height and .100" (2.54 mm) grid spaced terminals, which precludes the need for spreader pads, make it ideal for applications where extreme packaging density and/or close PC board spacing are required.

All welded construction

- Unique uni-frame design providing high
 magnetic efficiency and mechanical rigidity
- High force/mass ratio for resistance to shock and vibration

The sensitive ER136C Centigrid® relay has a high resistance coil, thus requiring extremely low operating power (200 mW, typical). The advantages of reduced heat dissipation and power supply demands are a plus. The sensitive Series ER136C utilizes an internal silicon diode for coil suppression, a Zener diode to protect the MOSFET gate input, and an N-channel enhancement-mode MOSFET chip that enables direct relay interfacing with most microprocessor and IC logic families (CMOS, TTL and MOS).

Relay Type Nominal Coil Coil Current DPDT Non-Latching Part No. P.U.V **Contact Load Rating** Voltage Operating (mA)(Vdc) (max.) **CMOS Feature** (Vdc) Power (mW) Min Max. Internal power MOSFET 5 43.0 56.0 250 4.0 Resistive: 1A/28Vdc driver, Zener diode gate protec-6 27.0 180 4.9 Inductive: 200mA/28Vdc (320mH) 33.0 tion, and diode coil suppression 9 17.8 26.4 203 7.3 Lamp: 100mA/28Vdc Vibration Shock ER136C 12 11.3 177 180 98 Low Level: 10 to 50 uA/10 to 50 mV 30 g's 75 g's 6 msec, 18 8.4 13.8 203 14.6 to 3000 Hz half-sine 26 5.8 10.2 219 19.5 Acceleration Temperature Operating & Storage: 07 ٩ 10 50 g's 0 7@ @ [`] 6 0 ⁷⊚ 2 စို -65°C to +125°C ٥Q @² PIN 1: + SUPPLY PIN 9: - SUPPLY PIN 10: GATE 'ଡ୍ ____2² 18 ©⁵ 50 0 03 50 0 03 30 ER134 ER134D ER134DD ER136C

Schematics as viewed from terminals

P.U.V = Pick-Up Voltage D.O.V = Drop-Out Voltage

Series ER411 & ER431 Electromechanical Relays

The TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed specifically for high-density PC board mounting, its small size and low coil power dissipation make the ER411 relay one of the most versatile ultraminiature relays available.

The Series ER411D and ER411DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection. The hybrid ER411T relay features an internal silicon suppression diode and transistor driver. This hybrid package reduces required PC board floor space by reducing the number of external components needed to drive the relay.

The sensitive ER431 relay has a high resistance coil, thus requiring extremely low operating power (150 mw typical). The advantages of reduced heat dissipation and power supply demands are a plus.

The Series ER431D and ER431DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection. The hybrid ER431T relay features an internal silicon suppression diode and transistor driver. This hybrid package reduces required PC board floor space by minimizing the number of external components needed to drive the relay.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- · High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay	Туре				Nor	ninal Coil			
SPDT Non-Lat	ching	Part I	No.	Voltage	Resistance	P.U.V	D.O.V	(Vdc)	Contact Load Rating
Coil	Туре			(Vdc)	(Ω)	(Vdc) (max.)	min.	max.	
ER411 = Stand	ard Coil	AND A DE		5	63	3.7	0.15	2.4	Resistive: 1A/28Vdc
ER431 = Sensi	tive Coil	and the second		6	125	4.5	0.18	2.8	Inductive: 200mA/28Vdc (320mH)
Diode C	Options	The second second	ER411	9	280	6.8	0.35	4.2	Lamp: 100mA/28Vdc
D = Internal did	ode for coil	L.1	ER411D	12	500	9.0	0.40	5.6	Low Level: 10 to 50 uA/10 to 50 mV
transient suppr	ression	In h h l		18	1130	13.5	0.58	8.4	
DD = Internal c	liode for coil			26	2000	18.0	0.89	10.4	
transient suppr	ession and	and a start of		5	50	4.5	0.15	2.4	Resistive: 1A/28Vdc
polarity reversa	al protection	100 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2		6	98	5.5	0.18	2.8	Inductive: 200mA/28Vdc (320mH)
T = Internal tra	nsistor drive	10000	ER411DD	9	280	7.8	0.35	4.2	Lamp: 100mA/28Vdc
and coil transie	ent suppression		ERTIDO	12	500	10.0	0.40	5.6	Low Level: 10 to 50 uA/10 to 50 mV
diode		1 P P P I		18	1130	14.5	0.58	8.4	
Vibration	Shock			26	2000	19.0	0.89	10.4	
30 g's	75 g's 6 msec,	and the set		5	63	3.9	0.15	2.4	Resistive: 1A/28Vdc
to 3000 Hz	half-sine			6	125	5.2	0.18	2.8	Inductive: 200mA/28Vdc (320mH)
Acceleration	Temperature		ER411T	9	280	7.8	0.35	4.2	Lamp: 100mA/28Vdc
Acceleration				12	500	10.0	0.40	5.6	Low Level: 10 to 50 uA/10 to 50 mV
50 g's	Operating & Storage:			18	1130	14.5	0.58	8.4	
00 9 0	-65°C to +125°C			26	2000	19.0	0.89	10.4	
		Contrado		5	125	3.7	0.15	2.0	Resistive: 1A/28Vdc
л		431		6	255	4.5	0.18	2.8	Inductive: 200mA/28Vdc (320mH)
4 1		06461	ER431	9	630	6.8	0.35	4.2	Lamp: 100mA/28Vdc
	ER411		ER431D	12	1025	9.0	0.41	5.6	Low Level: 10 to 50 uA/10 to 50 mV
\3 ◎ ▶ 1 ◎ 2	ER431			18	2300	13.5	0.58	8.4	
				26	4000	18.0	0.89	10.4	
_		Carles D		5	100	4.5	0.15	2.4	Resistive: 1A/28Vdc
4	7	431		6	200	5.5	0.18	2.8	Inductive: 200mA/28Vdc (320mH)
	ER411D	06461	ER431DD	9	630	7.8	0.35	4.2	Lamp: 100mA/28Vdc
$3 \odot 10 2$	ER431D			12	1025	10.0	0.40	5.6	Low Level: 10 to 50 uA/10 to 50 mV
				18	2300	14.5	0.58	8.4	
		1.4.1		26	4000	19.0	0.89	10.4	
		Carling and		5	125	3.6	0.15	2.0	Resistive: 1A/28Vdc
	$ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet $	431 -5A		6	255	4.8	0.18	2.8	Inductive: 200mA/28Vdc (320mH)
		06461	ER431T	9	630	7.8	0.35	4.2	Lamp: 100mA/28Vdc
		83960	EK4311	12	1025	10.0	0.41	5.6	Low Level: 10 to 50 uA/10 to 50 mV
				18	2300	14.5	0.58	8.4	
				26	4000	19.0	0.89	10.4	
	_								DIIV – Dick IIn Voltage

Schematics as viewed from terminals

FR411T

ER431T

P.U.V = Pick-Up Voltage D.O.V = Drop-Out Voltage

Series ER412 & ER432 Electromechanical Relays

The TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed specifically for high-density PC board mounting, its small size and low coil power dissipation make the ER412 relay one of the most versatile ultraminiature relays available.

The Series ER412D and ER412DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection. The hybrid ER412T relay features an internal silicon suppression diode and transistor driver. This hybrid package reduces required PC board floor space by reducing the number of external components needed to drive the relay.

The sensitive ER432 relay has a high resistance coil, thus requiring extremely low operating power (200 mw typical). The advantages of reduced heat dissipation and power supply demands are a plus.

The Series ER432D and ER432DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection. The hybrid ER432T relay features an internal silicon suppression diode and transistor driver. This hybrid package reduces required PC board floor space by minimizing the number of external components needed to drive the relay.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- High force/mass ratio for resistance to
- shock and vibration
 - Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay	Туре				Nom	inal Coil			
DPDT Non-Lat	ching	Part	No.	Voltage	Resistance	P.U.V	D.O.V	(Vdc)	Contact Load Rating
Coil	Туре			(Vdc)	(Ω)	(Vdc) (max.)	min.	max.	
ER412 = Stand	lard Coil	State and		5	50	3.5	0.14	2.3	Resistive: 1A/28Vdc
ER432 = Sensi	itive Coil	and a state		6	98	4.5	0.18	3.2	Inductive: 200mA/28Vdc (320mH)
Diode C	Options	111112	ER412	9	220	6.8	0.35	4.9	Lamp: 100mA/28Vdc
D = Internal dic	ode for coil		ER412D	12	390	9.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 uA
transient suppr	ession	1 P P P		18	880	13.5	0.59	10.0	
DD = Internal o	liode for coil			26	1560	18.0	0.89	13.0	
transient suppr	ession and	and state		5	39	3.9	0.6	2.8	Resistive: 1A/28Vdc
polarity reversa	al protection	and the second		6	78	5.2	0.7	3.4	Inductive: 200mA/28Vdc (320mH)
T = Internal tra	nsistor drive		ER412DD	9	220	7.8	0.8	5.3	Lamp: 100mA/28Vdc
and coil transie	ent suppression			12	390	10.0	0.9	6.5	Low Level: 10 to 50 uA/10 to 50 uA
diode		166.61		18	880	14.5	1.1	10.0	
Vibration	Shock			26	1560	19.0	1.4	13.0	
30 g's	75 g's 6 msec,	352 02		5	50	3.5	0.14	2.3	Resistive: 1A/28Vdc
to 3000 Hz	half-sine			6	98	4.5	0.18	3.2	Inductive: 200mA/28Vdc (320mH)
Acceleration	Temperature		ER412T	9	220	6.8	0.35	4.9	Lamp: 100mA/28Vdc
	Operating &			12 18	390 880	9.0 13.5	0.41 0.59	6.5 10.0	Low Level: 10 to 50 uA/10 to 50 mV
50 g's	Storage:			26	880 1560	13.5	0.59	10.0	
	–65°C to +125°C			20 5	100	3.5	0.89	2.5	Resistive: 1A/28Vdc
		43		6	200	4.5	0.14	3.2	Inductive: 200mA/28Vdc (320mH)
		-5A	ER432	9	400	6.8	0.35	4.9	Lamp: 100mA/28Vdc
	ER412	55200	ER432D	12	850	9.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 mV
(7⊚≁ ◀► ◀◎3)	ER432			18	1600	13.5	0.59	10.0	
60-04				26	3300	18.0	0.89	13.0	
		(1995) (1995)		5	64	3.7	0.7	2.6	Resistive: 1A/28Vdc
		43		6	125	4.8	0.8	3.0	Inductive: 200mA/28Vdc (320mH)
	ER412D	-5A 0305		9	400	8.0	0.9	4.5	Lamp: 100mA/28Vdc
(7⊙→ ◀▶ ◀⊙3)	ER432D	55200	ER432DD	12	850	11.0	1.0	5.8	Low Level: 10 to 50 uA/10 to 50 mV
60-04				18	1600	14.5	1.1	9.0	
		111111		26	3300	19.0	1.3	13.0	
	3	10000		5	100	3.6	0.14	2.5	Resistive: 1A/28Vdc
		43		6	200	4.8	0.18	3.2	Inductive: 200mA/28Vdc (320mH)
7 ⊙ → 4 → → ⊙3/		0305	ER432T	9	400	7.8	0.35	4.9	Lamp: 100mA/28Vdc
60-04				12	850	11.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 mV
				18	1600	14.5	0.59	10.0	
¥ ¥	ğ			26	3300	19.0	0.89	13.0	
		Schematics a	s viewed from	terminals					P.U.V = Pick-Up Voltage
	ER412T ER432T								D.O.V = Drop-Out Voltage
60 ¹ 04	2111021								. 5

Series 255, 257 Electromechanical Relays

The Series 255 is an industry-standard, half-size, latching crystal can relay. It has a wide range of switching capabilities ranging from low level to 2 amps. The Series J255/255 latching relay configuration is double-pole double-throw (DPDT), so the relay offers excellent switching density and versatility. Half-Size Crystal Can Features:

Low level to 2 amps

-65°C to +125°C

- Wide range of switching capabilities
- Smallest relay package capable of switching 2 amps
- Modernized assembly process
- Lead-free (gold-plated wire lead only)

- All welded construction
- · Wire leads, gold-plated or solder-coated
- Matched seal for superior hermeticity
- Gold-plated contact assembly
- Modernized assembly process
- Advanced cleaning techniques

Relay Type				Nomi	nal Coil		
DPDT Magnetic-Latching	Part No	Part No.		Resistance	Set & Res	set Voltage	Contact Load Rating
Vibration			(Vdc)	(Ω)	Min.	Max.	
30G, 10-2500 Hz			5	45	1.0	3.8	Resistive: 2A/28Vdc
(Sinusoidal)	A CONTRACT	255	6	63	1.3	4.5	Inductive: 0.75A/28Vdc (320mH)
Shock 100G, 6 msec half-sine		256 257	12	254	2.6	9.0	Intermediate Current: 0.1A/28Vdc
(Specified Pulse)		258	26	1000	5.2	18.0	Lamp: 0.16A/28Vdc
Temperature							Low Level: 10 to 50 uA/10 to 50 mV
Operating & Storage:			25	7		255	

Series ER421 Electromechanical Relays

The magnetic-latching TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board mounting, its small size and low coil power dissipation make the ER421 relay one of the most versatile ultraminiature relays available.

The Series ER421D and ER421DD utilize discrete silicon diodes for coil suppression and polarity reversal protection.

The Series ER421 magnetic-latching relays are ideally suited for applications where coil power dissipation must be minimized. The relays can be operated with a short duration pulse. After the contacts have transferred, no external holding power is required. The magnetic-latching feature of the Series ER421 provides a "memory" capability, since the relays will not reset upon removal of coil power.

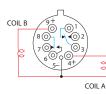
All welded construction

- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
 High force/mass ratio for resistance to
- shock and vibration • Precious metal alloy contact material with gold plating assures excellent high current

and dry circuit switching capabilities

Relay	/ Туре				Nominal C	oil	
SPDT Magnet	Ũ	Part	No.	Voltage (Vdc)	Resistance (Ω)	Set & Reset Voltage (Vdc)	Contact Load Rating
Diode (Options			5	61	3.5	Resistive: 1A/28Vdc
D = Internal di	ode for coil	X SE		6	120	4.5	Inductive: 200mA/28Vdc (320mH)
transient suppression		- 20		9	280	6.8	Lamp: 100mA/28Vdc
DD = Internal	DD = Internal diode for coil transient suppression and polarity reversal protection		ER421	12	500	9.0	Low Level: 10 to 50 uA/10 to 50 mV
transient supp				18	1130	13.5	
polarity revers				26	2000	18.0	
Vibration	Shock			5	61	3.7	Resistive: 1A/28Vdc
30 g's	100 g's 6 msec,	No. A	ER421D	6	120	4.5	Inductive: 200mA/28Vdc (320mH)
to 3000 Hz	half-sine	- 72-		9	280	6.8	Lamp: 100mA/28Vdc
Acceleration	Temperature			12	500	9.0	Low Level: 10 to 50 uA/10 to 50 mV
	Operating &	1P		18	1130	13.5	
50 g's	Storage:			26	2000	18.0	
	-65°C to +125°C			5	48	4.5	Resistive: 1A/28Vdc
				6	97	5.5	Inductive: 200mA/28Vdc (320mH)
				9	280	7.8	Lamp: 100mA/28Vdc
See Schematics on Page 21			ER421DD	12	500	10.0	Low Level: 10 to 50 uA/10 to 50 mV
		Nº 1		18	1130	14.5	
				26	2000	19.0	

Series ER420 & ER422 Electromechanical Relays

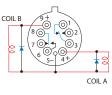

The magnetic-latching TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board mounting, its small size and low coil power dissipation make the ER420 & ER422 relays some of the most versatile ultraminiature relays available.

The Series ER420D/ER422D and ER420DD/ER422DD utilize discrete silicon diodes for coil suppression and polarity reversal protection.

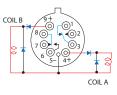
The Series ER420/ER422 magnetic-latching relays are ideally suited for applications where coil power dissipation must be minimized. The relays can be operated with a short duration pulse. After the contacts have transferred, no external holding power is required. The magnetic-latching feature of the Series ER420/ER422 relays provide a "memory" capability, since the relays will not reset upon removal of coil power.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
 High force/mass ratio for resistance to
- shock and vibration
 - Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

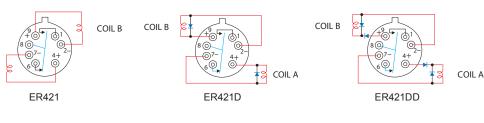
Relay	Туре				Nominal C	oil	
DPDT Magnetio	c-Latching	Part No.		Voltage	Resistance	Set & Reset	Contact Load Rating
Grounding	g Options			(Vdc)	(Ω)	Voltage (Vdc)	
420 = Common	-	Carlos B	ER420	5 6	61 120	3.5 4.5	Resistive: 1A/28Vdc Inductive: 200mA/28Vdc (320mH)
422 = Individua		and the second	ER422	9	280	6.8	Lamp: 100mA/28Vdc
Diode C	options		ER420D	12	500	9.0	Low Level: 10 to 50 uA/10 to 50 mV
D = Internal dio	D = Internal diode for coil		ER422D	18	1130	13.5	
transient suppr	ession			26	2000	18.0	
DD = Internal d	iode for coil	and the second s		5	48	4.5	Resistive: 1A/28Vdc
transient suppr	ession and	122 82		6	97	5.5	Inductive: 200mA/28Vdc (320mH)
polarity reversa	al protection	The second	ER420DD	9	280	7.8	Lamp: 100mA/28Vdc
Vibration	Shock		ER422DD	12	500	10.0	Low Level: 10 to 50 uA/10 to 50 mV
30 g's	100 g's 6 msec,	1191		18	1130	14.5	
to 3000 Hz	U			26	2000	19.0	
Acceleration	Temperature						

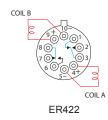

Operating &

Storage:

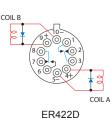

-65°C to +125°C

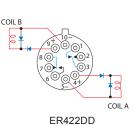
50 g's


ER420



ER420D




ER420DD

COIL A

Schematics Shown with Coil A Last Energized Schematics as viewed from terminals

Series J114 Electromechanical Relays

The Series J114 Centigrid® relay is an ultraminiature, hermetically sealed, armature relay. Its low profile height .275" (7 mm) and .100" (2.54 mm) grid spaced terminals, which precludes the need for spreader pads, make it ideal for applications where extreme packaging density and/or close PC board spacing are required. The basic design and internal construction are similar to the standard Teledyne DPDT TO-5 relay (e.g., Series J412).

The Series J114D and J114DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection.

By virtue of its inherently low intercontact capacitance and contact circuit losses, the J114 relay has proven to be an excellent ultraminiature RF switch for frequency ranges well into the UHF spectrum. A typical RF application for the J114 relay is in handheld radio transceivers, wherein the combined features of good RF performance, small size, low coil power dissipation and high reliability make it a preferred method of Transmit-Receive switching.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay	Туре	Part No.			Nom	inal Coil			
DPDT Non-Lat	tching			Voltage	Resistance	P.U.V	D.O.V	(Vdc)	Contact Load Rating
Diode Options				(Vdc) (Ω)	(Ω)	(Vdc) (max.)	min.	max.	
D = Internal did	D = Internal diode for coil transient suppression				50	3.5	0.14	2.3	Resistive: 1A/28Vdc
transient suppr			1114 (M39016/17)	6	98	4.5	0.18	3.2	Inductive: 200mA/28Vdc (320mH)
DD = Internal diode for coil transient suppression and		IT INCLUSE		9	220	6.8	0.35	4.9	Lamp: 100mA/28Vdc
			J114D	12	390	9.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 mV
polarity reversa	al protection		(M39016/18)	18	880	13.5	0.59	10.0	
Vibration	Shock			26	1560	18.0	0.89	13.0	
30 q's	75 q's 6 msec,			5	39	4.0	0.6	2.8	Resistive: 1A/28Vdc
to 3000 Hz	half-sine	AP TELEDYNE		6	78	5.0	0.7	3.4	Inductive: 200mA/28Vdc (320mH)
Acceleration			J114DD	9	220	7.8	0.8	5.3	Lamp: 100mA/28Vdc
	Operating &		(M39016/18)	12	390	10.0	0.9	6.5	Low Level: 10 to 50 uA/10 to 50 mV
50 g's	Storage:			18	880	14.5	1.1	10.0	
90	–65°C to +125°C			26	1560	19.0	1.4	13.0	

Series J116C Electromechanical Relays

The J116C Centigrid® relay is an ultraminiature, hermetically sealed, armature relay capable of being directly • All welded construction driven by most IC logic families. Its low profile height and .100" (2.54 mm) grid spaced terminals, which preclude the need for spreader pads, make it ideal for applications where extreme packaging density and/or close PC board spacing are required.

- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- · High force/mass ratio for resistance to shock and vibration

The Series J116C utilizes an internal silicon diode for coil suppression, a Zener diode to protect the MOSFET gate input, and an N-channel enhancement mode MOSFET chip, which enables direct relay interfacing with most Microprocessor and IC logic families (CMOS, TTL and MOS).

Relay	Туре			N	lominal	Coil		
DPDT Non-La	Ű	Part No.		Coil Current (mA)		Operating	P.U.V (Vdc)	Contact Load Rating
CMOS Feature			(Vdc)	Min. Max.		Power (mW)	(max.)	
	MOSFET ode gate protec- coil suppression	116C	5 6	96.5 60.3	132.3 83.9	641 462	4.0 4.9	Resistive: 1A/28Vdc Inductive: 200mA/28Vdc (320mH)
Vibration	Shock	J116		33.1	47.1	368	7.3	Lamp: 100mA/28Vdc
		(M2877	6/6) 12	24.9	36.1	369	9.8	Low Level: 10 to 50 uA/10 to 50 mV
30 g's	75 g's 6 msec,	11111111	18	16.1	24.1	368	14.6	
to 3000 Hz	half-sine	1 1 1 1 1 1	26	12.9	19.9	450	19.5	
Acceleration	Temperature							
50 g's	Operating & Storage: –65°C to +125°C							9 - 10 + 1 0 + 1 8 0 - 2 7 0 0 3 PIN 5- SUPPLY
.U.V = Pick-Up Voltage .O.V = Drop-Out Voltage		<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>		5⊚_ <u>+</u> @4 J114D		5⊚_(14DD	

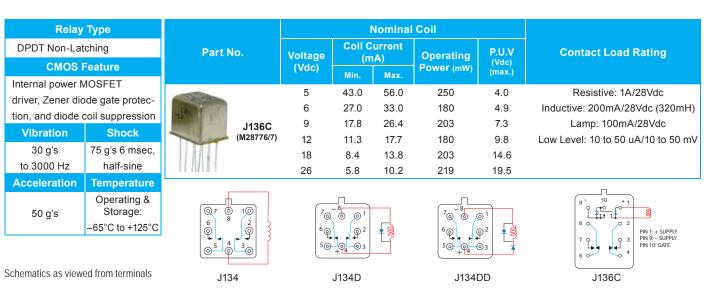
Series J134 Electromechanical Relays

The J134 sensitive Centigrid® relay retains the same features as the J114 standard Centigrid® relay with only a minimal increase in profile height .375" (9.53 mm). Its .100" (2.54 mm) grid spaced terminals, which preclude the need for spreader pads, and its low profile make the J134 relay ideal for applications where high packaging density is important.

The Series J134D and J134DD have internal discrete silicon diodes for coil suppression and polarity reversal protection.

The sensitive J134 Centigrid® relay has a high resistance coil, thus requiring extremely low operating power (200 mw typical). The advantages of reduced heat dissipation and power supply demands are a plus.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities


Relay	Туре				Nom	inal Coil			
DPDT Non-Lat	DPDT Non-Latching		Part No.		Resistance	P.U.V	D.O.V	(Vdc)	Contact Load Rating
Diode C	Diode Options				(Ω)	(Vdc) (max.)	min.	max.	
D = Internal dic	D = Internal diode for coil				100	3.5	0.12	2.5	Resistive: 1A/28Vdc
transient suppr	ession	M300	J134	6	200	4.5	0.18	3.2	Inductive: 200mA/28Vdc (320mH)
DD = Internal c	DD = Internal diode for coil		(M39016/41) J134D (M39016/42)	9	400	6.8	0.35	4.9	Lamp: 100mA/28Vdc
transient suppression and				12	800	9.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 mV
polarity reversa	polarity reversal protection			18	1600	13.5	0.59	10.0	
Vibration	Shock	11/ A N I		26	3200	18.0	0.89	13.0	
30 q's	75 q's 6 msec,	a diffe		5	64	3.7	0.7	2.6	Resistive: 1A/28Vdc
to 3000 Hz	half-sine	M300		6	125	4.8	0.8	3.0	Inductive: 200mA/28Vdc (320mH)
Acceleration	Temperature	J134DD (M39016/43)	J134DD	9	400	8.0	0.9	4.5	Lamp: 100mA/28Vdc
	Operating &		12	800	11.0	1.0	5.8	Low Level: 10 to 50 uA/10 to 50 mV	
50 g's	Storage:			18	1600	14.5	1.1	9.0	
	–65°C to +125°C	10.1.11			3200	19.0	1.3	13.0	

Series J136C Electromechanical Relays

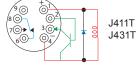
The sensitive J136C Centigrid® relay is an ultraminiature, hermetically sealed, armature relay capable of being directly driven by most IC logic families. Its low profile height and .100" (2.54 mm) grid spaced terminals, which precludes the need for spreader pads, make it ideal for applications where extreme packaging density and/or close PC board spacing are required.

The sensitive J136C Centigrid® relay has a high resistance coil, thus requiring extremely low operating power (200 mW, typical). The advantages of reduced heat dissipation and power supply demands are a plus. The sensitive Series J136C utilizes an internal silicon diode for coil suppression, a Zener diode to protect the MOSFET gate input, and an N-channel enhancement-mode MOSFET chip that enables direct relay interfacing with most microprocessor and IC logic families (CMOS, TTL and MOS).

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

P.U.V = Pick-Up Voltage D.O.V = Drop-Out Voltage

Series J411 & J431 Electromechanical Relays


The TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed specifically for high-density PC board mounting, its small size and low coil power dissipation make the J411 relay one of the most versatile ultraminiature relays available.

The Series J411D and J411DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection. The hybrid J411T relay features an internal silicon suppression diode and transistor driver. This hybrid package reduces required PC board floor space by reducing the number of external components needed to drive the relay.

The sensitive J431 relay has a high resistance coil, thus requiring extremely low operating power (150 mw typical). The advantages of reduced heat dissipation and power supply demands are a plus. The Series J431D and J431DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection. The hybrid J431T relay features an internal silicon suppression diode and transistor driver. This hybrid package reduces required PC board floor space by reducing the number of external components needed to drive the relay.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- · High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay Type					Nom	inal Coil			
SPDT Non-Late	ching	Part I	No.	Voltage	Resistance	P.U.V	D.O.V	(Vdc)	Contact Load Rating
Coil 1	Гуре			(Vdc)	(Ω)	(Vdc) (max.)	min.	max.	
J411 = Standar	d Coil	State and		5	63	3.7	0.15	2.4	Resistive: 1A/28Vdc
J431 = Sensitiv	e Coil	1-1- Q. T.	J411	6	125	4.5	0.18	2.8	Inductive: 200mA/28Vdc (320mH)
Diode O	ptions	The second	(M39016/7)	9	280	6.8	0.35	4.2	Lamp: 100mA/28Vdc
D = Internal dio	de for coil	L. 1	J411D	12	500	9.0	0.40	5.6	Low Level: 10 to 50 uA/10 to 50 mV
transient suppre	ession	II I I I	(M39016/23)	18	1130	13.5	0.58	8.4	
DD = Internal d		411-		26	2000	18.0	0.89	10.4	
transient suppre	ession and	and the second		5	50	4.5	0.15	2.4	Resistive: 1A/28Vdc
polarity reversa		and a state		6	98	5.5	0.18	2.8	Inductive: 200mA/28Vdc (320mH)
T = Internal trar	-	(THE	J411DD	9	280	7.8	0.35	4.2	Lamp: 100mA/28Vdc
and coil transie	nt suppression		(M39016/24)	12	500	10.0	0.40	5.6	Low Level: 10 to 50 uA/10 to 50 mV
diode				18	1130	14.5	0.58	8.4	
Vibration	Shock			26	2000	19.0	0.89	10.4	
30 g's	75 g's 6 msec,	Strate of the		5	63	3.9	0.15	2.4	Resistive: 1A/28Vdc
to 3000 Hz	half-sine	and a state of the	J411T	6	125	5.2	0.18	2.8	Inductive: 200mA/28Vdc (320mH)
		A STATE STATE		9	280	7.8	0.35	4.2	Lamp: 100mA/28Vdc
Acceleration	Temperature	L. 1	(M28776/5)	12	500	10.0	0.40	5.6	Low Level: 10 to 50 uA/10 to 50 mV
Operating &	TEFT		18	1130	14.5	0.58	8.4		
50 g's	Storage:	411		26	2000	19.0	0.89	10.4	
	–65°C to +125°C	C-All		5	125	3.7	0.15	2.0	Resistive: 1A/28Vdc
		431	J431	6	255	4.5	0.18	2.8	Inductive: 200mA/28Vdc (320mH)
八		06461	(M39016/10)	9	630	6.8	0.35	4.2	Lamp: 100mA/28Vdc
		83960	J431D (M39016/25)	12	1025	9.0	0.41	5.6	Low Level: 10 to 50 uA/10 to 50 mV
	J411 J431	T		18	2300	13.5	0.58	8.4	
3 ◎ ▶ ▲ ◎ 2	5451	111		26	4000	18.0	0.89	10.4	
		6.42		5	100	4.5	0.15	2.4	Resistive: 1A/28Vdc
		431		6	200	5.5	0.18	2.8	Inductive: 200mA/28Vdc (320mH)
4 + +		06461	J431DD	9	630	7.8	0.35	4.2	Lamp: 100mA/28Vdc
	J411D	83960	(M39016/26)	12	1025	10.0	0.40	5.6	Low Level: 10 to 50 uA/10 to 50 mV
$3 \odot 10 2$	J431D	TTT		18	2300	14.5	0.58	8.4	
		111		26	4000	19.0	0.89	10.4	
_		Contraction of the		5	125	3.6	0.15	2.0	Resistive: 1A/28Vdc
	7	431		6	255	4.8	0.18	2.8	Inductive: 200mA/28Vdc (320mH)
	J411DD	06461	J431T (M28776/4)	9	630	7.8	0.35	4.2	Lamp: 100mA/28Vdc
	J431DD	33960		12	1025	10.0	0.41	5.6	Low Level: 10 to 50 uA/10 to 50 mV
		IT		18	2300	14.5	0.58	8.4	
		111		26	4000	19.0	0.89	10.4	

P.U.V = Pick-Up Voltage D.O.V = Drop-Out Voltage

Series J412 & J432 Electromechanical Relays

The TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for lowlevel switching from dry circuit to 1 ampere. Designed specifically for high-density PC board mounting, its small size and low coil power dissipation make the J412 relay one of the most versatile ultraminiature relays available.

The Series J412D and J412DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection. The hybrid J412T relay features an internal silicon suppression diode and transistor driver. This hybrid package reduces required PC board floor space by reducing the number of external components needed to drive the relay

The sensitive J432 relay has a high resistance coil, thus requiring extremely low operating power (200 mw typical). The advantages of reduced heat dissipation and power supply demands are a plus.

The Series J432D and J432DD relays have internal discrete silicon diodes for coil suppression and polarity reversal protection. The hybrid J432T relay features an internal silicon suppression diode and transistor driver. This hybrid package reduces required PC board floor space by reducing the number of external components needed to drive the relay.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- · High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay	Туре				Nom	ninal Coil			
DPDT Non-Lat	tching	Part	No.	Voltage	Resistance	P.U.V	D.O.V	(Vdc)	Contact Load Rating
Coil	Туре			(Vdc)	(Ω)	(Vdc) (max.)	min.	max.	
J412 = Standa	rd Coil	State of		5	50	3.5	0.14	2.3	Resistive: 1A/28Vdc
J432 = Sensiti	ve Coil	and a state	J412	6	98	4.5	0.18	3.2	Inductive: 200mA/28Vdc (320mH)
Diode (Options	The second second	(M39016/9) J412D (M39016/15)	9	220	6.8	0.35	4.9	Lamp: 100mA/28Vdc
D = Internal die	ode for coil	·		12	390	9.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 uA
transient supp	ression	[hhh]		18	880	13.5	0.59	10.0	
DD = Internal of	diode for coil			26	1560	18.0	0.89	13.0	
transient supp	ression and	A LELOC		5	39	3.9	0.6	2.8	Resistive: 1A/28Vdc
polarity revers	al protection	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		6	78	5.2	0.7	3.4	Inductive: 200mA/28Vdc (320mH)
T = Internal tra	insistor drive		J412DD	9	220	7.8	0.8	5.3	Lamp: 100mA/28Vdc
and coil transie	ent suppression		(M39016/20)	12	390	10.0	0.9	6.5	Low Level: 10 to 50 uA/10 to 50 uA
diode				18	880	14.5	1.1	10.0	
Vibration	Shock	104.4		26	1560	19.0	1.4	13.0	
30 g's	75 g's 6 msec,	and soft		5	50	3.5	0.14	2.3	Resistive: 1A/28Vdc
to 3000 Hz	half-sine	and a state of the		6	98	4.5	0.18	3.2	Inductive: 200mA/28Vdc (320mH)
Acceleration	Temperature		J412T (M28776/1)	9	220	6.8	0.35	4.9	Lamp: 100mA/28Vdc
				12	390	9.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 mV
50 1	Operating &	1660		18	880	13.5	0.59	10.0	
50 g's	Storage: –65°C to +125°C			26	1560	18.0	0.89	13.0	
	-05 C 10 +125 C	and the	2	5	100	3.5	0.14	2.5	Resistive: 1A/28Vdc
		-5Å	J432 (M39016/11)	6	200	4.5	0.18	3.2	Inductive: 200mA/28Vdc (320mH)
		0305	J432D (M39016/16)	9	400	6.8	0.35	4.9	Lamp: 100mA/28Vdc
	J412			12 18	850	9.0 13.5	0.41 0.59	6.5 10.0	Low Level: 10 to 50 uA/10 to 50 mV
	J432		(10/10/10)	26	1600 3300	18.0	0.59	13.0	
		11 1 1 11		20 5	64	3.7	0.89	2.6	Resistive: 1A/28Vdc
				6	125	4.8	0.8	3.0	Inductive: 200mA/28Vdc (320mH)
		-5A		9	400	4.0 8.0	0.9	4.5	Lamp: 100mA/28Vdc
	J412D	5520	J432DD (M39016/21)	12	400 850	11.0	1.0	5.8	Low Level: 10 to 50 uA/10 to 50 mV
	J432D			18	1600	14.5	1.1	9.0	
				26	3300	19.0	1.3	13.0	
•	7	ALE 1450		5	100	3.6	0.14	2.5	Resistive: 1A/28Vdc
	3	43		6	200	4.8	0.18	3.2	Inductive: 200mA/28Vdc (320mH)
	J412DD	-5A 0305	J432T	9	400	7.8	0.35	4.9	Lamp: 100mA/28Vdc
	J432DD	5520	(M28776/3)	12	850	11.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 mV
		TH		18	1600	14.5	0.59	10.0	
	7			26	3300	19.0	0.89	13.0	
	a								
] J412T	Schematic	s as viewed fr	om termina	ls				P.U.V = Pick-Up Voltage
/s@(DOV Dren Out Vallage

D.O.V = Drop-Out Voltage

J432T

MILITARY QUALIFIED (JAN)

Series J255 Electromechanical Relays

The Series J255 is an industry-standard, half-size, latching crystal can relay. It has a wide range of switching capabilities ranging from low level to 2 amps. The Series J255 latching relay configuration is double-pole double-throw (DPDT), so the relay offers excellent switching density and versatility. Half-Size Crystal Can Features:

- Low level to 2 amps
- Wide range of switching capabilities
- Smallest relay package capable of switching 2 amps
- Modernized assembly process
- Qualified to MIL-PRF39016/45
- · Lead-free (gold-plated wire lead only)

- All welded construction
- Wire leads, gold-plated or solder-coated
- Matched seal for superior hermeticity
- Gold-plated contact assembly
- Modernized assembly process
- Advanced cleaning techniques

Relay Type			Nomi	nal Coil			
DPDT Magnetic-Latching	Part No.	Voltage	Resistance	Set & Res	set Voltage	Contact Load Rating	
Vibration		(Vdc)	(Ω)	Min. Max.			
30G, 10-2500 Hz		5	45	1.0	3.8	Resistive: 2A/28Vdc	
(Sinusoidal)	2010	6	63	1.3	4.5	Inductive: 0.75A/28Vdc (320mH)	
Shock	J255	0	05	1.5	4.5		
100G, 6 msec half-sine	(M39016/45)	12	254	2.6	9.0	Intermediate Current: 0.1A/28Vdc	
(Specified Pulse)		26	1000	5.2	18.0	Lamp: 0.16A/28Vdc	
Temperature						Low Level: 10 to 50 uA/10 to 50 mV	
Operating & Storage:		_					
–65°C to +125°C		5					

1255

Series J421 Electromechanical Relays

The magnetic-latching TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board mounting, its small size and low coil power dissipation make the J421 relay one of the most versatile ultraminiature relays available.

SCHEMATIC

The Series J421D and J421DD utilize discrete silicon diodes for coil suppression and polarity reversal protection.

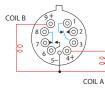
The Series J421 magnetic-latching relays are ideally suited for applications where coil power dissipation must be minimized. The relays can be operated with a short duration pulse. After the contacts have transferred, no external holding power is required. The magnetic-latching feature of the Series J421 provides a "memory" capability, since the relays will not reset upon removal of coil power.

All welded construction

- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay	Relay Type				Nominal C	oil		
SPDT Magneti	Ű	Part	No.	Voltage (Vdc)	Resistance (Ω)	Set & Reset Voltage (Vdc)	Contact Load Rating	
Diode (Options			5	61	3.5	Resistive: 1A/28Vdc	
D = Internal die	ode for coil	28.3	J421 (M39016/8)	6	120	4.5	Inductive: 200mA/28Vdc (320mH)	
transient supp	ression	- 20		9	280	6.8	Lamp: 100mA/28Vdc	
DD = Internal of	diode for coil	7 2		12	500	9.0	Low Level: 10 to 50 uA/10 to 50 mV	
transient supp	ression and	Pp I		18	1130	13.5		
polarity revers	al protection			26	2000	18.0		
Vibration	Shock			5	61	3.7	Resistive: 1A/28Vdc	
30 g's	100 g's 6 msec,	282		6	120	4.5	Inductive: 200mA/28Vdc (320mH)	
to 3000 Hz	half-sine	- 22	J421D	9	280	6.8	Lamp: 100mA/28Vdc	
Acceleration	Temperature	1.18	(M39016/27)	12	500	9.0	Low Level: 10 to 50 uA/10 to 50 mV	
	Operating &	NP 1		18	1130	13.5		
50 g's	Storage:			26	2000	18.0		
	-65°C to +125°C			5	48	4.5	Resistive: 1A/28Vdc	
		285		6	97	5.5	Inductive: 200mA/28Vdc (320mH)	
*Soo Schomatics of	See Schematics on Page 27		J421DD	9	280	7.8	Lamp: 100mA/28Vdc	
See Schemalics Of			(M39016/28)	12	500	10.0	Low Level: 10 to 50 uA/10 to 50 mV	
		VP V		18	1130	14.5		
				26	2000	19.0		

Series J420 & J422 Electromechanical Relays

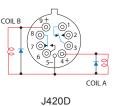

The magnetic-latching TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board mounting, its small size and low coil power dissipation make the J420 & J422 relays some of the most versatile ultraminiature relays available.

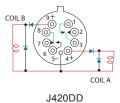
The Series J420D/J422D and J420DD/J422DD utilize discrete silicon diodes for coil suppression and polarity reversal protection.

The Series J420/J422 magnetic-latching relays are ideally suited for applications where coil power dissipation must be minimized. The relays can be operated with a short duration pulse. After the contacts have transferred, no external holding power is required. The magnetic-latching feature of the Series J420/ J422 relays provide a "memory" capability, since the relays will not reset upon removal of coil power.

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity High force/mass ratio for resistance to
- shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

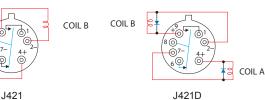
Relay	Туре				Nominal C	oil		
DPDT Magneti	U	Part No.		Voltage (Vdc)	Resistance (Ω)	Set & Reset Voltage (Vdc)	Contact Load Rating	
Grounding	g Options		J420	5	61	3.5	Resistive: 1A/28Vdc	
J420 = Commo J422 = Individu		and the second	(M39016/12) J422	6	120	4.5	Inductive: 200mA/28Vdc (320mH)	
Diode C		111112	(M39016/12)	9	280	6.8	Lamp: 100mA/28Vdc	
		L. 1	J420D	12	500	9.0	Low Level: 10 to 50 uA/10 to 50 mV	
	= Internal diode for coil ansient suppression		(M39016/29) J422D	18	1130	13.5		
DD = Internal d			(M39016/29)	26	2000	18.0		
transient suppr	ession and	States	J420DD	5	48	4.5	Resistive: 1A/28Vdc	
polarity reversa		and a state		6	97	5.5	Inductive: 200mA/28Vdc (320mH)	
Vibration	Shock	111112	(M39016/30)	9	280	7.8	Lamp: 100mA/28Vdc	
30 q's	100 q's 6 msec,	·	J422DD	12	500	10.0	Low Level: 10 to 50 uA/10 to 50 mV	
to 3000 Hz	half-sine	(M39016/30)		18	1130	14.5		
Acceleration	Temperature	2112		26	2000	19.0		

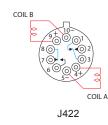



Operating & Storage:

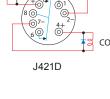
-65°C to +125°C

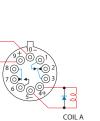
50 g's


J420

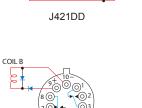


COIL B


Schematics Shown with Coil A Last Energized Schematics as viewed from terminals



COIL



COIL A

J422D

COIL A

© 2013 TELEDYNE RELAYS

COIL A

HIGH-PERFORMANCE RELAYS

Series 412H, 422H & 432H Electromechanical Relays - High Temperature

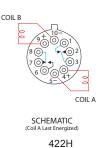
The TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board mounting, these TO-5 relays are some of the most versatile ultraminiature relays available because of their small size and low coil power dissipation.

The H Series high-temperature TO-5 relays are designed for reliable operation in elevated ambient temperatures up to 200°C. Special material selection and processing provide assurance of freedom from contact contamination and mechanical malfunctioning that might otherwise be caused by ultra high ambient temperature conditions.

Typical applications:

• Oil exploration (down-hole) instrumentation

High-Temperature industrial and process control instrumentation


- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay Type	Part No.			Nom	inal Coil			
412H = DPDT Non-Latching			Voltage	Resistance	P.U.V	D.O.V (Vdc)		Contact Load Rating
432H = DPDT Non-Latching			(Vdc)	(Ω)	(Vdc) (max.)	min.	max.	
422H = DPDT Magnetic-			5	50	4.7	0.14	2.4	Resistive: 1A/28Vdc
Latching	412H-1	412H	6	98	5.9	0.18	3.4	Inductive: 200mA/28Vdc (320mH)
Coil Type	36280		9	220	9.0	0.35	5.1	Lamp: 100mA/28Vdc
412H = Standard Coil			12	390	11.9	0.41	6.8	Low Level: 10 to 50 uA/10 to 50 mV
422H = Standard Coil	1001		18	880	17.8	0.59	10.2	
432H = Sensitive Coil	11111		26	1560	24.0	0.89	13.5	
Vibration	and the		5	100	4.7	0.14	2.4	Resistive: 1A/28Vdc
30 g's to 3000 Hz	432H -12		6	200	5.9	0.18	3.4	Inductive: 200mA/28Vdc (320mH)
Shock	06.08	432H	9	400	9.0	0.35	5.1	Lamp: 100mA/28Vdc
412H = 75 g's 6 msec, half-sine		43211	12	850	11.9	0.41	6.8	Low Level: 10 to 50 uA/10 to 50 mV
432H = 75 g's 6 msec, half-sine			18	1600	17.8	0.59	10.2	
$432H = 75 \text{ g/s} \text{ or } Hsec, Hall-sine}$ 422H = 100 g/s			26	3300	24.0	0.89	13.5	
42211 - 100 y 3								

Acceleration			Nominal C	oil		
50 g's	Part No.				Contact Load Rating	
Temperature		(Vdc)	(Ω)	Voltage (Vdc)		
	CONTRACT OF STREET	5	61	4.7	Resistive: 1A/28Vdc	
Operating & Storage:	422H-5	6	120	5.9	Inductive: 200mA/28Vdc (320mH)	
-65°C to +200°C	422H	9	280	9.0	Lamp: 100mA/28Vdc	
	42211	12	500	11.9	Low Level: 10 to 50 uA/10 to 50 mV	
		18	1130	17.8		
		26	2000	24.0		

412H 432H

HIGH-PERFORMANCE RELAYS

Series 412K & 422K Electromechanical Relays - High Shock

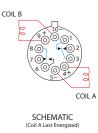
The TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for high-density PC board mounting, its small size and low coil power dissipation make the TO-5 relay one of the most versatile subminiature relays available.

The K Series high-shock TO-5 relays are designed to withstand shock levels up to 4000 g's, .5 msec duration. Special material selection and construction details provide assurance that critical elements of the relay structure and mechanism will not be permanently displaced or damaged as a result of extremely high g level shocks.

Typical applications:

- Commercial avionics aircraft control
- · Commercial aircraft control systems
- Transportation systems (rail/truck)

planes, half-sine Acceleration 50 g's Temperature Operating & Storage:


-65°C to +125°C

- All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- · High force/mass ratio for resistance to
- shock and vibration Precious metal alloy contact material with
- gold plating assures excellent high current and dry circuit switching capabilities

Relay Type			Nom	inal Coil	Contact Load Rating			
412K = DPDT Non-Latching	Part No.	e e e e e e e e e e e e e e e e e e e	P.U.V	D.O.V (Vdc)				
422K = DPDT Magnetic-			(Vdc) (max.)	min.	max.			
Latching		5	50	4.3	0.14	2.5	Resistive: 1A/28Vdc	
Vibration	COLES	6	80	5.2	0.18	3.2	Inductive: 200mA/28Vdc (320mH)	
30 g's to 3000 Hz	412K	9	160	7.6	0.35	4.9	Lamp: 100mA/28Vdc	
Shock	412K	12	300	10.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 mV	
412K = 75 g's 6 msec, half-sine		18	600	14.3	0.59	10.0		
4000 g's, 0.5 msec axial		26	1350	21.0	0.89	13.0		
plane, half-sine 1000 q's, 0.5 msec side			Nominal Coil					
planes, half-sine	Part No.		Resistance	Set & Re		Contact Load Rating		

1000 g's, 0.5 msec side			Nominal C	oil	
planes, half-sine	Part No.	Voltage (Vdc)	Resistance (Ω)	Set & Reset Voltage (Vdc)	Contact Load Rating
422K = 100 g's 6 msec, half-sine	CHERK C	5	61	3.5	Resistive: 1A/28Vdc
2100 g's, 0.5 msec axial plane, half-sine	022K-12 07171 01826	6	120	4.5	Inductive: 200mA/28Vdc (320mH)
750 g's, 0.5 msec side	422K	9	280	6.8	Lamp: 100mA/28Vdc
planes, half-sine	422N	12	500	9.0	Low Level: 10 to 50 uA/10 to 50 mV
Acceleration		18	1130	13.5	
50 g's		26	2000	18.0	

422K

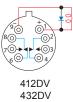
Schematics as viewed from terminals P.U.V = Pick-Up Voltage D.O.V = Drop-Out Voltage

HIGH-PERFORMANCE RELAYS

Series 412V & 432V Electromechanical Relays - High Vibration

The 412V and 432V TO-5 relays, originally conceived and developed by Teledyne, have become the industry standards for low level switching from dry circuit to 1 ampere in high-vibration environments. Designed for high-density PC board mounting, these TO-5 relays are some of the most versatile ultraminiature relay available because of their small size and low coil power dissipation.

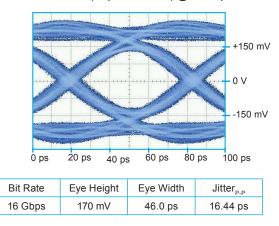
The V Series high-vibration relays are designed to withstand vibration levels of 250 to 380 g's at the frequencies noted, when tested on a resonant beam for 10 to 20 seconds, in the axis parallel to contact motion (x-axis), or 100 g's 10-2000 Hz for 20 minutes in the x-axis. A unique magnetic circuit prevents contact opening (chatter) in excess of 10 microseconds under vibration or shock conditions. Typical applications:


- Avionics aircraft control
- Aircraft control systems
- Transportation systems (rail/truck)

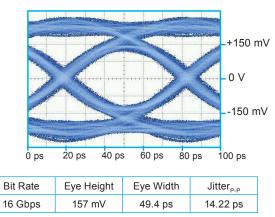
- · All welded construction
- Unique uni-frame design providing high magnetic efficiency and mechanical rigidity
- · High force/mass ratio for resistance to shock and vibration
- Precious metal alloy contact material with gold plating assures excellent high current and dry circuit switching capabilities

Relay Type				Nom	inal Coil			
DPDT Non-Latching	Part N	lo.	· Voltage	Resistance	P.U.V	D.O.V (Vdc)		Contact Load Rating
Coil Type			(Vdc)	(Ω)	(Vdc) (max.)	min.	max.	
412V = Standard Coil	211.00		5	50	4.6	0.14	2.3	Resistive: 1A/28Vdc
432V = Sensitive Coil	312V-12 07081		6	70	5.5	0.18	3.2	Inductive: 200mA/28Vdc (320mH)
Diode Options	96646	412V	9	155	8.2	0.35	4.9	Lamp: 100mA/28Vdc
D = Internal diode for coil		412DV	12	235	11.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 mV
transient suppression	1111		18	610	16.5	0.59	10.0	
DD = Internal diode for coil	1141		26	1130	22.0	0.89	13.0	
transient suppression and	24.00	412DDV	5	33	4.6	0.6	2.8	Resistive: 1A/28Vdc
polarity reversal protection	612V-12 07081		6	44	5.5	0.7	3.4	Inductive: 200mA/28Vdc (320mH)
Vibration	96640		9	125	8.2	0.8	5.3	Lamp: 100mA/28Vdc
250 g's at 140 ±5 Hz		412000	12	215	11.0	0.9	6.5	Low Level: 10 to 50 uA/10 to 50 mV
350 g's at 170 ±5 Hz			18	470	16.5	1.1	10.0	
380 g's at 200 ±5 Hz	1111		26	1050	22.0	1.4	13.0	
Shock	R.S.R.		5	80	4.6	0.14	2.5	Resistive: 1A/28Vdc
	-26		6	120	5.5	0.18	3.2	Inductive: 200mA/28Vdc (320mH)
150 g's 11 msec, half-sine	52390	432V	9	240	8.2	0.35	4.9	Lamp: 100mA/28Vdc
Acceleration	\mathbb{M}	432DV	12	480	11.0	0.41	6.5	Low Level: 10 to 50 uA/10 to 50 mV
50 g's			18	950	16.5	0.59	10.0	
Temperature			26	1900	22.0	0.89	13.0	
Operating & Storage:								

432V

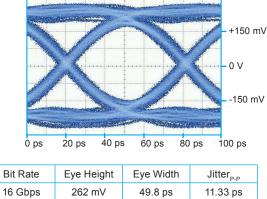

Schematics as viewed from terminals

-65°C to +125°C

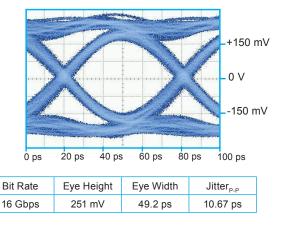

P.U.V = Pick-Up Voltage D.O.V = Drop-Out Voltage

SERIES LB363

AC BYPASS (Capacitor Path) @ 16 Gbps

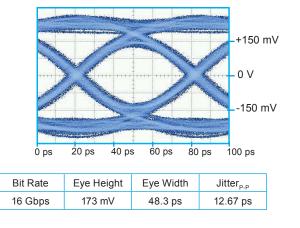


SERIES GLB363

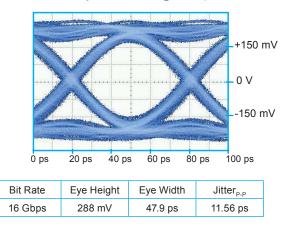


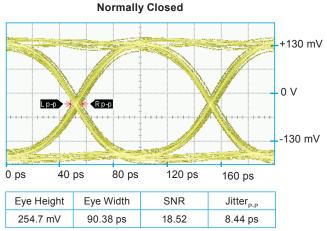
AC BYPASS (Capacitor Path) @ 16 Gbps

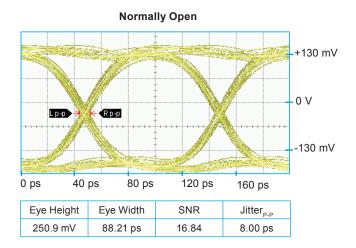
Normally Closed Path @ 16 Gbps

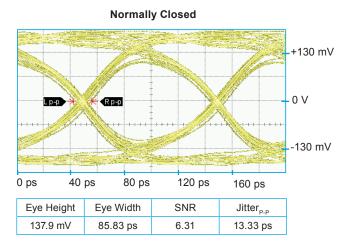


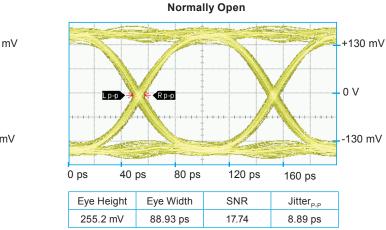
Normally Closed Path @ 16 Gbps



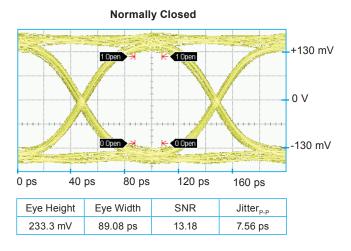

SERIES SGLB363

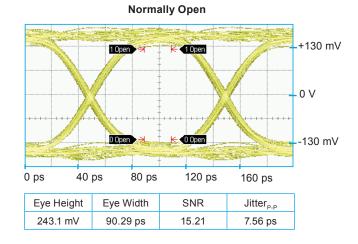



Normally Closed Path @ 16 Gbps

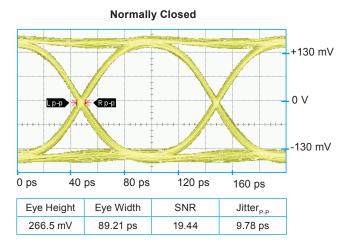


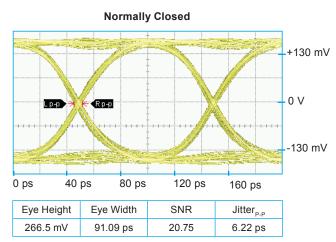
SERIES SRF300/SRF303

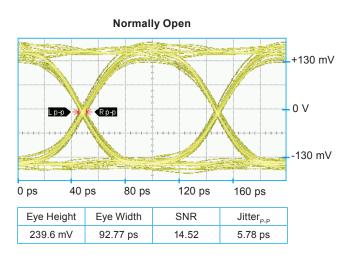

Normally Open +130 mV 0 V R p-p L p-p -130 mV 0 ps 40 ps 80 ps 120 ps 160 ps Eye Width SNR Jitter_{P-P} Eye Height 72.8 mV 88.1 ps 4.31 8.00 ps


SERIES GRF300/GRF303

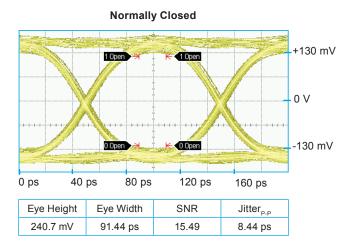
Normally Closed								
								-+130 mV
L p-p	₹ ₹₽₽							- 0 V
								130 mV
0 ps 40) ps	80 ps		120 p	S	160 p)S	
Eye Height	Eye Width		SNR			Jitter _{P-P}		
237.6 mV	90.08	3 ps	1	4.19		9.33	ps	


SERIES RF300/RF303 Normally

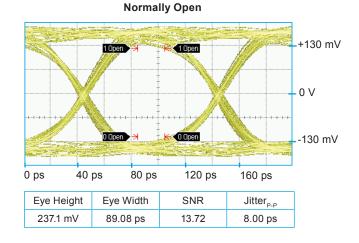

SERIES SGRF300/SGRF303

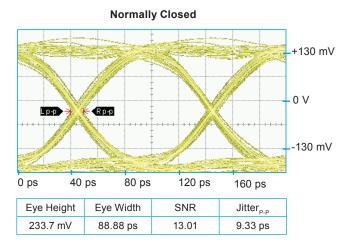


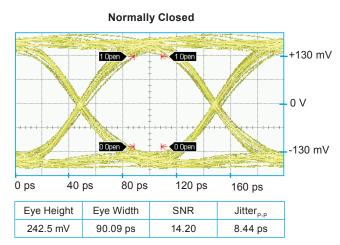
SERIES RF312

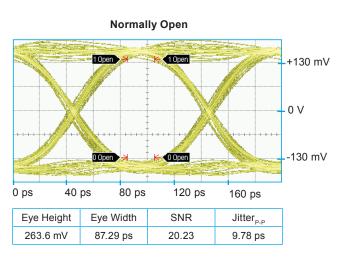


Normally Open +130 mV 0 V Lp-p R p-p -130 mV 0 ps 40 ps 80 ps 120 ps 160 ps Eye Height Eye Width SNR Jitter_{P-P} 264.3 mV 89.07 ps 19.13 8.00 ps

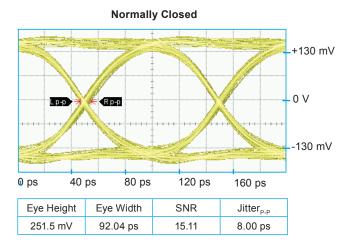



SERIES GRF312

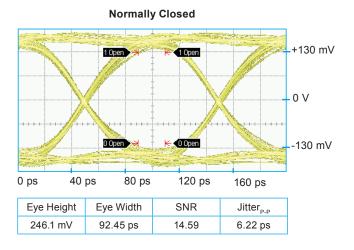


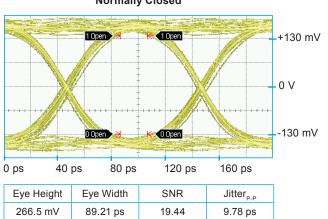


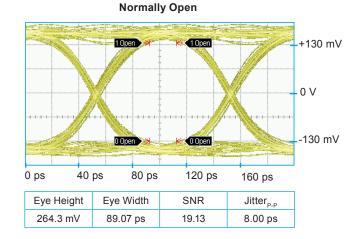
SERIES RF100

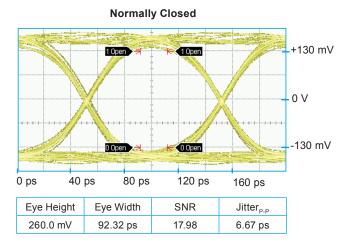


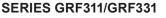
Normally Open +130 mV 0 V R p-p L p-p -130 mV 0 ps 40 ps 80 ps 120 ps 160 ps Eye Height Eye Width SNR Jitter_{P-P} 217.1 mV 88.05 ps 11.55 8.44 ps

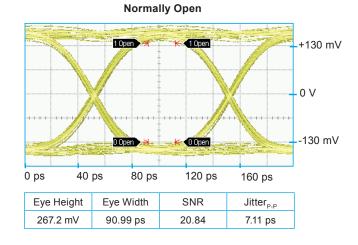

SERIES GRF100

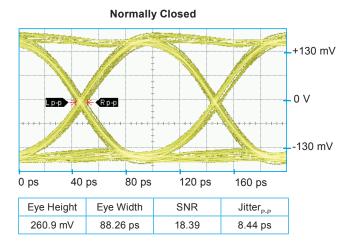

SERIES SGRF100

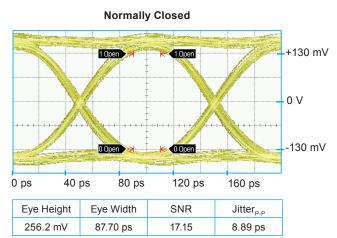

SERIES GRF172

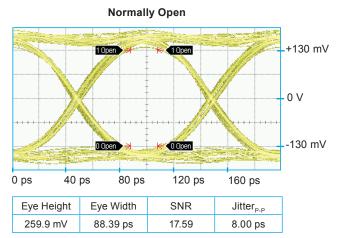

Normally Open 1 Open 1 Open ⊦130 mV 0 V -130 mV 0 Open 0 Open 0 ps 40 ps 80 ps 120 ps 160 ps Eye Height Eye Width SNR Jitter_{P-P} 268.2 mV 90.87 ps 21.62 7.56



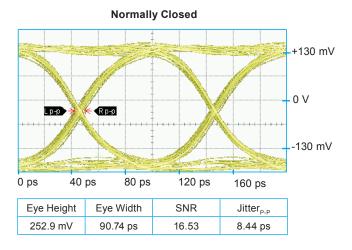

SERIES RF311/RF331


Normally Closed

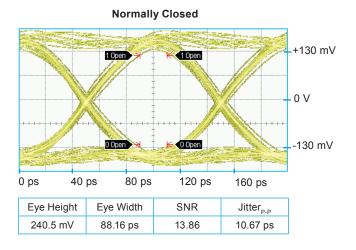


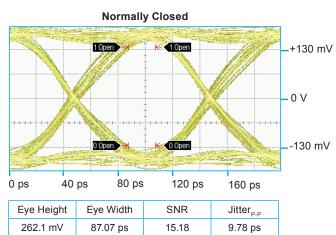


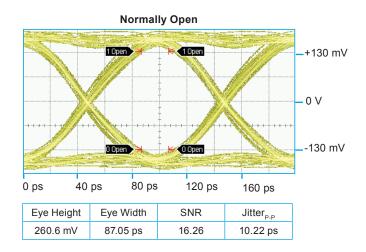
SERIES RF341


Normally Open -130 mV 0 V Rp-p Lp-p -130 mV 0 ps 40 ps 80 ps 120 ps 160 ps Eye Height Eye Width SNR Jitter_{P-P} 271.5 mV 86.41 ps 21.35 8.89 ps

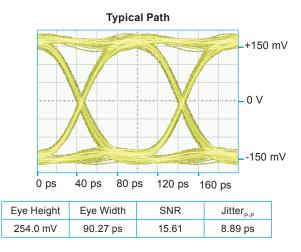
SERIES GRF341

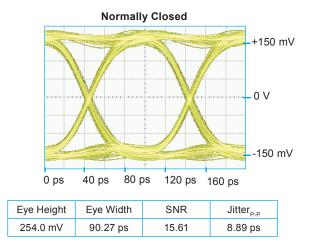

Page 40


SERIES GRF342

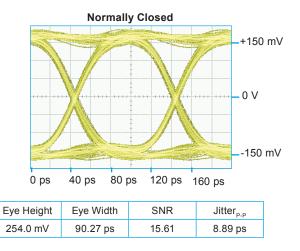


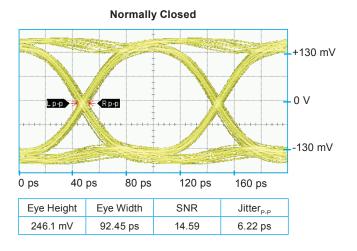
SERIES RF180


Normally Open +130 mV 1 Open 1 Open 0 V +---+---0 Open 0 Open -130 mV 0 ps 40 ps 80 ps 120 ps 160 ps Eye Height Eye Width SNR Jitter_{P-P} 87.22 ps 235.8 mV 12.75 10.22 ps



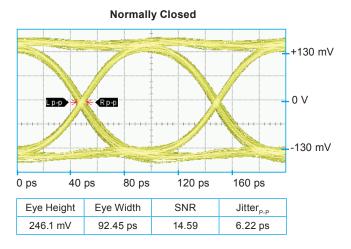
SERIES GRF180


SERIES RF424

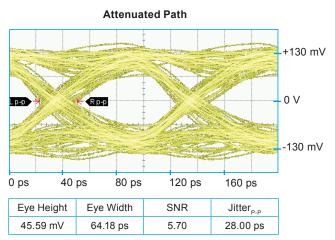


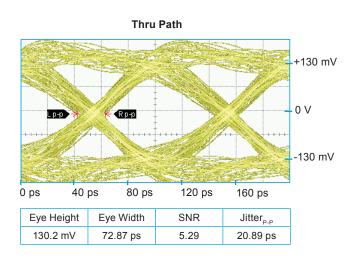
SERIES GRF424

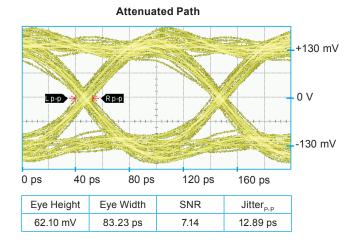
SERIES SGRF424

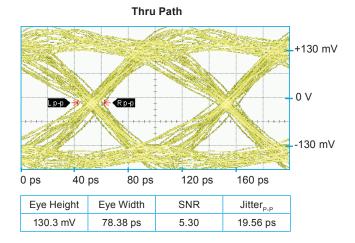


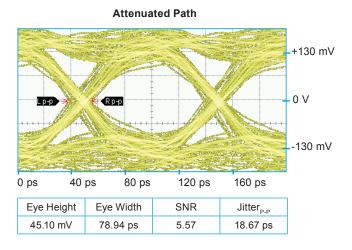
SERIES RF310/RF313



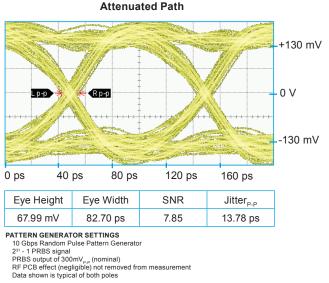

SERIES RF320/RF323

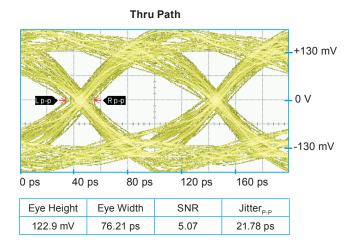

Normally Open +130 mV 0 V R p-p Lp-p -130 mV 0 ps 40 ps 80 ps 120 ps 160 ps Eye Height Eye Width SNR Jitter_{P-P} 268.2 mV 90.87 ps 21.62 7.56 ps


SERIES A150



SERIES GA150




SERIES A152

Thru Path +130 mV 0 V Lp-p R p-p -130 mV 0 ps 40 ps 80 ps 120 ps 160 ps Eye Height Eye Width SNR Jitter_{P-P} 124.5 mV 73.90 ps 5.23 22.22 ps

SERIES GA152

RoHS and REACH CERTIFICATE OF COMPLIANCE

<u>RoHS</u>

It is hereby stated and certified that Teledyne Relays complies with the Restrictions on Hazardous Substances (RoHS) Directives to the extent herein:

Teledyne Relays does <u>not</u> use any of the Restricted Substances specified by the RoHS Directives

(listed below) as components in TO-5 and Centigrid[®] Electromechanical Relay products, nor are these substances employed during any electromechanical relay manufacturing process:

Lead Mercury Cadmium Hexavalent Chromium Polybrominated Biphenyls (PBB's) Polybrominated Diphenyl Ethers (PBDE's)

However, upon request from the Customer, relay leads may be coated with <u>solder</u>, which contains 60% tin and 40% lead.

<u>REACH</u>

It is hereby stated and certified that Teledyne Relays complies with the Registration Evaluation Authorization and Restriction of Chemicals (REACH) Directives to the extent stated herein:

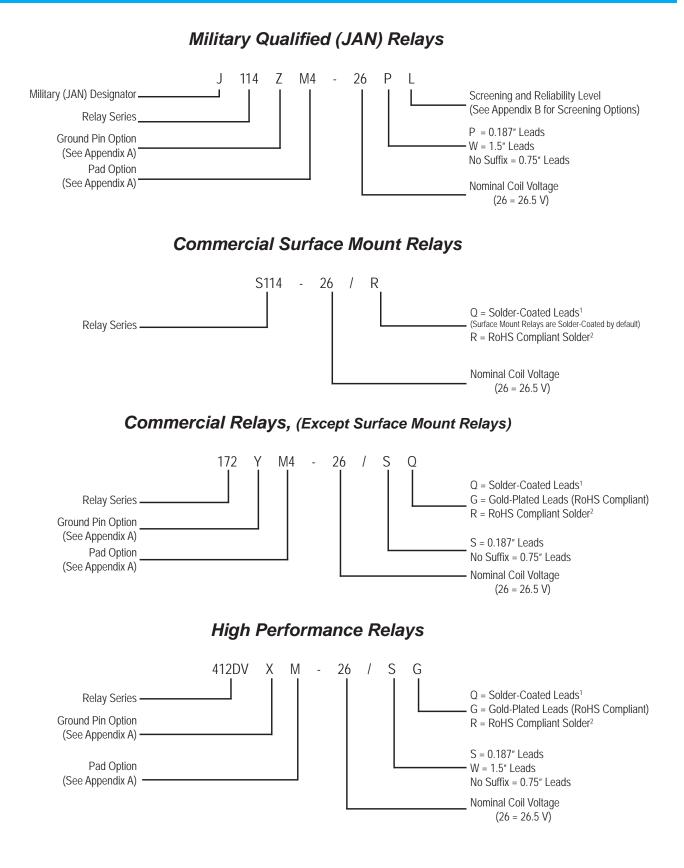
Teledyne Relays is a manufacturer of articles. Teledyne Relays has taken the initiative to review the (126) substances that are under consideration for treatment as Substances of Very High Concern (SVHC) candidates. Teledyne Relays confirmed that our relays do not contain any of the listed


substances in concentration >0.1% weight per supplied article, substance or preparation weight.

For Additional Information please E-Mail us at: relays@teledyne.com

APPENDIX: TELEDYNE RELAYS PART NUMBERING SYSTEM

LoopBack Relays


General Note: Parts ordered without suffix may be supplied with Solder-Coated or Gold-Plated leads

- Parts ordered with Solder-Coated leads will have (Sn60/Pb40)
- ² Parts ordered with RoHS Solder-Coated leads will have (Sn99.3/Cu0.7)

³ Not Applicable to GRF relays

⁴ SMT=Surface Mount Technology

APPENDIX: TELEDYNE RELAYS PART NUMBERING SYSTEM

General Note: Parts ordered without suffix may be supplied with Solder-Coated or Gold-Plated leads. 1 Parts ordered with Solder-Coated leads will have (Sn60/Pb40) 2 Parts ordered with RoHS Solder-Coated leads will have (Sn99.3/Cu0.7)

Handling Guidelines for TO-5 and Centigrid® Relays

1) Do not drop, throw or in any way mishandle individual relays, cartons containing relay packs, or individual relay packs.

2) Store unused relays in a humidity controlled, shock and vibration-free environment. Storage temperature range limits -65°C to + 125°C, however, when possible, relays should be stored in a 25°C environment.

3) Observe normal good practice in the handling and storage of any relay packs marked as static sensitive.

4) When removing relays from packaging, do so with care. If removing relays from Styrofoam packaging, remove relays carefully as pouring them from the packaging may cause damage to the relay. If removing from bulk packaging, gently pour the relays from the container, taking care to not allow the relays to drop from the container onto the new surface, to prevent unnecessary shock. Do not allow relays to fall onto the floor.

5) When transferring relays to the production area after unpacking, do not drop, throw, or mishandle the relays in any way. When removing relays from the container, pouring is acceptable but again should be done gently and in a way as to not allow the relays to drop.

6) Attached relay spreader pads and insulating pads should not be removed from the relays.

7) Relays should not be exposed to any process or environment that exceeds any limits within this guide or any published specification that applies to the relay.

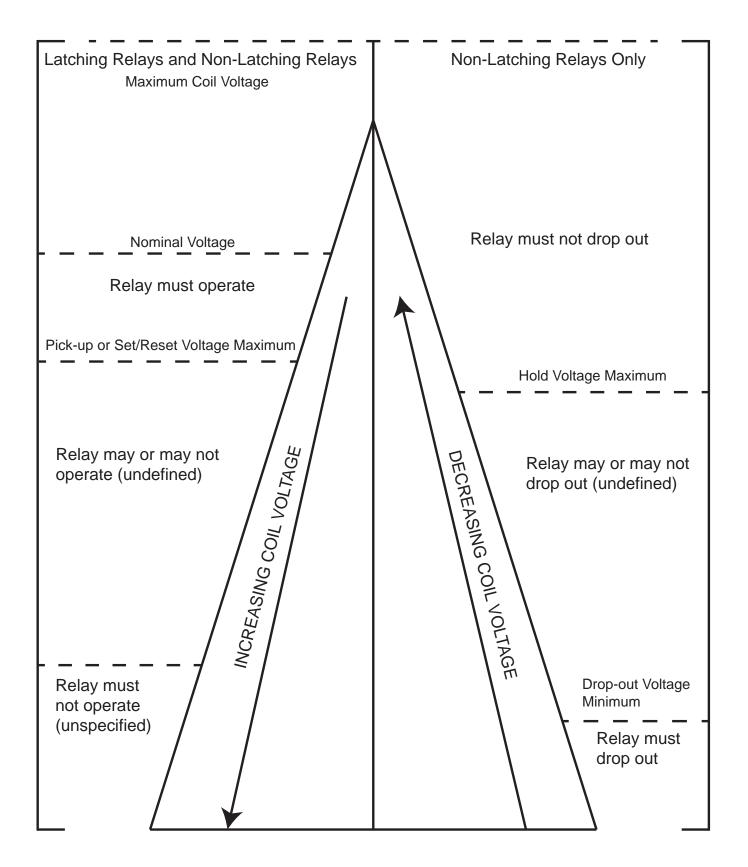
8) Relays are hermetically sealed. Damaged to the casing or glass-to-metal seals will compromise the relays' performance and reliability.

9) Never subject relays to ultrasonic cleaning environments.

10) Unless otherwise specified, do not subject relays to solder reflow temperatures above 270°C, 1 minute maximum.

11) Do not stack heavy object directly onto relays.

Page 48


12) Excessive handling of relay leads with bare hands, or exposure of the relay leads with other contaminating sources can compromise their solderability.

13) Avoid exceeding 1-pound pull strength of the terminals.

14) Avoid subjecting magnetic latching relays to large magnetic fields. Do not handle magnetic latching relays with magnetic holding tools.

15) Avoid bending the flange, the base of the relays or bending/forming the leads in a manner which may result in deformation of the flange or base of the relays. Any such deformation, or handling, which results in visible deformations or dents to any part of the relays (including the cover) may compromise the precisely assembled internal parts of the relays, causing degradation of performance or potential permanent damage and may void the warranty.

Relay Operation

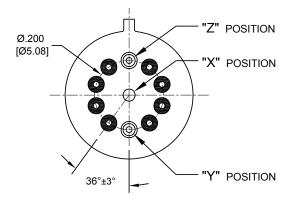
APPENDIX: Spacer Pads

Pad designation and bottom view dimensions	Height	For use with the following:	Dim. H Max.	
		ER412, ER412D, ER412DD	.295 (7.49)	
Ø.150 (3.81) (REF)		712, 712D, 712TN, RF300, RF310, RF320	.300 (7.62)	
		ER420, ER422D, ER420DD, 421, ER421D, ER421DD, ER422, ER422D, ER422DD, 722, 722D, RF341	.305 (7.75)	
		ER431T, ER432T, ER432, ER432D, ER432DD	.400 (10.16)	
		732, 732D, 732TN, RF303, RF313, RF323	.410 (10.41)	
"M4" Pad for TO-5		RF312	.350 (8.89)	
		ER411, ER411D, ER411DD, ER411T	.295 (7.49)	
		ER431, ER431D, ER431DD	.400 (10.16)	
		RF311	.300 (7.62)	
"M4" Pad for TO-5		RF331	.410 (10.41)	
		172, 172D	.305 (7.75)	
	Dim H MAX	ER114, ER114D, ER114DD, J114, J114D, J114DD	.300 (7.62)	
		ER134, ER134D, ER134DD, J134, J134D, J134DD	.400 (10.16)	
		RF100	.315 (8.00)	
"M4" Pad for Centigrid®		RF103	.420 (10.67)	
.156 [3.96] (REF)		122C, A152	.320 (8.13)	
0000 .256 [6.5] (REF) 000 000 000 000 000 000 000 0	Dim H MAX	ER116C, J116C	.300 (7.62)	
		ER136C, J136C	.400 (10.16)	
		RF180	.325 (8.25)	
"M9" Pad for Centigrid®		A150	.305 (7.75)	

Notes:

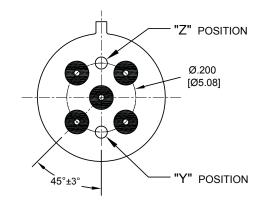
- 1. Spacer pad material: Polyester film.
- To specify an "M4" or "M9" spacer pad, refer to the mounting variants portion of the part numbering example in the applicable datasheet.
- 3. Dimensions are in inches (mm).
- 4. Unless otherwise specified, tolerance is \pm .010" (.25 mm).
- 5. Add 10 m Ω to the contact resistance shown in the datasheet.
- 6. Add 0.01 oz. (0.25 g) to the weight of the relay assembly shown in the datasheet.

© 2013 TELEDYNE RELAYS

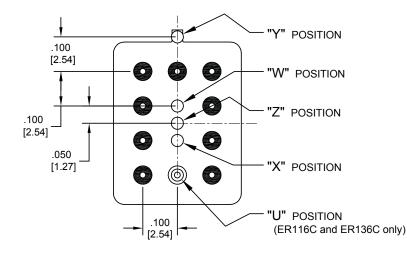

APPENDIX: Spreader Pads

Pad designation and bottom view dimensions	Height	For use with the following:	Dim. H Max.
		ER411T, J411T, ER412, ER412D ER412DD, J412, J412D, J412DD ER412T, J412T	.388 (9.86)
	Dim H	712, 712D, 712TN	.393 (9.99)
1.150 (3.81) (7.62)	MAX	ER431T, J431T, ER432, ER432D ER432DD, J432, J432D, J432DD ER432T, J432T	.493 (12.52)
		732, 732D, 732TN	.503 (12.78)
"M" Pad <u>5</u> / <u>6</u> /	.370 [9.4] MIN	ER420, J420, ER420D, J420D ER420DD, J420DD, ER421, J421 ER421D, J421D, ER421DD J422D, ER422DD, J422DD, 722	.398 (10.11)
$\begin{array}{c} \begin{array}{c} .390 \left[9.91\right] \\ .100 \\ 12.54\right] \\ \hline \\ .300 \\ [7.62] \end{array} \begin{array}{c} .100 \\ .150 \\ [3.81] \\ .300 \\ \hline \\ .7.62 \end{array} \begin{array}{c} .150 \\ .150 \\ [3.81] \\ .150 \\ [3.81] \end{array}$		ER411T ER412, ER412D, ER412DD J412, J412D, J412DD	.441 (11.20)
	Dim H MAX	712, 712D	.451 (11.46)
		ER421, ER421D, ER421DD 722, 732D	.451 (11.46)
		ER431T ER432, ER432D, ER432DD	.546 (13.87)
"M2" Pad <u>7</u> / <u>8</u> /		732, 732D	.556 (14.12)
.370 [9.4] MAX SQ	<u>+</u>	ER411, ER411D, ER411DD, ER411TX ER412X, ER412DX, ER412DDX ER412TX	.388 (9.86)
.150 [3.81] [7.62] [5.81] [5.8	Dim H MAX (REF)	712X, 712DX, 712TNX	.393 (9.99)
		ER420X, ER420DX, ER420DDX ER421X, ER421DX, ER421DDX ER422X, ER422DX ER422DDX, 722X, 722DDX	.398 (10.11)
	.370 [9.4] MIN	ER431, ER431D, ER431DD ER431TX ER432X, ER432DX, ER432DDX ER432TX	.493 (12.52)
"M3" Pad <u>5</u> / <u>6</u> / <u>9</u> /	<u>· </u>	732X, 732DX, 732TNX	.503 (12.78)

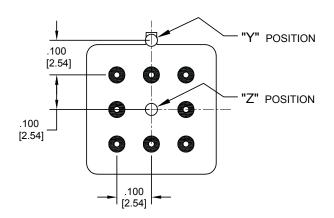
Notes:


- 1. Spreader pad material: Diallyl Phthalate.
- 2. To specify an "M", "M2" or "M3" spreader pad, refer to the mounting variants portion of the part number example in the applicable datasheet.
- 3. Dimensions are in inches (mm).
- 4. Unless otherwise specified, tolerance is ± .010" (0.25 mm).
- <u>5</u>/. Add 25 m Ω to the contact resistance shown in the datasheet.
- 6/. Add .01 oz. (0.25 g) to the weight of the relay assembly shown in the datasheet.
- $\underline{7}$ /. Add 50 m Ω to the contact resistance shown in the datasheet.
- 8/. Add 0.025 oz (0.71 g) to the weight of the relay assembly shown in the datasheet.
- 9/. M3 pad to be used only when the relay has a center pin (e.g. ER411M3-12A, 722XM3-26.)

APPENDIX: Ground Pin Positions



TO-5 Relays:


ER411T, ER412, ER412T, ER420, ER421, ER422, ER431T, ER432, ER432T, 712, 712TN, 400H, 400K, 400V, RF300, RF303, RF341, RF312, RF310, RF313, RF320, RF323

TO-5 Relays: ER411, ER431, RF311, RF331

Centigrid® Relays: RF180, ER116C, 122C, ER136C

Centigrid® Relays: RF100, RF103, ER114, ER134, 172

Indicates ground pin position

Indicates glass insulated lead position

Indicates ground pin or lead position depending on relay type

NOTES

- 1. Terminal views shown
- 2. Dimensions are in inches (mm)
- 3. Tolerances: ± .010 (±.25) unless otherwise specified
- 4. Ground pin positions are within .015 (0.38) dia. of true position
- 5. Ground pin head dia., 0.035 (0.89) ref: height 0.010 (0.25) ref.
- 6. Lead dia. 0.017 (0.43) nom.

APPENDIX: Teledyne Relays T²R Program

Teledyne Relays' *T*[#] program was developed to provide the JAN relay user an alternate means of specifying and procuring established reliability relays. The form, fit and function of a *T*[#] relay is the same as that of its JAN counterpart. *T*[#] program requirements differ in certain regimens/tests found in both MIL-PRF-28776 and MIL-PRF-39016 that add cost but no value to the relay.

This program parallels the military specifications in most aspects. The components that make up such a program are intricate and varied. Furthermore, there are additional options of high value for design, manufacturability and operation of high reliability assemblies. The following page presents a table that compares the 100% screening performed on JAN relays and *Till* relays prior to shipment.

Other significant highlights of the *T*[#] program include:

- Two unique screening levels
- The ability to define lead finish
- Spacer pad options which may not be available in military specifications
- · Ground pin options which may not be available in military specifications
- Reduced lead time
- Reduced cost

The program is fully defined for both general product requirements and detailed product requirements in the following Teledyne Relays specifications:

TR-R-1 TR-STD-1 TR-STD-2 TR-ERL-1 TR-R-1/XXX TR Supplement

Copies of these documents are available from Teledyne Relays. We suggest that users check with Teledyne Relays from time to time to assure that they have the latest issue.

Can't Find What You Need?

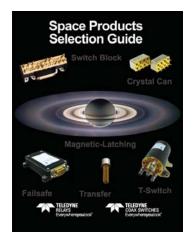
Check out our full line of relays and switches. Order literature online at http://www.teledynerelays.com/lit-request.asp

APPENDIX: Teledyne Relays T ² R Program

	Screening Levels					
INSPECTION	<i>T</i> ⊮ A Level 1.5%/10K Cycles	TR B Level .75%/10K Cycles	JAN L Level 3%/10K Cycles	JAN M Level 1%/10K Cycles		
Subgroup 1						
Screening, Internal Moisture AQL ¹	√	✓	\checkmark	✓		
Vibration (Sinusoidal) AQL ¹			\checkmark			
Vibration (Sinusoidal) 100%		✓		✓		
Screening, Burn-In (Hybrids only)			\checkmark	✓		
Screening, Run-In (Room Temperature)	✓					
Screening, Run-In (+125°C and –65°C)		✓	\checkmark	✓		
Subgroup 2						
Coil Resistance or Coil Current	√	✓	\checkmark	✓		
Insulation Resistance	✓	✓	\checkmark	✓		
Dielectric Withstanding Voltage	✓	~	\checkmark	✓		
Static Contact Resistance	✓	✓	\checkmark	✓		
Pickup and Dropout or Set and Reset Voltage	✓	~	\checkmark	~		
Operate and Release or Set and Reset Time	✓	~	\checkmark	~		
Hold Voltage			\checkmark	✓		
Turn-On and Turn-Off Time (Hybrids only)	√	✓	\checkmark	✓		
Contact Bounce Time	√		\checkmark			
Contact Stabilization Time		✓		✓		
Turn-On Current (T Hybrids only)	√	✓	\checkmark	✓		
Turn-On Voltage (C Hybrids only)	√	✓	\checkmark	✓		
Turn-Off Voltage (Hybrids only)	√	✓	\checkmark	✓		
Coil Transient Suppression (D, DD and Hybrids only)	√	~	\checkmark	~		
Diode Blocking Integrity (DD only)	\checkmark	\checkmark	\checkmark	✓		
Zener Voltage (C Hybrid only)	\checkmark	\checkmark	\checkmark	√		
Neutral Screen (Latching Relays only)	✓	~	\checkmark	✓		
Break Before Make Verification			\checkmark	✓		
Contact Simultaneity			\checkmark	✓		
Subgroup 3	•					
Solderability 2 Samples per Daily Solder- ability Inspection Lot	✓	~	\checkmark	\checkmark		
Leak Test	✓	✓	\checkmark	✓		
External Visual and Mechanical Inspection 2/Lot for Dimension and Weight Check	✓	~	\checkmark	~		

1 AQL = Acceptable Quality Level

Teledyne Relays: Because in deep space there is no acceptable failure rate


Teledyne Relays has a long history of supplying High Reliability relays for use in space bound vehicles. From the earliest deep space probes, such as Voyager I, now nearing 21 billion miles out in space, to the next generation of probes scheduled for the future , Teledyne Relays continues to be the preeminent supplier of Hi-Reliability relays to the space market.

Teledyne Relays Hi-Reliability Specification: TR-HIREL-1

- Eliminates the need for customers to develop and maintain specifications.
- Manufacturing and Quality Assurance requirements are fully defined and documented.
- Meets the general requirements of both ESA/ SCC and NASA/GSFC documents.
- Offers options for 100% Group A screening
- Offers options for 3 levels of Lot Acceptance Testing (LAT).

Teledyne Screening Document 0-40-837

NASA approved screening regimen based on NASA/GSFC S-311-P.754

RELAY TYPES

TO-5 Magnetic-Latching Relays TO-5 Non-Latching Relays TO-5 Magnetic-Latching, High-Shock Relays TO-5 Non-Latching, High-Shock Relays TO-5 Non-Latching, High-Vibration Relays

HI-REL SCREENING CAPABILITIES

100% Open Electrical Inspection 100% Precap Inspection Fully Automated Small Particle Inspection (Millipore Clean) Asynchronous Miss Test **Coil Continuity** Sine Vibration Random Vibration High/Low Run In (Miss Test) -65 °C ± 125 °C Radiographic Inspection Mechanical Shock Test Thermal Shock Test Acceleration Radiographic Inspection (X-ray) Mechanical Shock Test Thermal Shock Test Acceleration Load Banks for a Variety of Life Test Load Serialized Printed Electrical Data **Continuous Life Testing** Environmental Testing Vertical Integration

For information or answers to your questions, please visit our website.

HEADQUARTERS

12525 Daphne Ave. Hawthorne, CA 90250 Phone: (323) 777-0077 or (800) 284-7007 Fax: (323) 241-1287 E-mail: relays@teledyne.com

www.teledynerelays.com (800) 284-7007

EUROPE

9-13 Napier Road Wardpark North Cumbernauld G68 OEF Scotland UK Phone: +44 (0) 1236 453 124 Fax: +44 (0) 1236 780 651 E-mail: sales_europe@teledyne.com

www.teledyne-europe.com +44 (0) 1236 453 124

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Industrial Relays category:

Click to view products by Teledyne manufacturer:

Other Similar products are found below :

 6-1617801-8
 6-1618107-9
 7-1618273-3
 EV250-4A-02
 EV250-6A-01
 FCA-125-CX8
 FCA-325-159
 FCA-410-138
 8000-S3121
 8-1618273-6

 8-1618393-1
 GCA63A220VAC60HZ
 GCA63A277VAC60HZ
 GCA63A600VAC60HZ
 1-1672275-3
 1-1833005-4
 H-16/S1
 A711Z

 ACC530U20
 ACC633U30
 ACC730U30
 DH18DA
 1423675-8
 AVR907
 15732A200
 B07B032AC1-0329
 B329
 B490A
 1618279-1

 BHR124Y
 1810DDB-SX
 N417
 P30C42A12D1-120
 2-1617748-6
 2-1618396-6
 2-1618398-1
 JMGACD-5M
 JMGSC-5LW
 JMGSCD-5L

 PBO-18A1218
 PBO-40A3040
 K8DSPH1200480VAC
 KA-3C-12A
 RT334012WG
 S160156115
 SAH159
 2944795
 301-17SX
 1618105-2

 1618112-6

 S160156115
 SAH159
 2944795
 301-17SX
 1618105-2