LM337-N-MIL ZHCSGG3-JUNE 2017 ## LM337-N 3 端子可调节负稳压器 #### 特性 - 1.5A 输出电流 - 线路调节 0.01%/V (典型值) - 负载调节 0.3% (典型值) - 77dB 纹波抑制 - 50ppm/°C 温度系数 - 热过载保护 - 内部短路电流限制保护 #### 2 应用 - 工业用电源 - 工厂自动化系统 - 楼宇自动化系统 - PLC 系统 - 仪表 - IGBT 驱动器负栅极电源 - 网络 - 机顶盒 #### 3 说明 LM337-N-MIL 是一款可调节 3 端子负电压稳压器,能 够在 -1.25V 至 -37V 的输出电压范围内提供 -1.5A 或更大的电流。它仅需要使用两个外部电阻器来 设置输出电压以及使用一个输出电容器进行频率补偿。 电路设计已经过优化,可实现出色的稳压和低热瞬态。 此外, LM337-N-MIL 还 具有 内部电流限制、热关断 和安全区域补偿功能, 使其几乎能够在过载时防止烧 毁。 LM337-N-MIL 是对 LM117 和 LM317 可调节负稳压器 的理想补充。 #### 器件信息(1) | 器件型号 | 封装 | 封装尺寸 (标称值) | | | |-------------|-------------|--------------------|--|--| | | SOT-223 (4) | 3.50mm × 6.50mm | | | | LM337-N-MIL | TO (3) | 8.255mm × 8.255mm | | | | | TO-220 (3) | 10.16mm × 14.986mm | | | (1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。LF01 是 TO-220 封装的成型 (弯曲) 版本。 #### 可调节负电压稳压器 满载输出电流在高输入到输出电压下不可用 $$-V_{OUT} = -1.25V \left(1 + \frac{R2}{120}\right) + \left(-I_{ADJ} \times R2\right)$$ †C1 为 1μF 的固体钽或 10μF 的铝电解电容器 (用于实现稳定性时需要) \*C2 为 1µF 的固体钽(仅当稳压器与电源滤波电容器的距离大于 4 英寸时才需要) 通常使用 1µF 至 1000µF 范围内的铝或钽电解输出电容器来提供更佳的输出阻抗和瞬态抑制 | 1<br>2<br>3 | 特性 | 1 8<br>1 | 7.4 Device Functional Modes | 10<br>10 | |-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------|----------------------| | 4 | 修订历史记录 | • | 8.2 Typical Applications Power Supply Recommendations | | | 5 | Pin Configuration and Functions | 3 | | | | 6 | Specifications 6.1 Absolute Maximum Ratings 6.2 ESD Ratings 6.3 Recommended Operating Conditions 6.4 Thermal Information 6.5 Electrical Characteristics 6.6 Typical Characteristics | 4<br>4<br>4<br>4<br>4<br>11 | 10.1 Layout Guidelines<br>10.2 Layout Example<br>10.3 Thermal Considerations<br>器件和文档支持<br>11.1 文档支持 | 14<br>15<br>16<br>16 | | 7 | Detailed Description | | 11.3 商标 | | | | 7.1 Overview | 8 | 11.4 静电放电警告<br>11.5 Glossary机械、封装和可订购信息 | 16 | ## 4 修订历史记录 | 日期 | 修订版本 | 注意 | |------------|------|--------| | 2017 年 6 月 | * | 初始发行版。 | ### 5 Pin Configuration and Functions #### **Pin Functions** | | I | PIN | | 1/0 | DESCRIPTION | |------------------|--------|---------|---------|-----|--------------------------------------| | NAME | TO-220 | то | SOT-223 | 1/0 | DESCRIPTION | | ADJ | 1 | 1 | 1 | _ | Adjust pin | | V <sub>IN</sub> | 2, TAB | 3, CASE | 2, 4 | I | Input voltage pin for the regulator | | V <sub>OUT</sub> | 3 | 2 | 3 | 0 | Output voltage pin for the regulator | ## TEXAS INSTRUMENTS ### 6 Specifications #### 6.1 Absolute Maximum Ratings | | | MIN | MAX | UNIT | |---------------------------------------|------------|---------|-----|------| | Power dissipation | Internally | Limited | | | | Input-output voltage differential | -0.3 | 40 | V | | | Operating junction temperature | 0 | 125 | °C | | | Storage temperature, T <sub>stg</sub> | -65 | 150 | °C | | 6.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|-------------------------|--------------------------------------------------------|-------|------| | V <sub>(ESD)</sub> | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) | ±2000 | V | <sup>(1)</sup> JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±2000 V may actually have higher performance. #### 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) | | MIN | MAX | UNIT | |--------------------------------|-----|-----|------| | Operating junction temperature | 0 | 125 | °C | #### 6.4 Thermal Information | | | | LM337-N-MIL | | | | | |----------------------|----------------------------------------------|--------------------|------------------|------------------------|------|--|--| | | THERMAL METRIC <sup>(1)</sup> | NDT<br>(TO) | DCY<br>(SOT-223) | NDE OR NDG<br>(TO-220) | UNIT | | | | | | 3 PINS | 3 PINS | 3 PINS | | | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 140 <sup>(2)</sup> | 58.3 | 22.9 | °C/W | | | | $R_{\theta JC(top)}$ | Junction-to-case (top) thermal resistance | 12 | 36.6 | 15.7 | °C/W | | | | $R_{\theta JB}$ | Junction-to-board thermal resistance | _ | 7.2 | 4.1 | °C/W | | | | ΨЈТ | Junction-to-top characterization parameter | _ | 1.3 | 2.4 | °C/W | | | | ΨЈВ | Junction-to-board characterization parameter | _ | 7 | 4.1 | °C/W | | | | $R_{\theta JC(bot)}$ | Junction-to-case (bottom) thermal resistance | _ | _ | 1 | °C/W | | | For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. No heat sink. www.ti.com.cn #### 6.5 Electrical Characteristics Unless otherwise specified, these specifications apply: $0^{\circ}\text{C} \le \text{T}_{j} \le 125^{\circ}\text{C}$ for the LM337-N-MIL; $V_{\text{IN}} - V_{\text{OUT}} = 5 \text{ V}$ ; and $I_{\text{OUT}} = 0.1 \text{ A}$ for the TO package and $I_{\text{OUT}} = 0.5 \text{ A}$ for the SOT-223 and TO-220 packages. Although power dissipation is internally limited, these specifications are applicable for power dissipations of 2 W for the TO and SOT-223, and 20 W for the TO-220. IMAX is 1.5 A for the SOT-223 and TO-220 packages, and 0.2 A for the TO package. | PARAMETER | TEST CON | DITIONS | MIN | TYP | MAX | UNIT | |-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------|-------|--------|------| | Line regulation | $T_J = 25^{\circ}C$ , 3 V $\leq$ V <sub>IN</sub> - V <sub>OUT</sub> $\leq$ 40 V <sup>(1)</sup> $I_L = 10 \text{ mA}$ | | <u> </u> | 0.01 | 0.04 | %/V | | Load regulation | $T_J = 25$ °C, 10 mA $\leq I_{OUT} \leq I_{MAX}$ | | | 0.3% | 1% | | | Thermal regulation | T <sub>J</sub> = 25°C, 10-ms Pulse | | | 0.003 | 0.04 | %/W | | Adjustment pin current | | | | 65 | 100 | μΑ | | Adjustment pin current charge | 10 mA $\leq$ I <sub>L</sub> $\leq$ I <sub>MAX</sub><br>3 V $\leq$ V <sub>IN</sub> - V <sub>OUT</sub> $\leq$ 40 V,<br>T <sub>A</sub> = 25°C | $V \le V_{IN} - V_{OUT} \le 40 \text{ V},$ $A_A = 25^{\circ}\text{C}$ | | | | | | Poforonco voltago | ance voltage $3 \text{ V} \le V_{\text{IN}} - V_{\text{OUT}} \le 40 \text{ V},$ (2) | | -1.213 | -1.25 | -1.287 | V | | Reference voltage | 10 mA $\leq$ I <sub>OUT</sub> $\leq$ I <sub>MAX</sub> , P $\leq$ P <sub>MAX</sub> | -55°C ≤ T <sub>J</sub> ≤ 150°C | -1.2 | -1.25 | -1.3 | V | | Line regulation | $3 \text{ V} \le V_{IN} - V_{OUT} \le 40 \text{ V}, (1)$ | | 0.02 | 0.07 | %/V | | | Load regulation | 10 mA $\leq$ I <sub>OUT</sub> $\leq$ I <sub>MAX</sub> , <sup>(1)</sup> | 10 mA ≤ I <sub>OUT</sub> ≤ I <sub>MAX</sub> , <sup>(1)</sup> | | | | | | Temperature stability | $T_{MIN} \le T_j \le T_{MAX}$ | | | 0.6% | | | | Minimum load aurrent | $ V_{IN} - V_{OUT} \le 40 \text{ V}$ | | | 2.5 | 10 | mA | | pad regulation | $ V_{IN} - V_{OUT} \le 10 \text{ V}$ | | | 1.5 | 6 | mA | | | V <sub>IN</sub> - V <sub>OLIT</sub> ≤ 15 V | K, DCY and NDE package | 1.5 | 2.2 | 3.7 | Α | | Current limit | IVIN - VOUTI = 15 V | NDT package | 0.5 | 8.0 | 1.9 | Α | | Current min | IV - V I - 40 V T - 25°C | K, DCY and NDE package | 0.15 | 0.4 | | Α | | | V <sub>IN</sub> - V <sub>OUT</sub> = 40 V, I <sub>J</sub> = 25 C | $ V_{IN} - V_{OUT} = 40 \text{ V}, T_J = 25^{\circ}\text{C}$ NDT package | | | | Α | | RMS output noise, % of $V_{\text{OUT}}$ | $T_j = 25^{\circ}C$ , 10 Hz $\leq f \leq$ 10 kHz | | 0.003% | | | | | Ripple rejection ratio | V <sub>OUT</sub> = −10 V, f = 120 Hz | V <sub>OUT</sub> = −10 V, f = 120 Hz | | | | dB | | Ripple rejection ratio | $C_{ADJ} = 10 \mu F$ | | 66 | 77 | | dB | | Long-term stability | T <sub>J</sub> = 125°C, 1000 Hours | | | 0.3% | 1% | | <sup>(1)</sup> Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation. Load regulation is measured on the output pin at a point 1/8 in. below the base of the TO packages. <sup>(2)</sup> Selected devices with tightened tolerance reference voltage available. #### 6.6 Typical Characteristics (NDE Package) www.ti.com.cn ### **Typical Characteristics (continued)** ZHCSGG3 – JUNE 2017 www.ti.com.cn # TEXAS INSTRUMENTS #### 7 Detailed Description #### 7.1 Overview In operation, the LM337-N-MIL develops a nominal -1.25-V reference voltage between the output and adjustment terminal. The reference voltage is impressed across program resistor R1 (120 $\Omega$ for example) and, because the voltage is constant, a constant current then flows through the output set resistor R2, giving an output voltage calculated by Equation 1. $$-V_{OUT} = -1.25V \left(1 + \frac{R2}{120}\right) + \left(-I_{ADJ} \times R2\right)$$ (1) #### 7.2 Functional Block Diagram #### 7.3 Feature Description #### 7.3.1 Thermal Regulation When power is dissipated in an IC, a temperature gradient occurs across the IC chip affecting the individual IC circuit components. With an IC regulator, this gradient can be especially severe because power dissipation is large. Thermal regulation is the effect of these temperature gradients on output voltage (in percentage output change) per Watt of power change in a specified time. Thermal regulation error is independent of electrical regulation or temperature coefficient, and occurs within 5 ms to 50 ms after a change in power dissipation. Thermal regulation depends on IC layout as well as electrical design. The thermal regulation of a voltage regulator is defined as the percentage change of $V_{OUT}$ , per Watt, within the first 10 ms after a step of power is applied. www.ti.com.cn ZHCSGG3 – JUNE 2017 #### 7.4 Device Functional Modes #### 7.4.1 Protection Diodes When external capacitors are used with any IC regulator, it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator. Most 10-μF capacitors have low enough internal series resistance to deliver 20-A spikes when shorted. Although the surge is short, there is enough energy to damage parts of the IC. When an output capacitor is connected to a negative output regulator and the input is shorted, the output capacitor pulls current out of the output of the regulator. The current depends on the value of the capacitor, the output voltage of the regulator, and the rate at which $V_{IN}$ is shorted to ground. The bypass capacitor on the adjustment terminal can discharge through a low current junction. Discharge occurs when either the input, or the output, is shorted. Figure 13 shows the placement of the protection diodes. <sup>\*</sup>When $C_L$ is larger than 20 $\mu$ F, D1 protects the LM1337-N-MIL in case the input supply is shorted Figure 13. Regulator With Protection Diodes <sup>\*\*</sup>When C2 is larger than 10 $\mu$ F and $-V_{OUT}$ is larger than -25V, D2 protects the LM1337-N-MIL in case the output is shorted #### 8 Application and Implementation #### NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. #### 8.1 Application Information The LM337-N-MIL is a versatile, high performance, negative output linear regulator with high accuracy and a wide temperature range. An output capacitor can be added to further improve transient response, and the ADJ pin can be bypassed to achieve very high ripple-rejection ratios. The functionality of the device can be utilized in many different applications that require negative voltage supplies, such as bipolar amplifiers, operational amplifiers, and constant current regulators. #### 8.2 Typical Applications #### 8.2.1 Adjustable Negative Voltage Regulator The LM337-N-MIL can be used as a simple, negative output regulator to enable a variety of output voltages needed for demanding applications. By using an adjustable R2 resistor, a variety of negative output voltages can be made possible as shown in Figure 14. Full output current not available at high input-output voltages $\dagger C1 = 1 - \mu F$ solid tantalum or $10 - \mu F$ aluminum electrolytic required for stability $^*$ C2 = 1-μF solid tantalum is required only if regulator is more than 4 inches from power-supply filter capacitor Output capacitors in the range of 1 μF to 1000 μF of aluminum or tantalum electrolytic are commonly used to provide improved output impedance and rejection of transients Figure 14. Adjustable Negative Voltage Regulator $$-V_{OUT} = -1.25V \left( 1 + \frac{R^2}{120} \right) + \left( -I_{ADJ} \times R^2 \right)$$ (2) #### 8.2.1.1 Design Requirements The device component count is very minimal, employing two resistors as part of a voltage divider circuit and an output capacitor for load regulation. An input capacitor is needed if the device is more than 4 inches from the filter capacitors. ZHCSGG3-JUNE 2017 www.ti.com.cn #### **Typical Applications (continued)** #### 8.2.1.2 Detailed Design Procedure The output voltage is set based on the selection of the two resistors, R1 and R2, as shown in Figure 14. #### 8.2.1.3 Application Curve As shown in Figure 15, the maximum output current capability is limited by the input-output voltage differential, package type, and junction temperature. Figure 15. Current Limit #### 8.2.2 Adjustable Lab Voltage Regulator The LM337-N-MIL can be combined with a positive regulator such as the LM317-N to provide both a positive and negative voltage rail. This can be useful in applications that use bi-directional amplifiers and dual-supply operational amplifiers. #### **Typical Applications (continued)** Full output current not available at high input-output voltages \*The 10 $\mu$ F capacitors are optional to improve ripple rejection #### 8.2.3 -5.2-V Regulator with Electronic Shutdown The LM337-N-MIL can be used with a PNP transistor to provide shutdown control from a TTL control signal. The PNP can short or open the ADJ pin to GND. When ADJ is shorted to GND by the PNP, the output is -1.3 V. When ADJ is disconnected from GND by the PNP, then the LM337-N-MIL outputs the programmed output of -5.2 V. #### **Typical Applications (continued)** Minimum output $\simeq -1.3$ V when control input is low #### 8.2.4 High Stability -10-V Regulator Using a high stability shunt voltage reference in the feedback path, such as the LM329, provides damping necessary for a stable, low noise output. ## TEXAS INSTRUMENTS #### 9 Power Supply Recommendations The input supply to the LM337-N must be kept at a voltage level such that the maximum input to output differential voltage rating is not exceeded. The minimum dropout voltage must also be met with extra headroom when possible to keep the LM337-N-MIL in regulation. TI recommends an input capacitor, especially when the input pin is placed more than 4 inches away from the power-supply filter capacitor. #### 10 Layout #### 10.1 Layout Guidelines Some layout guidelines must be followed to ensure proper regulation of the output voltage with minimum noise. Traces carrying the load current must be wide to reduce the amount of parasitic trace inductance and the feedback loop from $V_{OUT}$ to ADJ must be kept as short as possible. To improve PSRR, a bypass capacitor can be placed at the ADJ pin and must be placed as close as possible to the IC. In cases when $V_{IN}$ shorts to ground, an external diode must be placed from $V_{IN}$ to $V_{OUT}$ to divert the surge current into the output capacitor and protect the IC. Similarly, in cases when a large bypass capacitor is placed at the ADJ pin and $V_{OUT}$ shorts to ground, an external diode must be placed from $V_{OUT}$ to ADJ to provide a path for the bypass capacitor to discharge. These diodes must be placed close to the corresponding IC pins to increase their effectiveness. #### 10.2 Layout Example Figure 16. Layout Example (SOT-223) ZHCSGG3-JUNE 2017 www.ti.com.cn #### 10.3 Thermal Considerations #### 10.3.1 Heatsinking SOT-223 Package Parts The SOT-223 DCY packages use a copper plane on the PCB and the PCB itself as a heatsink. To optimize the heat sinking ability of the plane and PCB, solder the tab of the package to the plane. Figure 17 and Figure 18 show the information for the SOT-223 package. Figure 18 assumes a $\theta_{(J-A)}$ of 75°C/W for 1 ounce copper and 51°C/W for 2 ounce copper and a maximum junction temperature of 125°C. Figure 17. $\theta_{(J-A)}$ vs Copper (2 ounce) Area for the SOT-223 Package Figure 18. Maximum Power Dissipation vs T<sub>AMB</sub> for the SOT-223 Package See AN-1028, SNVA036, for power enhancement techniques to be used with the SOT-223 package. # TEXAS INSTRUMENTS #### 11 器件和文档支持 #### 11.1 文档支持 #### 11.1.1 相关文档 请参阅如下相关文档: AN-1028 SNVA036 #### 11.2 社区资源 下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商"按照原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。 TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。 设计支持 **TI** 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。 #### 11.3 商标 E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. #### 11.4 静电放电警告 这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。 #### 11.5 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. #### 12 机械、封装和可订购信息 以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航栏。 #### PACKAGE OPTION ADDENDUM 10-Dec-2020 #### PACKAGING INFORMATION www.ti.com | Orderable Device | Status (1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan | Lead finish/<br>Ball material<br>(6) | MSL Peak Temp | Op Temp (°C) | Device Marking<br>(4/5) | Samples | |------------------|------------|--------------|--------------------|------|----------------|--------------|--------------------------------------|------------------|--------------|-------------------------|---------| | LM337H | ACTIVE | ТО | NDT | 3 | 500 | RoHS & Green | AU | Level-1-NA-UNLIM | 0 to 0 | ( LM337H, LM337H) | Samples | | LM337H/NOPB | ACTIVE | ТО | NDT | 3 | 500 | RoHS & Green | AU | Level-1-NA-UNLIM | 0 to 0 | ( LM337H, LM337H) | Samples | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. 10-Dec-2020 #### 重要声明和免责声明 TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。 所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任: (1)针对您的应用选择合适的TI产品; (2)设计、验证并测试您的应用; (3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。 TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。 邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2020 德州仪器半导体技术(上海)有限公司 ## **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Linear Voltage Regulators category: Click to view products by Texas Instruments manufacturer: Other Similar products are found below: LV5684PVD-XH MCDTSA6-2R L7815ACV-DG 714954EB ZMR500QFTA BA033LBSG2-TR LV5680P-E L79M05T-E L78LR05D-MA-E NCV317MBTG NTE7227 MP2018GZD-33-P MP2018GZD-5-P LV5680NPVC-XH LT1054CN8 ZTS6538SE UA78L09CLP UA78L09CLPR CAT6221-PPTD-GT3 MC78M09CDTRK NCV51190MNTAG 78M05 HT7150-1 UM1540DB-18 XC6234H281VR-G WL2834CA-6/TR TPL730F33-5TR TLS850F1TA V50 TPS549B22RVFR UM1540DB-33 WL9200P3-50B WL9100P3-33B WL9005D4-33 XC6219B152MR WL2855K33-3/TR PJ54BM33SE PJ9500M25SA MD7218E33PC1 H7533-2PR SK7812AU SD1A30 78L33 TP78L33T3 L78L33ACUTR SK6513ST3A-50 SK6054D4-09 SK6054D4-18 SK6054D4-11 SK6054D4-10 LM79L12F