Data sheet acquired from Harris Semiconductor SCHS069D – Revised November 2004 #### **TERMINAL ASSIGNMENT** # CD4504B Types # CMOS Hex Voltage-Level Shifter for TTL-to-CMOS or CMOS-to-CMOS Operation High-Voltage Types (20-Volt Rating) #### Features: - Independence of power-supply sequence considerations-V_{CC} can exceed V_{DD}; input signals can exceed both V_{CC} and V_{DD} - Up and down level-shifting capability - Shiftable input threshold for either CMOS or TTL compatibility - Standardized symmetrical output characteristics - 100% tested for quiescent current @ 20 V - Maximum input current of 1 µA at 18 V over full package-temperature range; 100 nA at 18 V and 25° C - 5 V, 10 V, and 15 V parametric ratings - Meets all requirements of JEDEC Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices" ■ CD4504B hex voltage level-shifter consists of six circuits which shift input signals from the V_{CC} logic level to the V_{DD} logic level. To shift TTL signals to CMOS logic levels, the SELECT input is at the V_{CC} HIGH logic state. When the SELECT input is at a LOW logic state, each circuit translates signals from one CMOS level to another. The CD4504B types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (M, M96, and MT suffixes), and 16-lead thin shrink small-outline packages (PW and PWR suffixes). Fig. 1 - Functional diagram for CD4504B. | MAXIMUM RATINGS, Absolute-Maximum Values: | | |--|--------------------------------------| | DC SUPPLY-VOLTAGE RANGE, (VDD) | | | Voltages referenced to VSS Terminal) | 0.5V to +20V | | INPUT VOLTAGE RANGE, ALL INPUTS | | | DC INPUT CURRENT, ANY ONE INPUT | ±10mA | | POWER DISSIPATION PER PACKAGE (PD): | | | For T _A = -55°C to +100°C | | | For T _A = +100°C to +125°C" | Perate Linearity at 12mW/OC to 200mW | | DEVICE DISSIPATION PER OUTPUT TRANSISTOR | | | FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types) | 100mW | | OPERATING-TEMPERATURE RANGE (TA) | 55°C to +125°C | | OPERATING-TEMPERATURE RANGE (T _A)stORAGE TEMPERATURE RANGE (T _{stg}) | 85°C to +150°C | | LEAD TEMPERATURE (DURING SOLDERING): | | | At distance 1/16 \pm 1/32 inch (1.59 \pm 0.79mm) from case for 10s max | +265°C | ## STATIC ELECTRICAL CHARACTERISTICS | CHARACTERISTIC | | | CONDITIONS LIMITS AT INDICATED TEMPERATURES (9C) | | | | | | | | | | | Т | |---|---------------|---------------------------------------|--|-------|-----|-----|-------|-------------|-------------|---------|--------|-------------------|----------|--| | CHARACTERISTIC (V) (V) (V) (V) -55 -40 +85 +125 MIN TTP MAX UNITY Quisescent Device Current, IpD Max and ICG In CMOS-CMOS Mode — 0,5 5 5 1.5 1.5 1.5 — 0,02 2 1.5 mA Quisescent Device CMOS Mode — 0,20 5 10 2 2 2 2 — 0,02 2 2 Quisescent Device Current, ICC Max TTL-CMOS Mode — 0,05 5 5 5 5 5 6 6 — 2.5 5 — 0.00 6 0 — 0.02 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0.02 4 µA 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | 1 | _ | | LIMITS A | AT INDICA | TED TEN | PERATU | RES (°C) | | 1 | | Curent, Ipp Max and Icc | | | _ | "" | | | | | | | | 1 | | ļ · | | Current, I _{DD} Max and I _{CC} in CMOS-CMOS Mode − 0,010 5 10 2 2 2 2 2 2 − 0,002 2 1 1 1 1 1 1 1 1 | | | (V) | (V) | (V) | (V) | -55 | -40 | +85 | +125 | MIN | TYP | MAX | UNITS | | In CMOS-CMOS Mode | | | _ | 0,5 | 5 | 5 | 1.5 | 1.5 | 1.5 | 1.5 | | 0.02 | 1.5 | m _A | | Culescent Device Current, I _{CC} Max TTL-CMOS Mode | | | | 0,10 | 5 | 10 | 2 | 2 | 2 | 2 | | 0.02 | 2 |] ""A | | Quiescent Device Current, ICC Max TITL-CMOS Mode — 0,5 5 5 5 5 6 6 — 2.5 5 CC Max TITL-CMOS Mode — 0,10 5 10 5 5 6 6 — 2.5 5 Output Low (Sink) 0.4 0.5 — 5 0.84 0.61 0.42 0.36 0.51 1 — Current, IoL Min 0.5 0,10 — 10 1.6 1.5 1.1 0.99 1.3 2.6 — Output High (Source) 4.8 0.5 — 5 -0.64 -0.61 -0.42 -0.33 -0.51 —1 — Current, IoH Min 1.5 0,15 — 15 -2.2 -1.8 -1.3 -0.51 —1 — Current, IoH Min — -5 0.0 —1 0.0 —1 0.0 —1 0.0 —1 0.0 —1 0.0 —1 0.0 | | | | 0,15 | 5 | 15 | 4 | 4 | 120 | 120 | _ | 0.02 | 4 | μА | | CC Max TIL-CMOS Mode | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | - | 0,20 | 5 | 20 | 20 | 20 | 600 | 600 | _ | 0.04 | 20 |] | | Composition | | | | 0, 5 | 5 | 5 | 5 | 5 | 6 | 6 | | 2.5 | 5 | | | Cutput Low (Sink) Current, IoL Min 0.4 0.5 — 5 0.64 0.61 0.42 0.36 0.51 1 — Part of the pa | ICC wax I I | L-CMOS Mode | | 0, 10 | 5 | 10 | 5 | 5 | 6 | 6 | _ | 2.5 | 5 | mA | | Current, IoL Min 0.5 0,10 — 10 1.6 1.5 1.1 0.9 1.3 2.6 — Output High (Source)
Current, IoH Min 4.8 0,5 — 5 -0.64 -0.61 -0.42 -0.36 -0.51 -1 — 2.5 0,5 — 5 -0.64 -0.61 -0.42 -0.36 -0.51 -1 — 2.5 0,5 — 5 -0.64 -0.61 -0.42 -0.36 -0.51 -1 — 9.5 0,10 — 10 -1.8 -1.5 -1.1 -0.9 -1.3 -2.6 — - 0,15 — 15 -4.2 -4 -2.8 -2.4 -3.4 -6.8 — - 0,10 — 10 0.05 — 0 0.05 - 0,15 — 15 0.05 — 0 0.05 - 0,15 — | | | _ | 0,15 | 5 | 15 | 5 | 5 | 8 | 6 | _ | 2.5 | 5 | | | Output High (Source) Current, I _{OH} Min 0.5 | - | • • | 0.4 | 0.5 | _ | 5 | 0.64 | 0.61 | 0.42 | 0.36 | 0.51 | 1 | _ | | | Output High (Source) 4.8 0.5 - 5 -0.64 -0.61 -0.42 -0.36 -0.51 -1 | Current, IO | L Min | 0.5 | 0,10 | _ | 10 | 1.6 | 1.5 | 1.1 | 0.9 | 1.3 | 2.6 | _ | 1 | | Current, I OH Min 2.5 | | | 1.5 | 0, 15 | | 15 | 4.2 | 4 | 2.8 | 2.4 | 3.4 | 6.8 | _ | 1 . | | 1.5 | | • | 4.6 | 0,5 | - | 5 | -0.64 | -0.61 | -0.42 | -0.36 | -0.51 | -1 | _ | mA | | 13.5 0,15 - 15 -4.2 -4 -2.8 -2.4 -3.4 -6.8 - 0.05 - 0 | Current, IO | H Min | 2.5 | 0,5 | _ | 5 | -2 | -1.8 | -1.3 | -1.15 | -1.6 | -3.2 | _ | | | Output Voltage: — 0,5 — 5 0.05 — 0 0.05 Low-Level, VOL Max — 0,10 — 10 0.05 — 0 0.05 — 0,15 — 15 0.05 — 0 0.05 — 0,15 — 15 0.05 — 0 0.05 — 0,15 — 15 0.05 — 0 0.05 — 0,15 — 10 9.95 4.95 5 — — 0,10 — 10 9.95 9.95 10 — — 0,15 — 15 14.95 14.95 15 — Input Low Voltage, VIL Max Note 1 TTL-CMOS 1 — 5 15 0.8 — — 0.8 V CMOS-CMOS 1.5 — 5 15 1.5 — — 1.5 — — | | | 9.5 | 0, 10 | | 10 | -1.6 | -1.5 | -1.1 | -0.9 | -1.3 | -2.6 | | | | Low-Level, Vol. Max | | | 13.5 | 0,15 | _ | 15 | -4.2 | -4 | -2.8 | -2.4 | -3.4 | -6.8 | _ | | | Output Voltage: High-Level, VOH Min TTL-CMOS | Output Volta | ge: | | 0,5 | | 5 | 0.05 | | | | _ | 0 | 0.05 | | | Output Voltage: High-Level, VOH Min | Low-Level, | V _{OL} Max | _ | 0,10 | _ | 10 | | 0.0 | 05 | | .— | 0 | 0.05 | 1 | | High-Level, V _{OH} Min - 0, 10 - 10 9.95 9.95 10 - - 0, 15 - 15 14.95 15 - Input Low Voltage, V _{IL} Max Note 1 TTL-CMOS | | | _ | 0, 15 | _ | 15 | - | 0.0 | 05 | | | 0 | 0.05 | 1 | | TTL-CMOS 1 - 5 10 0.8 - - 0.8 V | Output Volta | ge: | _ | 0,5 | | 5 | | 4.9 | 95 | | 4.95 | 5 | _ | 1 | | Input Low Voltage, | High-Level, | V _{OH} Min | | 0,10 | | 10 | | 9.9 | 95 | | 9.95 | 10 | _ | 1 1 | | Voltage, V _{IL} Max Note 1 | | | _ | 0, 15 | _ | 15 | | 14. | 95 | | 14.95 | 15 | _ | 1 | | VIL Max Note 1 TIL-CMOS 1 - 5 15 0.8 - - 0.8 V CMOS-CMOS 1 - 5 10 1.5 - - 1.5 CMOS-CMOS 1.5 - 5 15 15 - - 1.5 CMOS-CMOS 1.5 - 10 15 3 - - 3 Input High Voltage, VIH Min Note 1 TTL-CMOS 9 - 5 10 2 2 - - CMOS-CMOS 9 - 5 10 3.5 2 2 - - CMOS-CMOS 13.5 - 5 15 3.5 3.5 - - CMOS-CMOS 13.5 - 5 15 3.5 3.5 - - CMOS-CMOS 13.5 - 5 15 7 7 - - | Input Low | TTL-CMOS | 1 | | 5 | 10 | | 0. | .8 | | _ | _ | 0.8 | 1 | | Note 1 | | TTL-CMOS | 1 | _ | 5 | 15 | | 0. | .8 | | _ | | 0.8 | l v | | CMOS-CMOS 1.5 - 10 15 3 - 3 3 3 3 3 4 3 3 4 4 | | CMOS-CMOS | 1 | _ | 5 | 10 | | 1. | .5 | | | | 1.5 | 1 | | Input High Voltage, VIH Min Note 1 TTL-CMOS 9 - 5 10 2 2 - - | | CMOS-CMOS | 1.5 | | 5 | 15 | | 1. | 5 | | _ | | 1,5 | 1 | | Input High Voltage, VIH Min Note 1 TTL-CMOS 9 - 5 10 2 2 - - | | CMOS-CMOS | 1.5 | _ | 10 | 15 | | 3 | 3 | | | _ | | 1 | | Voltage, V _{IH} Min Note 1 TTL-CMOS 13.5 — 5 15 2 2 — — CMOS-CMOS 9 — 5 10 3.5 3.5 — — CMOS-CMOS 13.5 — 5 15 3.5 3.5 — — CMOS-CMOS 13.5 — 10 15 7 7 — — | Input High | TTL-CMOS | 9 | _ | 5 | 10 | | 2 | 2 | | 2 | _ | <u> </u> | 1 | | VIH Min Note 1 CMOS-CMOS 9 - 5 10 3.5 3.5 - - CMOS-CMOS 13.5 - 5 15 3.5 3.5 - - CMOS-CMOS 13.5 - 10 15 7 7 - - | | TTL-CMOS | 13.5 | _ | 5 | 15 | , | | | | | | | 1 | | CMOS-CMOS 13.5 — 5 15 3.5 3.5 — — CMOS-CMOS 13.5 — 10 15 7 7 — — | | CMOS-CMOS | 9 | | 5 | 10 | | | · | | | | | | | CMOS-CMOS 13.5 — 10 15 7 7 — — | | | | | | | | | | | | <u> </u> | | 1 | | | | | | | | | | | | | | | _ | 1 | | Input Current, I _{IN} Max $-$ 0, 18 $-$ 18 \pm 0.1 \pm 0.1 \pm 1 \pm 1 $ \pm$ 10 ⁻⁵ \pm 0.1 \pm A | Input Current | 1 | _ | 0,18 | | 18 | ±0.1 | ±0.1 | ±1 | +1 | | ±10 ⁻⁵ | +01 | ^ | Note 1: Applies to the 6 input signals. For mode control (P13), only the CMOS-CMOS ratings apply. Fig. 2 - Typical output low (sink) current characteristics. Fig. 3 - Minimum output low (sink) current characteristics. ## CD4504B Types Fig. 4 - Typical output high (source) current characteristics. Fig. 5 - Minimum output high (source) current characteristics. ## RECOMMENDED OPERATING CONDITIONS For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges: | CHARACTERISTIC | VDD | LIM | ITS | UNITS | | |--|-----|------|------|---------|--| | OHARACIERISTIC | (V) | Min. | Max. | 0.41.73 | | | Supply-Voltage Range (For T _A = Full Package-Temperature Range) | _ | 5 | 18 | ٧ | | ## DYNAMIC ELECTRICAL CHARACTERISTICS, At TA = 25°C; Input tr,tf = 20 ns, CL = 50 pF, RL = 200 Ω | CHARACTERISTI | | SHIFTING MODE | VCC (V) | VDD (V) | LIM | IITS | UNITS | |--------------------|------------------------------------|-----------------------------------|---------|----------------|------|------|-------| | OTIANACT ENIST | | SHIFTING MODE | 100(1) | VUD (V) | TYP. | MAX. | UNITS | | | | TTL to CMOS | 5 | 10 | 140 | 280 | | | | | V _{DD} > V _{CC} | 5 | 15 | 140 | 280 | | | Propagation Delay: | ſ | CMOS to CMOS | 5 | 10 | 120 | 240 |] | | High-to Low, | t _{PHL} | $V_{DD} > V_{CC}$ | 5 | 15 | 120 | 240 | | | | | . * | 10 | 15 | 70 | 140 | | | | ſ | CMOS to CMOS | 10 | 5 | 275 | 550 | | | | | $V_{CC} > V_{DD}$ | 15 | 5 | 275 | 550 | | | | | | 15 | 10 | 70 | 140 | | | | | TTL to CMOS | 5 | 10 | 140 | 280 | ns | | | 1 | V _{DD} > V _{CC} | 5 | 15 | 140 | 280 | | | | [| CMOS to CMOS | 5 | 10 | 120 | 240 | 7 | | Low-to-High, | telH | $V_{DD} > V_{CC}$ | 5 | 15 | 120 | 240 | | | | 21 | | 10 | 15 | 70 | 140 | | | | | CMOS to CMOS | 10 | 5 | 200 | 400 | | | | | Vcc > Vpp | 15 | 5 | 200 | 400 | | | | A + " " " | | 15 | 10 | 60 | 120 | | | | 1 | | 1 | 5 | 100 | 200 | | | Transition Time, | t _{THL} ,t _{TLH} | All Modes | | 10 | 50 | 100 | | | | | | | 15 | 40 | 80 | | | Input Capacitance, | Cin | Any Input | | 5 | 7.5 | pF | | Fig. 6 - Quiescent device current. 3-243 ## CD4504B Types Fig. 9 - Typical input switching as a function of high-level supply voltage. (SELECT at Vcc-CMOS mode). Fig. 10 - Typical input switching as a function of high-level supply voltage (SELECT at Vss-TTL mode). Fig. 11 - High-level supply voltage vs. low-level supply voltage. Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch). Dimensions and pad layout for CD4504BH. www.ti.com 14-Aug-2021 #### PACKAGING INFORMATION | Orderable Device | Status (1) | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|------------|--------------|--------------------|------|----------------|---------------------|-------------------------------|--------------------|--------------|-------------------------|---------| | CD4504BE | ACTIVE | PDIP | N | 16 | 25 | RoHS & Green | NIPDAU | N / A for Pkg Type | -55 to 125 | CD4504BE | Samples | | CD4504BEE4 | ACTIVE | PDIP | N | 16 | 25 | RoHS & Green | NIPDAU | N / A for Pkg Type | -55 to 125 | CD4504BE | Samples | | CD4504BF3A | ACTIVE | CDIP | J | 16 | 1 | Non-RoHS
& Green | SNPB | N / A for Pkg Type | -55 to 125 | CD4504BF3A | Samples | | CD4504BM | ACTIVE | SOIC | D | 16 | 40 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CD4504BM | Samples | | CD4504BM96 | ACTIVE | SOIC | D | 16 | 2500 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CD4504BM | Samples | | CD4504BM96E4 | ACTIVE | SOIC | D | 16 | 2500 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CD4504BM | Samples | | CD4504BME4 | ACTIVE | SOIC | D | 16 | 40 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CD4504BM | Samples | | CD4504BMG4 | ACTIVE | SOIC | D | 16 | 40 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CD4504BM | Samples | | CD4504BMT | ACTIVE | SOIC | D | 16 | 250 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CD4504BM | Samples | | CD4504BPW | ACTIVE | TSSOP | PW | 16 | 90 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CM504B | Samples | | CD4504BPWE4 | ACTIVE | TSSOP | PW | 16 | 90 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CM504B | Samples | | CD4504BPWR | ACTIVE | TSSOP | PW | 16 | 2000 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CM504B | Samples | ⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. **Green:** TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. ⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". PACKAGE OPTION ADDENDUM www.ti.com 14-Aug-2021 (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF CD4504B, CD4504B-MIL: Catalog: CD4504B ■ Enhanced Product : CD4504B-EP, CD4504B-EP Military: CD4504B-MIL #### NOTE: Qualified Version Definitions: Catalog - TI's standard catalog product • Enhanced Product - Supports Defense, Aerospace and Medical Applications Military - QML certified for Military and Defense Applications ## **PACKAGE MATERIALS INFORMATION** www.ti.com 3-Jun-2022 ## TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | CD4504BM96 | SOIC | D | 16 | 2500 | 330.0 | 16.4 | 6.5 | 10.3 | 2.1 | 8.0 | 16.0 | Q1 | | CD4504BPWR | TSSOP | PW | 16 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | ## **PACKAGE MATERIALS INFORMATION** www.ti.com 3-Jun-2022 ## *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |------------|--------------|-----------------|------|------|-------------|------------|-------------| | CD4504BM96 | SOIC | D | 16 | 2500 | 340.5 | 336.1 | 32.0 | | CD4504BPWR | TSSOP | PW | 16 | 2000 | 356.0 | 356.0 | 35.0 | ## **PACKAGE MATERIALS INFORMATION** www.ti.com 3-Jun-2022 ## **TUBE** *All dimensions are nominal | Device | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T (µm) | B (mm) | |-------------|--------------|--------------|------|-----|--------|--------|--------|--------| | CD4504BE | N | PDIP | 16 | 25 | 506 | 13.97 | 11230 | 4.32 | | CD4504BE | N | PDIP | 16 | 25 | 506 | 13.97 | 11230 | 4.32 | | CD4504BEE4 | N | PDIP | 16 | 25 | 506 | 13.97 | 11230 | 4.32 | | CD4504BEE4 | N | PDIP | 16 | 25 | 506 | 13.97 | 11230 | 4.32 | | CD4504BM | D | SOIC | 16 | 40 | 507 | 8 | 3940 | 4.32 | | CD4504BME4 | D | SOIC | 16 | 40 | 507 | 8 | 3940 | 4.32 | | CD4504BMG4 | D | SOIC | 16 | 40 | 507 | 8 | 3940 | 4.32 | | CD4504BPW | PW | TSSOP | 16 | 90 | 530 | 10.2 | 3600 | 3.5 | | CD4504BPWE4 | PW | TSSOP | 16 | 90 | 530 | 10.2 | 3600 | 3.5 | ## D (R-PDS0-G16) ## PLASTIC SMALL OUTLINE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AC. ## D (R-PDSO-G16) ## PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. SMALL OUTLINE PACKAGE - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. - 5. Reference JEDEC registration MO-153. SMALL OUTLINE PACKAGE NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. SMALL OUTLINE PACKAGE NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. ## 14 LEADS SHOWN - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package is hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. - E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20. ## N (R-PDIP-T**) ## PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. ## **IMPORTANT NOTICE AND DISCLAIMER** TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated ## **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Translation - Voltage Levels category: Click to view products by Texas Instruments manufacturer: Other Similar products are found below: NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT1G PCA9306FMUTAG MC100EPT622MNG NLSX3014MUTAG NLSX5011MUTCG NLVSX4373MUTAG NB3U23CMNTAG NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G NLA9306MU3TCG PI4ULS3V304AZMAEX PI4ULS3V504AZMAEX 74AVCH1T45FW3-7 NLSX5011AMUTAG 74AXP1T34GWH ST2149BQTR MC100ELT21DR2G MC100LVELT22MNRG MC10ELT20DR2G MC10EPT20MNR4G MC14504BFELG NLSV4T3234FCT1G NLSX3378BFCT1G UM3208QA UM3208H UM3304 UM3304QT UM3202H UM3308 RS0104YTQE12 RS0204YUTQH12 AW39204QNR AW39114FOR RS0104YTQF14 RS0204YTQF14 UM3204QT UM3204QB UM3204QV AIPTS0104TA14.TR AIPTB0104TA14.TR UM3304QS SN74LXC2T45DCUR TCA39306DTMR NTS0102TL-Q100H AW39112DNR XP7660 RS4T774XTSS16