TERASIC

USERMANUAL

XTS-FMC

Copyright © Terasic Inc. All Rights Reserved.

TABLE OF CONTENTS

Chapter 1	Introduction2
1.1 Features	
1.2 The Pac	kage Contents
1.3 Assembl	le XTS-FMC with FPGA Main board
1.4 Getting	Help5
Chapter 2	Board Specification6
2.1 Layout a	and Components6
2.2 Block D	iagram7
2.3 Mechan	ical Specifications
Chapter 3	Board Components10
3.1 FMC Ex	xpansion Connector
Chapter 4	Demonstrations
4.1 XTS-FN	IC Loopback on the TR514
4.2 XTS-FN	IC Loopback on the Han Pilot Platform
4.3 XTS-FN	AC SuperLite Loopback on the Han Pilot Platform
Appendix	23
Revision Hi	story

January 2, 2020

Chapter 1 Introduction

The XTS-FMC daughter card is designed to convert FPGA transceiver channels to SMA connectors through a FPGA Mezzanine Card (FMC) interface. It is intended to allow users to evaluate the performance of transceiver-based host boards with FMC interface specifically the Stratix, Arria and Cyclone FPGA with integrated transceivers. Through the SMA connectors, the FPGA transceiver signals can be easily connected to measurement instruments as well as allowing gigabit data rate communication between multiple FPGA boards.

The XTS-FMC daughter card is the ideal platform to allow users to prototype and test their high-speed interfaces quickly and easily in support of transceiver performance for jitter, protocol compliance, and equalization.

1.1 Features

Figure 1-1 shows the photo of the XTS-FMC card. The important functions of the XTS-FMC card are listed below:

- Convert FPGA transceiver channels to SMA connectors through FMC connector
- Support maximum 4 transceiver channels (Depend on the FPGA host board)
- SMA connectors for external clock input

Figure 1-1 The XTS-FMC Card.

1.2 The Package Contents

The XTS-FMC kit comes with the following items (see **Figure 1-2**):

- 1. XTS-FMC Daughter Card
- 2. Screw & Copper Pillar Package
- 3. CD Download Guide

The system CD contains technical documents of the XTS-FMC card, which include component datasheets, demonstrations, schematic and user manual. Users can download the CD from the link below:

http://xts-fmc.terasic.com/cd

Figure 1-2 The contents of the XTS-FMC card.

1.3 Assemble XTS-FMC with FPGA Main board

In order to make the XTS-FMC daughter card and the FMC connector on the FMC card with more secure hookup, the FMC side of the XTS-FMC daughter card has reserved two screw holes, as shown in **Figure 1-3**. Users can use the screws, copper pillars, and nuts that come with the XTS-FMC, to secure the XTS-FMC on the FPGA main board, as shown in **Figure 1-4**. Because transceiver is mostly used for high-speed transmission applications, **we strongly recommend** that users use the screws to secure the connection between the FPGA main board and the XTS-FMC card.

Figure 1-3 The two screw holes on XTS-FMC card.

Figure 1-4 Secure the XTS-FMC on the FPGA main board

XTS-FMC User Manual www.terasic.com

January 2, 2020

1.4 Getting Help

Here are the addresses where you can get help if you encounter any problems: Terasic Technologies 9F., No.176, Sec.2, Gongdao 5th Rd, East Dist, Hsinchu City, 30070. Taiwan Email: support@terasic.com Tel.: +886-3-575-0880 Website: xts-fmc.terasic.com

Chapter 2 *Board Specification*

This chapter describes the architecture of the XTS card including block diagram and components.

2.1 Layout and Components

The picture of the XTS-FMC card is shown in **Figure 2-1** and **Figure 2-2**. It depicts the layout of the board and indicates the locations of the connectors and key components.

XCVR RX SMAs

Figure 2-2 Mechanical Layout of the XTS-FMC card

The following components are provided on the XTS-FMC card:

- FMC expansion connector (J11)
- TX SMAs (J17/J19,J21/J23,J25/J26,J29/J31)
- RX SMAs (J16/J18,J20/J22,J24/J27,J28/J30)
- XCVR reference input SMAs (J12/J13)

2.2 Block Diagram

Figure 2-3 is the block diagram of the XTS-FMC card.

Figure 2-3 Block diagram of the XTS-FMC card

2.3 Mechanical Specifications

Figure 2-3 is the mechanical layout of the XTS-FMC board.

Figure 2-4 The mechanical layout of the XTS-FMC card

www.terasic.com

Chapter 3 Board Components

This chapter will describe the detailed information of the components, connector interface, and the pin mappings on the XTS-FMC card.

3.1 FMC Expansion Connector

The XTS-FMC card contains an FPGA Mezzanine Card (FMC) connector. All the other interfaces on the XTS-FMC card are connected to the FMC connector. Figure 3-1, Figure 3-2, Figure 3-4, and show the pin-outs of the FMC connector and Table 3-1 lists the description of each signals corresponding to the FMC connector.

	J	11D			
YOUR TYP -	~ [YOUR DYA -
XCVR_IX0_p	C2	DP C2M P0	DP M2C P0	<u>C6</u>	XCVR_RX0_p
XCVR_IXU_n	C3	DP C2M NO	DP M2C NO	67	XCVR_RXU_n
	A22	DP C2M P1	DP_M2C_P1	A2	XCVR_RX1_p
XCVR_IX1_n	A23	DP C2M N1	DP M2C N1	A3	XCVR_RX1_n
XCVR_IX2_p	A26	DP C2M P2	DP M2C P2	A6	XCVR_RX2_p
XCVR_TX2_n	A27	DP C2M N2	DP_M2C_N2	A7	XCVR_RX2_n
XCVR_TX3_p	A30	DP C2M P3	DP M2C P3	A10	XCVR_RX3_p
XCVR_TX3_n	A31	DP C2M N3	DP_M2C_N3	A11	XCVR_RX3_n
		DF_02M_N0	DF_W20_W0		
×	A34	DB COM B4	DR M2C R4	A14	
Q.	A35			A15 💭	
0	A38	DD COM DE		A18 💭	
0	A39	DP_C2M_P5	DP_M2C_P5	A19 🗘	
0	B36	DP_C2M_N5	DP_M2C_N5	B16 🗘	
0	B37	DP_C2M_P6	DP_M2C_P6	B17 🗘	
0	B32	DP_C2M_N6	DP_M2C_N6	B12 🗘	
0	B33	DP_C2M_P7	DP_M2C_P7	B13 🗘	
~	1	DP_C2M_N7	DP_M2C_N7	~	
~	B28		DD 1100 D0	B8 🗸	
	B29	DP_C2M_P8	DP_M2C_P8	B9 🗘	
	B24	DP_C2M_N8	DP_M2C_N8	B4 🔿	
	B25	DP_C2M_P9	DP_M2C_P9	B5 🔿	
	K22	DP_C2M_N9	DP_M2C_N9	K4 🔿	
	K23	DP_C2M_P10/HB_TX_P8	DP_M2C_P10/HA_TX_P8	К5 💍	
	K25	DP_C2M_N10/HB_TX_N8	DP_M2C_N10/HA_TX_N8	K7 🔿	
	K26	DP_C2M_P11/HB_RX_P8	DP_M2C_P11/HA_RX_P8	K8 🔿	
×		DP_C2M_N11/HB_RX_N8	DP_M2C_N11/HA_RX_N8	×	
	K28			K10 🗸	
	K29	DP_C2M_P12/HB_TX_P9	DP_M2C_P12/HA_TX_P9	K11 💭	
	K31	DP_C2M_N12/HB_TX_N9	DP_M2C_N12/HA_TX_N9	K13 🔿	
X	K32	DP_C2M_P13/HB_RX_P9	DP_M2C_P13/HA_RX_P9	K14	
<u>×</u>	K34	DP_C2M_N13/HB_RX_N9	DP_M2C_N13/HA_RX_N9	K16	
×	K35	DP_C2M_P14/HB_TX_P10	DP_M2C_P14/HA_TX_P10	K17	
×	K37	DP_C2M_N14/HB_TX_N10	DP_M2C_N14/HA_TX_N10	K19	
×	K38	DP_C2M_P15/HB_RX_P10	DP_M2C_P15/HA_RX_P10	K20	
×		DP_C2M_N15/HB_RX_N10	DP_M2C_N15/HA_RX_N10	×	
	F	MC_10x40_Altera			

Figure 3-1 Signal names of XTS-FMC connector part 1

Figure 3-2 Signal names of XTS-FMC connector part 2

Figure 3-3 Signal names of XTS-FMC connector part 3

XTS-FMC User Manual www.terasic.com

Figure 3-4 Signal names of XTS-FMC connector part 4

Signal Name	FMC Pin	Direction	FMC Pin	I/O Standard	Description
XCVR TX0 p	PIN C2	Output	DP C2M P0	1.4-V PCML	SMA Transceiver
		1			Output Port0, connected
					to J17(SMA)
XCVR_TX0_n	PIN_C3	Output	DP_C2M_N0	1.4-V PCML	SMA Transceiver
					Output Port0, connected
					to J19(SMA)
XCVR_TX1_p	PIN_A22	Output	DP_C2M_P1	1.4-V PCML	SMA Transceiver
					Output Port1, connected
					to J21(SMA)
XCVR_TX1_n	PIN_A23	Output	DP_C2M_N1	1.4-V PCML	SMA Transceiver
					Output Port1, connected
					to J23(SMA)
XCVR_TX2_p	PIN_A26	Output	DP_C2M_P2	1.4-V PCML	SMA Transceiver
					Output Port2, connected
					to J25(SMA)
XCVR_TX2_n	PIN_A27	Output	DP_C2M_N2	1.4-V PCML	SMA Transceiver
					Output Port2, connected
					to J26(SMA)

January 2, 2020

XCVR_TX3_p	PIN_A30	Output	DP_C2M_P3	1.4-V PCML	SMA Transceiver
					Output Port3, connected
					to J29(SMA)
XCVR_TX3_n	PIN_A31	Output	DP_C2M_N3	1.4-V PCML	SMA Transceiver
					Output Port3, connected
					to J31(SMA)
XCVR_RX0_p	PIN_C6	Input	DP_M2C_P0	1.4-V PCML	SMA Transceiver
					Input Port0, connected to
					J16(SMA)
XCVR_RX0_n	PIN_C7	Input	DP_M2C_N0	1.4-V PCML	SMA Transceiver
					Input Port0, connected to
					J18(SMA)
XCVR_RX1_p	PIN_A2	Input	DP_M2C_P1	1.4-V PCML	SMA Transceiver
					Input Port1, connected to
					J20(SMA)
XCVR_RX1_n	PIN_A3	Input	DP_M2C_N1	1.4-V PCML	SMA Transceiver
					Input Port1, connected to
					J22(SMA)
XCVR_RX2_p	PIN_A6	Input	DP_M2C_P2	1.4-V PCML	SMA Transceiver
					Input Port2, connected to
					J24(SMA)
XCVR_RX2_n	PIN_A7	Input	DP_M2C_N2	1.4-V PCML	SMA Transceiver
					Input Port2, connected to
					J27(SMA)
XCVR_RX3_p	PIN_A10	Input	DP_M2C_P3	1.4-V PCML	SMA Transceiver
					Input Port3, connected to
					J28(SMA)
XCVR_RX3_n	PIN_A11	Input	DP_M2C_N3	1.4-V PCML	SMA Transceiver
					Input Port3, connected to
					J30(SMA)
XCVR_REFCL	PIN_D4	Input	GBTCLK_M2C	LVDS	External reference
К0_р			_P0		clock input, connected to
					J12(SMA)
XCVR_REFCL	PIN_D5	Input	GBTCLK_M2C	LVDS	External reference
K0_n			_N0		clock input, connected to
					J13(SMA)

Chapter 4 *Demonstrations*

This chapter illustrates the transcevier loopback reference design for the XTS-FMC card.

4.1 XTS-FMC Loopback on the TR5

The transceiver test code is used to verify 4 transceiver channels of the FMC connector through the XTS-FMC card and SMA cables. The transceiver channels are verified with PRBS31 test pattern and with the data rates. For 5SGXEA7N2F45C2 Device of the TR5 board, the data rate of the transceiver channel on the FMC connector runs at 12.5G bps.

Required Equipments

To enable an external loopback of transceiver channels, the following fixtures are required:

- TR5 board and XTS-FMC card.
- 8 SMA cables for loopback the TX and RX port on the XTS-FMC card.

Demonstration Setups

The transceiver test code is available in the folder System CD\Demonstrations\TR5\demo_batch. Here are the procedures to perform transceiver channel test:

1. Use the SMA cables to connect the TX ports and the RX ports on the XTS-FMC card to implement the loopback function (See **Figure 4-1**, **Figure 4-2**). There are four channels in total, note the difference between positive and negative ports.

Figure 4-1 SMA loopback setup

XTS-FMC User Manual 2. Connect the XTS-FMC card to the FMC D or FMC A connector of the TR5 board. Make sure the FMC connector between the two boards is locked with copper posts and screws (See section **1.3**).

Figure 4-2 The Connections between the XTS-FMC card and TR5 board

- 3. Connect your TR5 board to your PC with a mini USB cable.
- 4. Connect Power to the TR5 board.
- 5. Copy the demo_batch folder (from System CD) to your local disk.
- 6. Power on the TR5 board.
- 7. Execute 'test.bat" in the demo_batch folder under your local disk.

8. The batch file will download .sof and .elf files, and start the test. The Nios-Terminal as shown in **Figure 4-3** will appear and choose "0" to test all the transceiver loopback test.

Figure 4-3 Choose the Test function

9. Then enter how many seconds you want to test the transmission (See Figure 4-4). For example, enter "60" for test 60 second.

Figure 4-4 Choose test duration

10. The test result will be displayed after the test time has elapsed (See **Figure 4-5**). It should be noted that this test code will test all the transceivers of the FMC A and FMC D connectors on the TR5 board (8 pairs of transceivers for each connector). Since XTS-FMC card can only test 4 pairs of transceivers. So the test result will only show the first four transceivers (0~3) of FMC A or FMC D are PASS or NG. Other transceiver test results can be ignored.

huren veev 7-ua	
FMCB_XCUR_Ø=NG	
EMCC VOUD 0-NC	
FMCD_XCVR_0=PASS	
FMCD XCUR 1=PASS	
FMCD_XCVR_2=PASS	
FMCD_XCVR_3=PASS	
DMCD SCHULA-NC	
FUCD_VCAR_4=MC	
FMCD_XCVR_5=NG	
EMCD YOUR 6 =NC	
THOP_VCAV_0-HQ	
FMCD_XCVR_7=NG	
FMCD_XCUR_8=NG	
FMCD_XCUR_9=NG	

Figure 4-5 The test result of the transceiver loopback

XTS-FMC User Manual

4.2 XTS-FMC Loopback on the Han Pilot Platform

This section describes the use of the XTS-FMC card to test the FPGA's transceiver loopback on the HAN pilot platform. The basic operation is roughly the same as section **4.1**, except that the FPGA board is replaced. The following is a detailed test procedure.

Required Equipments

To enable an external loopback of transceiver channels, the following fixtures are required:

- HAN Pilot Platform and XTS-FMC card.
- 8 SMA cables for loopback the TX and RX ports on the XTS-FMC card.

Demonstration Setups

The transceiver test code is available in the folder System CD\Demonstrations\HAN\XCVT loopback. Here are the procedures to perform transceiver channel test:

1. Use the SMA cables to connect the TX ports and the RX ports on the XTS-FMC card to implement the loopback function (See **Figure 4-6**).

2. Connect the XTS-FMC card to the FMC connector of the HAN Pilot Platform board. Make sure the FMC connector between the two boards is locked with copper posts and screws (See section **1.3**).

Figure 4-6 The Connections between the XTS-FMC and HAN Pilot Platform board

XTS-FMC User Manual www.terasic.com

- 3. Connect your HAN board to your PC with a mini USB cable.
- 4. Connect Power to the HAN Pilot Platform board.
- 5. Copy the demo_batch folder (from System CD) to your local disk.
- 6. Power on the HAN Pilot Platform board.
- 7. Execute 'test.bat" in the demo_batch folder under your local disk.

8. The batch file will download .sof and .elf files, and start the test in the Nios-Terminal as shown in **Figure 4-7**. When the menu option appears, you can choose 0 for starting test. The program will automatically start the test and report the test results every five seconds until the user closes the window (see **Figure 4-8**).

Altera Nios II EDS 18.0 [gcc4] _ × nfo: Quartus Prime Programmer was successful. 0 errors, 0 warnings Info: Quartus Prime Programmer was successful. 0 errors, 0 wa Info: Peak virtual memory: 5218 megabytes Info: Processing ended: Thu Apr 25 16:50:22 2019 Info: Elapsed time: 00:00:25 Info: Total CPU time (on all processors): 00:00:12 Using cable "DE10-Advanced [USB-1]", device 1, instance 0x00 Resetting and pausing target processor: 0K Initializing CPU cache (if present) ov Downloaded 126KB in 0.1s Verified OK Starting processor at address 0x00040244 nios2-terminal: "DE10-Advanced [USB-1]", device 1, instance 0 nios2-terminal: "Use the IDE stop button or Ctrl-C to terminate) 0]Test with default settings. Press any key on the board to abort testing. 1]Test with default settings in given time duration 2]Test with current settings. Press any key on the board to abort testing. 3]Dump current settings 4]Apply default settings 99: Quit Please input your selection:

Figure 4-7 The test program

GE Altera Nios II EDS 18.0 [gcc4]	_	×
XTS_FMC_x4-3: PASS, XferCnt:14016478976		^
===== Time Elapsed: 1 Minutes 15 Seconds =====		
XTS_FMC_x4-0: PASS, XferCnt:15026130560		
XTS_FMC_x4-1: PASS, XferCnt:15026306688		
XTS_FMC_x4-2: PASS, XferCnt:15026441984		
XTS_FMC_x4-3: PASS, XferCnt:14993065600		
===== Time Elapsed: 1 Minutes 20 Seconds =====		
XTS_FMC_x4-0: PASS, XferCnt:16002717184		
XTS_FMC_x4-1: PASS, XferCnt:16002894336		
XTS_FMC_x4-2: PASS, XferCnt:16003027328		
XTS_FMC_x4-3: PASS, XferCnt:15969652096		
===== Time Elapsed: 1 Minutes 25 Seconds =====		
XTS_FMC_x4-0: PASS, XferCnt:16979205888		
XTS_FMC_x4-1: PASS, XferCnt:16979384448		
XTS_FMC_x4-2: PASS, XferCnt:16979518592		
XTS_FMC_x4-3: PASS, XferCnt:16946142080		
===== Time Elapsed: 1 Minutes 30 Seconds =====		
XTS_FMC_x4-0: PASS, XferCnt:17955792384		
XTS_FMC_x4-1: PASS, XferCnt:17955970816		
XTS_FMC_x4-2: PASS, XferCnt:17956105088		
XTS_FMC_x4-3: PASS, XferCnt:17922728448		
===== Time Elapsed: 1 Minutes 35 Seconds =====		
XTS_FMC_x4-0: PASS, XferCnt:18932379008		
XTS_FMC_x4-1: PASS, XferCnt:18932557696		
XTS_FMC_x4-2: PASS, XferCnt:18932691712		
XTS_FMC_x4-3: PASS, XferCnt:18899315328		
		~

Figure 4-8 Test result

4.3 XTS-FMC SuperLite Loopback on the Han Pilot

Platform

This section also describes the use of the XTS-FMC card to test the FPGA's RX/TX transceiver loopback on the HAN pilot platform, this XTS-FMC SuperLite Loopback demonstration is created based on Intel High Speed Transceiver Demo Designs, we ported it to HAN Pilot Platform combined with XTS-FMC card, the data rate of the transceiver channel on the FMC connector runs at 12.5Gbps.

User can refer to A10GX_SIBoard_SuperliteII_V3_4_lanes_10Gbps_QSFP+.pdf document in the folder System CD\Demonstrations\HAN\A10GX_SIBoard_SuperliteII_V3_4_lanes_10 Gbps_QSFP+.pdf for detail description.

Demonstration Setups

The transceiver test code is available in the folder System CD\Demonstrations\HAN\ SuperLite Loopback\demo batch. Here are the procedures to perform transceiver channel test:

1. Use the SMA cables to connect the TX ports and the RX ports on the XTS-FMC card to implement the loopback function (See Figure 4-9).

2. Connect the XTS-FMC card to the FMC connector of the HAN Pilot Platform board. Make sure the FMC connector between the two boards is locked with copper posts and screws (See section 1.3).

Figure 4-9 The Connections between the XTS-FMC and HAN Pilot Platform board

- 3. Connect your HAN board to your PC with a mini USB cable.
- 4. Connect Power to the HAN Pilot Platform board.
- 5. Copy the demo_batch folder (from System CD) to your local disk.
- 6. Power on the HAN Pilot Platform board.
- 7. Execute 'test.bat" in the demo_batch folder under your local disk.

8. The batch file will download .sof and .elf files, and start the test in the Nios-Terminal as shown in Figure 4-10. When the menu option appears, use can choose C to start the test, if the Nios-Terminal shows '0' all the time, it means that the loopback test is passed without error.

Altera Nios II EDS 16.1 [gcc4]
Select Action :
Link : BER : 0 Link : BER : 0

Figure 4-10 Start the test in the Nios-Terminal

9. The signal XCVR quality depends on the device (such as scope, SMA cables) which is connected to the XCVR REFCLK Input SMA connector, user needs to modify the PMA parameters. Choose the action 3 (*Select Channel to Control*) in the Nios-Terminal to change channel, then choose action 4 (*Show/Control Transceiver PMA Settings on Links*) to modify the PMA parameters. Based on our actual experiment, we provided a group of PMA parameters as shown in **Table 4-1**, user can modify the PMA parameters by referring the values in .

Table 4-1 PMA parameters	s based on	our actual	experiment
--------------------------	------------	------------	------------

VOD	29
PostTap	-9
PreTap	-1
other	Default

Appendix

Revision History

Version	Change Log
V1.0	Initial Version (Preliminary)
V1.1	Add section 2.3
V1.2	Add section 4.3
V2.0	Modify by XTS-FMC Rev B board

Copyright [©] Terasic Inc. All rights reserved.

23

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Programmable Logic IC Development Tools category:

Click to view products by Terasic Technologies manufacturer:

Other Similar products are found below :

DK-DEV-5SGXEA7N SLG4DVKADV 88980182 DEV-17526 DEV-17514 LCMXO3L-SMA-EVN 471-014 80-001005 iCE40UP5K-MDP-EVN ALTHYDRAC5GX ALTNITROC5GX 471-015 Hinj SnoMakrR10 DK-DEV-1SDX-P-A DK-DEV-1SDX-P-0ES DK-DEV-ISMC-H-A DK-DEV-1SMX-H-0ES DK-DEV-1SMX-H-A DK-DEV-4CGX150N DK-DEV-5CGTD9N DK-DEV-5CSXC6N DK-DEV-5M570ZN DK-MAXII-1270N DK-SI-1SGX-H-A DK-SI-1STX-E-0ES DK-SI-1STX-E-A DK-SI-5SGXEA7N ATF15XX-DK3-U 240-114-1 6003-410-017 ICE40UP5K-B-EVN ICE5LP4K-WDEV-EVN L-ASC-BRIDGE-EVN LC4256ZE-B-EVN LCMXO2-7000HE-B-EVN LCMXO3D-9400HC-B-EVN LCMXO3L-6900C-S-EVN LF-81AGG-EVN LFE3-MEZZ-EVN LPTM-ASC-B-EVN M2S-HELLO-FPGA-KIT 12GSDIFMCCD NAE-CW305-04-7A100-0.10-X NOVPEK CVLite RXCS10S0000F43-FHP00A 102110204 102110277 102991137 102991277