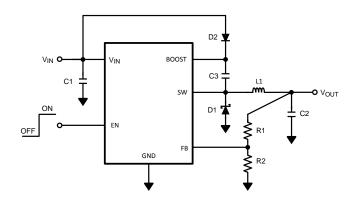


www.ti.com.cn ZHCSBI7 – SEPTEMBER 2013

LMR12007 薄型小外形尺寸晶体管封装 (SOT)23 750mA 负载降压直流-直流稳压器

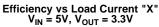
查询样品: LMR12007

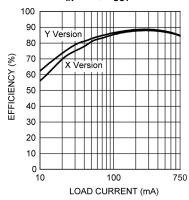

特性

- 薄型 SOT-6 封装
- 3.0V 至 18V 输入电压范围
- 1.25V 至 16V 的输出电压范围
- 750mA 输出电流
- 550kHz (LMR12007Y) 和 1.6MHz (LMR12007X) 开关频率
- 350mΩ NMOS 开关
- 30nA 关断电流
- 1.25V, 2% 内部电压基准
- 内部软启动
- 电流模式, 脉宽调制 (PWM) 运行
- WEBENCH[®] 在线设计工具
- 热关断

应用范围

- 本地负载点稳压
- 硬盘内的核心电源
- 机顶盒
- 电池供电类器件
- USB 供电类器件
- DSL 调制解调器
- 笔记本电脑

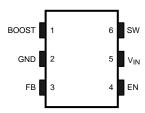

Typical Application Circuit

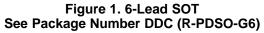


说明

LMR12007 稳压器是一款采用 6 引脚薄型 SOT 封装的单片,高频,PWM 降压直流/直流转换器。它提供全部的激活功能,以便在尽可能小的印刷电路板面积内提供具有快速瞬态响应和准确调节的本地直流/直流转换。

借助于最少的外部组件和由 WEBENCH®支持的在线设计工具,LMR12007 易于使用。 使用业界领先的 0.5μm 双极 CMOS (BiCMOS) 技术的内部 350mΩ NMOS 开关对 750mA 负载的驱动能力可获得最佳的可用功率密度。 世界级控制电路可实现低至 13ns 的接通时间,从而在整个 3V 至 18V 输入工作范围内支持低至 1.25V 的最小输出电压的出色高频转换。 开关频率在内部设置为 550kHz (LMR12007Y) 或 1.6MHz (LMR12007X),允许使用极小型表面贴装电感器和芯片电容器。 尽管工作频率很高,但仍可以轻松实现高达 90% 的效率。包括外部关断,特有 30nA 的超低待机电流。 LM12007 利用电流模式控制和内部补偿,以便在广泛的运行条件下提供高性能稳压。 额外特性包括用来减少涌入电流的内部软启动电路、逐脉冲电流限值、热关断和输出过压保护。


M


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

WEBENCH is a registered trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

Connection Diagram

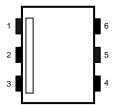


Figure 2. Pin 1 Indentification

PIN DESCRIPTIONS

Pin	Name	Function		
1	BOOST	Boost voltage that drives the internal NMOS control switch. A bootstrap capacitor is connected between the BOOST and SW pins.		
2	GND	Signal and Power ground pin. Place the bottom resistor of the feedback network as close as possible to this pin for accurate regulation.		
3	FB	Feedback pin. Connect FB to the external resistor divider to set output voltage.		
4	EN	Enable control input. Logic high enables operation. Do not allow this pin to float or be greater than $V_{IN} + 0.3V$.		
5	V _{IN}	nput supply voltage. Connect a bypass capacitor to this pin.		
6	SW	Output switch. Connects to the inductor, catch diode, and bootstrap capacitor.		

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings(1)

V _{IN}		-0.5V to 22V
SW Voltage		-0.5V to 22V
Boost Voltage		-0.5V to 28V
Boost to SW Voltage		-0.5V to 6.0V
FB Voltage		-0.5V to 3.0V
EN Voltage		-0.5V to (V _{IN} + 0.3V)
Junction Temperature		150°C
ESD Susceptibility ⁽²⁾		2kV
Storage Temp. Range		-65°C to 150°C
Soldoving Information	Infrared/Convection Reflow (15sec)	220°C
Soldering Information	Wave Soldering Lead Temp. (10sec)	260°C

⁽¹⁾ If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

⁽²⁾ Human body model, $1.5k\Omega$ in series with 100pF.

www.ti.com.cn ZHCSBI7 – SEPTEMBER 2013

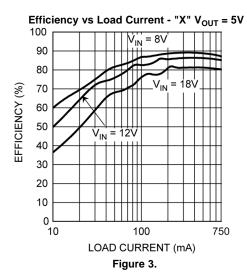
Operating Ratings⁽¹⁾

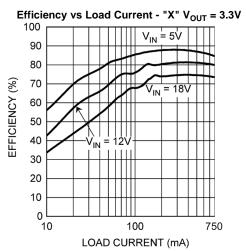
V _{IN}	3V to 18V
SW Voltage	-0.5V to 18V
Boost Voltage	-0.5V to 23V
Boost to SW Voltage	1.6V to 5.5V
Junction Temperature Range	-40°C to +125°C
Thermal Resistance θ _{JA} ⁽²⁾	118°C/W

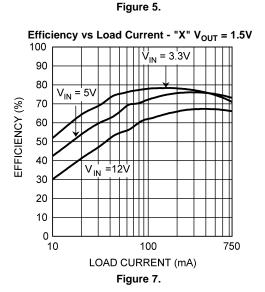
- (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For specific specifications and the test conditions, see Electrical Characteristics.
- (2) Thermal shutdown will occur if the junction temperature exceeds 165°C. The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} T_A)/\theta_{JA}$. All numbers apply for packages soldered directly onto a 3" x 3" PC board with 2oz. copper on 4 layers in still air. For a 2 layer board using 1 oz. copper in still air, $\theta_{JA} = 204$ °C/W.

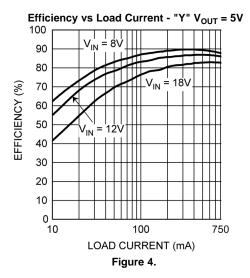
Electrical Characteristics

Specifications with standard typeface are for $T_J = 25^{\circ}\text{C}$, and those in **boldface type** apply over the full **Operating Temperature Range** ($T_J = -40^{\circ}\text{C}$ to 125°C). $V_{IN} = 5\text{V}$, $V_{BOOST} - V_{SW} = 5\text{V}$ unless otherwise specified. Datasheet min/max specification limits are ensured by design, test, or statistical analysis.

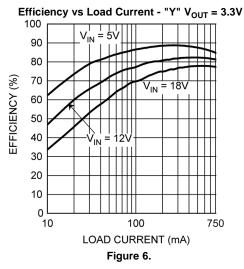

Symbol	Parameter	Conditions	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units	
V_{FB}	Feedback Voltage		1.225	1.250	1.275	V	
$\Delta V_{FB}/\Delta V_{IN}$	Feedback Voltage Line Regulation	V _{IN} = 3V to 18V		0.01		% / V	
I _{FB}	Feedback Input Bias Current	Sink/Source		10	250	nA	
	Undervoltage Lockout	V _{IN} Rising		2.74	2.90		
UVLO	Undervoltage Lockout	V _{IN} Falling	2.0	2.3		V	
	UVLO Hysteresis		0.30	0.44	0.62		
-	Conitability Factoring	LMR12007X	1.2	1.6	1.9	N41.1-	
F_{SW}	Switching Frequency	LMR12007Y	0.40	0.55	0.66	MHz	
D	Maximum Duty Cycle	LMR12007X	85	92		0/	
D_{MAX}		LMR12007Y	90	96		%	
5	Minimum Duty Cycle	LMR12007X		2		%	
D_{MIN}		LMR12007Y		1			
R _{DS(ON)}	Switch ON Resistance	V _{BOOST} - V _{SW} = 3V		350	650	mΩ	
I _{CL}	Switch Current Limit	V _{BOOST} - V _{SW} = 3V	1.0	1.5	2.3	Α	
IQ	Quiescent Current	Switching		1.5	2.5	mA	
	Quiescent Current (shutdown)	V _{EN} = 0V		30		nA	
	Boost Pin Current	LMR12007X (50% Duty Cycle)		2.2	3.3	4	
I _{BOOST}		LMR12007Y (50% Duty Cycle)		0.9	1.6	mA	
	Shutdown Threshold Voltage	V _{EN} Falling			0.4		
V_{EN_TH}	Enable Threshold Voltage	V _{EN} Rising	1.8			V	
I _{EN}	Enable Pin Current	Sink/Source		10		nA	
I _{SW}	Switch Leakage			40		nA	

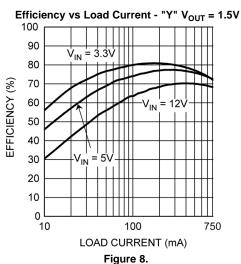

- (1) Specified to Texas Instruments' Average Outgoing Quality Level (AOQL).
- (2) Typicals represent the most likely parametric norm.


ZHCSBI7 – SEPTEMBER 2013 www.ti.com.cn

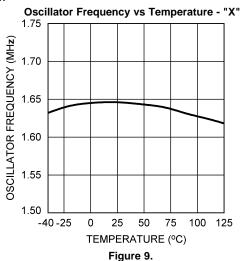

Typical Performance Characteristics

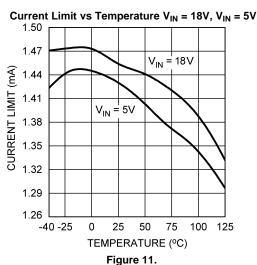
All curves taken at V_{IN} = 5V, V_{BOOST} - V_{SW} = 5V, L1 = 4.7 μ H ("X"), L1 = 10 μ H ("Y"), and T_A = 25°C, unless specified otherwise.

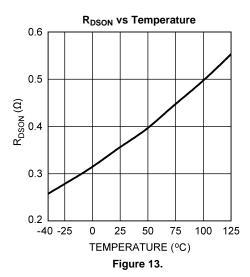




ISTRUMENTS




Typical Performance Characteristics (continued)


All curves taken at V_{IN} = 5V, V_{BOOST} - V_{SW} = 5V, L1 = 4.7 μ H ("X"), L1 = 10 μ H ("Y"), and T_A = 25°C, unless specified otherwise.

ISTRUMENTS

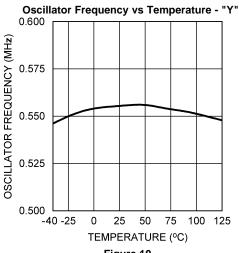
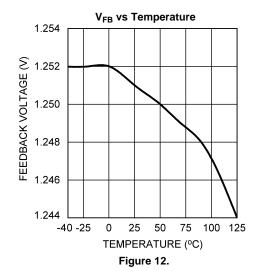
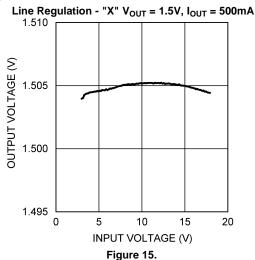
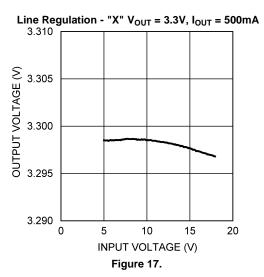
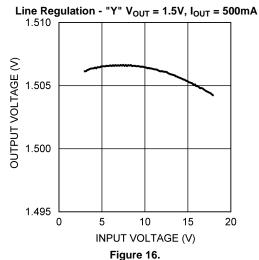



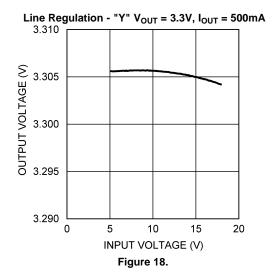
Figure 10.

1.70 1.68 1.64 1.64 1.62 1.60 -40 -25 0 25 50 75 100 125 TEMPERATURE (°C)


Figure 14.


ZHCSBI7 – SEPTEMBER 2013 www.ti.com.cn


TEXAS INSTRUMENTS


Typical Performance Characteristics (continued)

All curves taken at V_{IN} = 5V, V_{BOOST} - V_{SW} = 5V, L1 = 4.7 μ H ("X"), L1 = 10 μ H ("Y"), and T_A = 25°C, unless specified otherwise.

www.ti.com.cn

Block Diagram

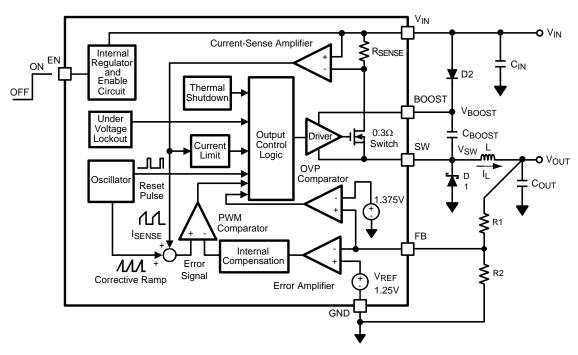


Figure 19.

APPLICATION INFORMATION

THEORY OF OPERATION

The LMR12007 is a constant frequency PWM buck regulator IC that delivers a 750mA load current. The regulator has a preset switching frequency of either 550kHz (LMR12007Y) or 1.6MHz (LMR12007X). These high frequencies allow the LMR12007 to operate with small surface mount capacitors and inductors, resulting in DC/DC converters that require a minimum amount of board space. The LMR12007 is internally compensated, so it is simple to use, and requires few external components. The LMR12007 uses current-mode control to regulate the output voltage.

The following operating description of the LMR12007 will refer to the Simplified Block Diagram (Figure 19) and to the waveforms in Figure 20. The LMR12007 supplies a regulated output voltage by switching the internal NMOS control switch at constant frequency and variable duty cycle. A switching cycle begins at the falling edge of the reset pulse generated by the internal oscillator. When this pulse goes low, the output control logic turns on the internal NMOS control switch. During this on-time, the SW pin voltage (V_{SW}) swings up to approximately V_{IN} , and the inductor current (I_L) increases with a linear slope. I_L is measured by the current-sense amplifier, which generates an output proportional to the switch current. The sense signal is summed with the regulator's corrective ramp and compared to the error amplifier's output, which is proportional to the difference between the feedback voltage and V_{REF} . When the PWM comparator output goes high, the output switch turns off until the next switching cycle begins. During the switch off-time, inductor current discharges through Schottky diode D1, which forces the SW pin to swing below ground by the forward voltage (V_D) of the catch diode. The regulator loop adjusts the duty cycle (D) to maintain a constant output voltage.

ZHCSBI7 – SEPTEMBER 2013 www.ti.com.cn

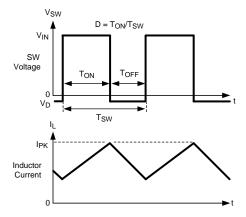


Figure 20. LMR12007 Waveforms of SW Pin Voltage and Inductor Current

BOOST FUNCTION

Capacitor C_{BOOST} and diode D2 in Figure 21 are used to generate a voltage V_{BOOST} . V_{BOOST} - V_{SW} is the gate drive voltage to the internal NMOS control switch. To properly drive the internal NMOS switch during its on-time, V_{BOOST} needs to be at least 1.6V greater than V_{SW} . Although the LMR12007 will operate with this minimum voltage, it may not have sufficient gate drive to supply large values of output current. Therefore, it is recommended that V_{BOOST} be greater than 2.5V above V_{SW} for best efficiency. $V_{BOOST} - V_{SW}$ should not exceed the maximum operating limit of 5.5V.

 $5.5V > V_{BOOST} - V_{SW} > 2.5V$ for best performance.

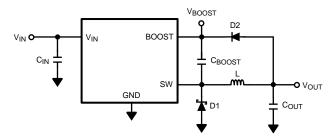


Figure 21. V_{OUT} Charges C_{BOOST}

When the LMR12007 starts up, internal circuitry from the BOOST pin supplies a maximum of 20mA to C_{BOOST} . This current charges C_{BOOST} to a voltage sufficient to turn the switch on. The BOOST pin will continue to source current to C_{BOOST} until the voltage at the feedback pin is greater than 1.18V.

There are various methods to derive V_{BOOST}:

- 1. From the input voltage (V_{IN})
- 2. From the output voltage (V_{OUT})
- 3. From an external distributed voltage rail (V_{EXT})
- 4. From a shunt or series zener diode

In the Simplifed Block Diagram of Figure 19, capacitor C_{BOOST} and diode D2 supply the gate-drive current for the NMOS switch. Capacitor C_{BOOST} is charged via diode D2 by V_{IN} . During a normal switching cycle, when the internal NMOS control switch is off (T_{OFF}) (refer to Figure 20), V_{BOOST} equals V_{IN} minus the forward voltage of D2 (V_{FD2}) , during which the current in the inductor (L) forward biases the Schottky diode D1 (V_{FD1}) . Therefore the voltage stored across C_{BOOST} is

$$V_{BOOST} - V_{SW} = V_{IN} - V_{FD2} + V_{FD1}$$
 (1)

www.ti.com.cn ZHCSBI7 – SEPTEMBER 2013

When the NMOS switch turns on (T_{ON}), the switch pin rises to

$$V_{SW} = V_{IN} - (R_{DSON} \times I_L), \tag{2}$$

forcing V_{BOOST} to rise thus reverse biasing D2. The voltage at V_{BOOST} is then

$$V_{BOOST} = 2V_{IN} - (R_{DSON} \times I_L) - V_{FD2} + V_{FD1}$$
(3)

which is approximately

$$2V_{IN} - 0.4V$$
 (4)

for many applications. Thus the gate-drive voltage of the NMOS switch is approximately

$$V_{IN} - 0.2V$$
 (5)

An alternate method for charging C_{BOOST} is to connect D2 to the output as shown in Figure 21. The output voltage should be between 2.5V and 5.5V, so that proper gate voltage will be applied to the internal switch. In this circuit, C_{BOOST} provides a gate drive voltage that is slightly less than V_{OUT} .

In applications where both V_{IN} and V_{OUT} are greater than 5.5V, or less than 3V, C_{BOOST} cannot be charged directly from these voltages. If V_{IN} and V_{OUT} are greater than 5.5V, C_{BOOST} can be charged from V_{IN} or V_{OUT} minus a zener voltage by placing a zener diode D3 in series with D2, as shown in Figure 22. When using a series zener diode from the input, ensure that the regulation of the input supply doesn't create a voltage that falls outside the recommended V_{BOOST} voltage.

$$(V_{INMAX} - V_{D3}) < 5.5V$$

 $(V_{INMIN} - V_{D3}) > 1.6V$

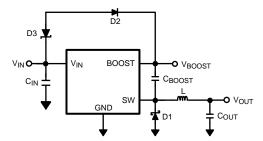


Figure 22. Zener Reduces Boost Voltage from VIN

An alternative method is to place the zener diode D3 in a shunt configuration as shown in Figure 23. A small 350mW to 500mW 5.1V zener in a SOT or SOD package can be used for this purpose. A small ceramic capacitor such as a 6.3V, $0.1\mu F$ capacitor (C4) should be placed in parallel with the zener diode. When the internal NMOS switch turns on, a pulse of current is drawn to charge the internal NMOS gate capacitance. The $0.1~\mu F$ parallel shunt capacitor ensures that the V_{BOOST} voltage is maintained during this time.

Resistor R3 should be chosen to provide enough RMS current to the zener diode (D3) and to the BOOST pin. A recommended choice for the zener current (I_{ZENER}) is 1 mA. The current I_{BOOST} into the BOOST pin supplies the gate current of the NMOS control switch and varies typically according to the following formula for the X-version:

$$I_{BOOST} = 0.49 \times (D + 0.54) \times (V_{ZENER} - V_{D2}) \text{ mA}$$
(6)

I_{BOOST} can be calculated for the Y version using the following:

$$I_{BOOST} = 0.20 \text{ x (D + 0.54) x (V}_{ZENER} - V_{D2}) \mu A$$
 (7)

where D is the duty cycle, V_{ZENER} and V_{D2} are in volts, and I_{BOOST} is in milliamps. V_{ZENER} is the voltage applied to the anode of the boost diode (D2), and V_{D2} is the average forward voltage across D2. Note that this formula for I_{BOOST} gives typical current. For the worst case I_{BOOST} , increase the current by 40%. In that case, the worst case boost current will be

$$I_{BOOST-MAX} = 1.4 \text{ x } I_{BOOST}$$
 (8)

R3 will then be given by

$$R3 = (V_{IN} - V_{ZENER}) / (1.4 \times I_{BOOST} + I_{ZENER})$$
(9)

For example, using the X-version let V_{IN} = 10V, V_{ZENER} = 5V, V_{D2} = 0.7V, I_{ZENER} = 1mA, and duty cycle D = 50%. Then

ZHCSBI7 – SEPTEMBER 2013 www.ti.com.cn

 $R3 = (10V - 5V) / (1.4 \times 2.19 \text{mA} + 1 \text{mA}) = 1.23 \text{k}\Omega$ (11)

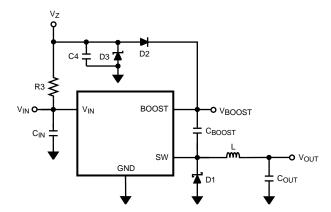


Figure 23. Boost Voltage Supplied from the Shunt Zener on VIN

ENABLE PIN / SHUTDOWN MODE

The LMR12007 has a shutdown mode that is controlled by the enable pin (EN). When a logic low voltage is applied to EN, the part is in shutdown mode and its quiescent current drops to typically 30nA. Switch leakage adds another 40nA from the input supply. The voltage at this pin should never exceed V_{IN} + 0.3V.

SOFT-START

This function forces V_{OUT} to increase at a controlled rate during start up. During soft-start, the error amplifier's reference voltage ramps from 0V to its nominal value of 1.25V in approximately 200µs. This forces the regulator output to ramp up in a more linear and controlled fashion, which helps reduce inrush current.

OUTPUT OVERVOLTAGE PROTECTION

The overvoltage comparator compares the FB pin voltage to a voltage that is 10% higher than the internal reference Vref. Once the FB pin voltage goes 10% above the internal reference, the internal NMOS control switch is turned off, which allows the output voltage to decrease toward regulation.

UNDERVOLTAGE LOCKOUT

Undervoltage lockout (UVLO) prevents the LMR12007 from operating until the input voltage exceeds 2.74V(typ).

The UVLO threshold has approximately 440mV of hysteresis, so the part will operate until V_{IN} drops below 2.3V(typ). Hysteresis prevents the part from turning off during power up if V_{IN} is non-monotonic.

CURRENT LIMIT

The LMR12007 uses cycle-by-cycle current limiting to protect the output switch. During each switching cycle, a current limit comparator detects if the output switch current exceeds 1.5A (typ), and turns off the switch until the next switching cycle begins.

THERMAL SHUTDOWN

Thermal shutdown limits total power dissipation by turning off the output switch when the IC junction temperature exceeds 165°C. After thermal shutdown occurs, the output switch doesn't turn on until the junction temperature drops to approximately 150°C.

NSTRUMENTS

www.ti.com.cn ZHCSBI7 – SEPTEMBER 2013

Design Guide

INDUCTOR SELECTION

The Duty Cycle (D) can be approximated quickly using the ratio of output voltage (V_{IN}):

$$D = \frac{V_O}{V_{IN}} \tag{12}$$

The catch diode (D1) forward voltage drop and the voltage drop across the internal NMOS must be included to calculate a more accurate duty cycle. Calculate D by using the following formula:

$$D = \frac{V_O + V_D}{V_{IN} + V_D - V_{SW}}$$
(13)

V_{SW} can be approximated by:

$$V_{SW} = I_O \times R_{DS(ON)}$$
 (14)

The diode forward drop (V_D) can range from 0.3V to 0.7V depending on the quality of the diode. The lower V_D is, the higher the operating efficiency of the converter.

The inductor value determines the output ripple current. Lower inductor values decrease the size of the inductor, but increase the output ripple current. An increase in the inductor value will decrease the output ripple current. The ratio of ripple current (ΔI_L) to output current (I_D) is optimized when it is set between 0.3 and 0.4 at 750mA. The ratio r is defined as:

$$r = \frac{\Delta i_L}{I_O} \tag{15}$$

One must also ensure that the minimum current limit (1.0A) is not exceeded, so the peak current in the inductor must be calculated. The peak current (I_{LPK}) in the inductor is calculated by:

$$I_{1,\text{PK}} = I_{\text{O}} + \Delta I_{1}/2 \tag{16}$$

If r = 0.7 at an output of 750mA, the peak current in the inductor will be 1.0125A. The minimum ensured current limit over all operating conditions is 1.0A. One can either reduce r to 0.6 resulting in a 975mA peak current, or make the engineering judgement that 12.5mA over will be safe enough with a 1.5A typical current limit and 6 sigma limits. When the designed maximum output current is reduced, the ratio r can be increased. At a current of 0.1A, r can be made as high as 0.9. The ripple ratio can be increased at lighter loads because the net ripple is actually quite low, and if r remains constant the inductor value can be made quite large. An equation empirically developed for the maximum ripple ratio at any current below 2A is:

$$r = 0.387 \times I_{OUT}^{-0.3667}$$
 (17)

Note that this is just a guideline.

The LMR12007 operates at frequencies allowing the use of ceramic output capacitors without compromising transient response. Ceramic capacitors allow higher inductor ripple without significantly increasing output ripple. See the OUTPUT CAPACITOR section for more details on calculating output voltage ripple.

Now that the ripple current or ripple ratio is determined, the inductance is calculated by:

$$L = \frac{V_{O} + V_{D}}{I_{O} \times r \times f_{S}} \times (1-D)$$
 (18)

where f_s is the switching frequency and I_O is the output current. When selecting an inductor, make sure that it is capable of supporting the peak output current without saturating. Inductor saturation will result in a sudden reduction in inductance and prevent the regulator from operating correctly. Because of the speed of the internal current limit, the peak current of the inductor need only be specified for the required maximum output current. For example, if the designed maximum output current is 0.5A and the peak current is 0.7A, then the inductor should

ZHCSBI7 – SEPTEMBER 2013 www.ti.com.cn

be specified with a saturation current limit of >0.7A. There is no need to specify the saturation or peak current of the inductor at the 1.5A typical switch current limit. The difference in inductor size is a factor of 5. Because of the operating frequency of the LMR12007, ferrite based inductors are preferred to minimize core losses. This presents little restriction since the variety of ferrite based inductors is huge. Lastly, inductors with lower series resistance (DCR) will provide better operating efficiency. For recommended inductors see Example Circuits.

INPUT CAPACITOR

An input capacitor is necessary to ensure that V_{IN} does not drop excessively during switching transients. The primary specifications of the input capacitor are capacitance, voltage, RMS current rating, and ESL (Equivalent Series Inductance). The recommended input capacitance is $10\mu F$, although $4.7\mu F$ works well for input voltages below 6V. The input voltage rating is specifically stated by the capacitor manufacturer. Make sure to check any recommended deratings and also verify if there is any significant change in capacitance at the operating input voltage and the operating temperature. The input capacitor maximum RMS input current rating (I_{RMS-IN}) must be greater than:

$$I_{RMS-IN} = I_O \times \sqrt{D \times (1-D + \frac{r^2}{12})}$$
 (19)

It can be shown from the above equation that maximum RMS capacitor current occurs when D = 0.5. Always calculate the RMS at the point where the duty cycle, D, is closest to 0.5. The ESL of an input capacitor is usually determined by the effective cross sectional area of the current path. A large leaded capacitor will have high ESL and a 0805 ceramic chip capacitor will have very low ESL. At the operating frequencies of the LMR12007, certain capacitors may have an ESL so large that the resulting impedance (2π fL) will be higher than that required to provide stable operation. As a result, surface mount capacitors are strongly recommended. Sanyo POSCAP, Tantalum or Niobium, Panasonic SP or Cornell Dubilier ESR, and multilayer ceramic capacitors (MLCC) are all good choices for both input and output capacitors and have very low ESL. For MLCCs it is recommended to use X7R or X5R dielectrics. Consult capacitor manufacturer datasheet to see how rated capacitance varies over operating conditions.

OUTPUT CAPACITOR

The output capacitor is selected based upon the desired output ripple and transient response. The initial current of a load transient is provided mainly by the output capacitor. The output ripple of the converter is:

$$\Delta V_{O} = \Delta i_{L} \times (R_{ESR} + \frac{1}{8 \times f_{S} \times C_{O}})$$
(20)

When using MLCCs, the ESR is typically so low that the capacitive ripple may dominate. When this occurs, the output ripple will be approximately sinusoidal and 90° phase shifted from the switching action. Given the availability and quality of MLCCs and the expected output voltage of designs using the LMR12007, there is really no need to review any other capacitor technologies. Another benefit of ceramic capacitors is their ability to bypass high frequency noise. A certain amount of switching edge noise will couple through parasitic capacitances in the inductor to the output. A ceramic capacitor will bypass this noise while a tantalum will not. Since the output capacitor is one of the two external components that control the stability of the regulator control loop, most applications will require a minimum at $10~\mu\text{F}$ of output capacitance. Capacitance can be increased significantly with little detriment to the regulator stability. Like the input capacitor, recommended multilayer ceramic capacitors are X7R or X5R. Again, verify actual capacitance at the desired operating voltage and temperature.

Check the RMS current rating of the capacitor. The RMS current rating of the capacitor chosen must also meet the following condition:

$$I_{\text{RMS-OUT}} = I_{\text{O}} \times \frac{r}{\sqrt{12}} \tag{21}$$

www.ti.com.cn ZHCSBI7 – SEPTEMBER 2013

CATCH DIODE

The catch diode (D1) conducts during the switch off-time. A Schottky diode is recommended for its fast switching times and low forward voltage drop. The catch diode should be chosen so that its current rating is greater than:

$$I_{D1} = I_{O} \times (1-D)$$
 (22)

The reverse breakdown rating of the diode must be at least the maximum input voltage plus appropriate margin. To improve efficiency choose a Schottky diode with a low forward voltage drop.

BOOST DIODE

A standard diode such as the 1N4148 type is recommended. For V_{BOOST} circuits derived from voltages less than 3.3V, a small-signal Schottky diode is recommended for greater efficiency. A good choice is the BAT54 small signal diode.

BOOST CAPACITOR

A ceramic 0.01µF capacitor with a voltage rating of at least 6.3V is sufficient. The X7R and X5R MLCCs provide the best performance.

OUTPUT VOLTAGE

The output voltage is set using the following equation where R2 is connected between the FB pin and GND, and R1 is connected between V_0 and the FB pin. A good value for R2 is $10k\Omega$.

$$R1 = \left(\frac{V_O}{V_{REF}} - 1\right) \times R2 \tag{23}$$

PCB Layout Considerations

When planning layout there are a few things to consider when trying to achieve a clean, regulated output. The most important consideration when completing the layout is the close coupling of the GND connections of the C_{IN} capacitor and the catch diode D1. These ground ends should be close to one another and be connected to the GND plane with at least two through-holes. Place these components as close to the IC as possible. Next in importance is the location of the GND connection of the C_{OUT} capacitor, which should be near the GND connections of C_{IN} and D1.

There should be a continuous ground plane on the bottom layer of a two-layer board except under the switching node island.

The FB pin is a high impedance node and care should be taken to make the FB trace short to avoid noise pickup and inaccurate regulation. The feedback resistors should be placed as close as possible to the IC, with the GND of R2 placed as close as possible to the GND of the IC. The V_{OUT} trace to R1 should be routed away from the inductor and any other traces that are switching.

High AC currents flow through the V_{IN} , SW and V_{OUT} traces, so they should be as short and wide as possible. However, making the traces wide increases radiated noise, so the designer must make this trade-off. Radiated noise can be decreased by choosing a shielded inductor.

The remaining components should also be placed as close as possible to the IC. Please see Application Note AN-1229 SNVA054 for further considerations and the LMR12007 demo board as an example of a four-layer layout.

LMR12007X Circuit Examples

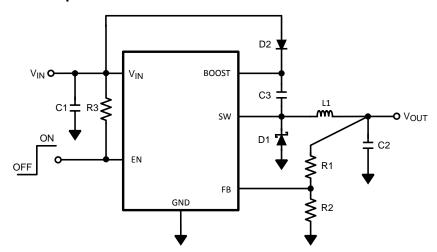


Figure 24. LMR12007X (1.6MHz) V_{BOOST} Derived from V_{IN} 5V to 1.5V/750mA

Table 1. Bill of Materials for Figure 24

Part ID	Part Value	Part Number	Manufacturer
U1	750mA Buck Regulator	LMR12007X	Texas Instruments
C1, Input Cap	10μF, 6.3V, X5R	C3216X5ROJ106M	TDK
C2, Output Cap	10μF, 6.3V, X5R	C3216X5ROJ106M	TDK
C3, Boost Cap	0.01uF, 16V, X7R	C1005X7R1C103K	TDK
D1, Catch Diode	0.3V _F Schottky 1A, 10VR	MBRM110L	ON Semi
D2, Boost Diode	1V _F @ 50mA Diode	1N4148W	Diodes, Inc.
L1	4.7μH, 1.7A,	VLCF4020T- 4R7N1R2	TDK
R1	2kΩ, 1%	CRCW06032001F	Vishay
R2	10kΩ, 1%	CRCW06031002F	Vishay
R3	100kΩ, 1%	CRCW06031003F	Vishay

www.ti.com.cn

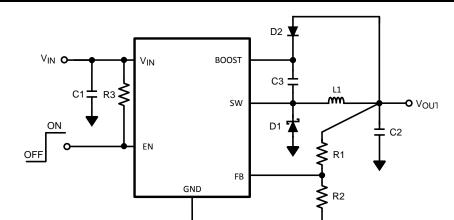


Figure 25. LMR12007X (1.6MHz)
V_{BOOST} Derived from V_{OUT}
12V to 3.3V/750mA

Table 2. Bill of Materials for Figure 25

Part ID	Part Value	Part Number	Manufacturer
U1	750mA Buck Regulator	LMR12007X	Texas Instruments
C1, Input Cap	10μF, 25V, X7R	C3225X7R1E106M	TDK
C2, Output Cap	22μF, 6.3V, X5R	C3216X5ROJ226M	TDK
C3, Boost Cap	0.01μF, 16V, X7R	C1005X7R1C103K	TDK
D1, Catch Diode	0.34V _F Schottky 1A, 30VR	SS1P3L	Vishay
D2, Boost Diode	30V, 200 mA Schottky	BAT54	Diodes Inc.
L1	4.7μH, 1.7A,	VLCF4020T- 4R7N1R2	TDK
R1	16.5kΩ, 1%	CRCW06031652F	Vishay
R2	10.0 kΩ, 1%	CRCW06031002F	Vishay
R3	100kΩ, 1%	CRCW06031003F	Vishay

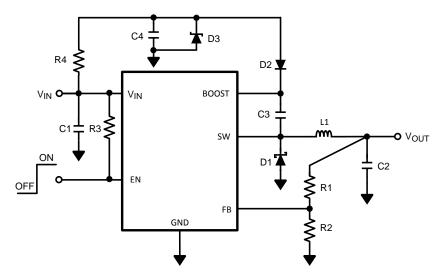


Figure 26. LMR12007X (1.6MHz)
V_{BOOST} Derived from V_{SHUNT}
18V to 1.5V/750mA

Table 3. Bill of Materials for Figure 26

Part ID	Part Value	Part Number	Manufacturer	
U1	750mA Buck Regulator	LMR12007X	Texas Instruments	
C1, Input Cap	10μF, 25V, X7R	C3225X7R1E106M	TDK	
C2, Output Cap	22µF, 6.3V, X5R	C3216X5ROJ226M	TDK	
C3, Boost Cap	0.01µF, 16V, X7R	C1005X7R1C103K	TDK	
C4, Shunt Cap	0.1μF, 6.3V, X5R	C1005X5R0J104K	TDK	
D1, Catch Diode	0.4V _F Schottky 1A, 30VR	SS1P3L	Vishay	
D2, Boost Diode	1V _F @ 50mA Diode	1N4148W	Diodes, Inc.	
D3, Zener Diode	5.1V 250Mw SOT	BZX84C5V1	Vishay	
L1	6.8µH, 1.6A,	SLF7032T-6R8M1R6	TDK	
R1	2kΩ, 1%	CRCW06032001F	Vishay	
R2	10kΩ, 1%	CRCW06031002F	Vishay	
R3	100kΩ, 1%	CRCW06031003F	Vishay	
R4	4.12kΩ, 1%	CRCW06034121F	Vishay	

www.ti.com.cn

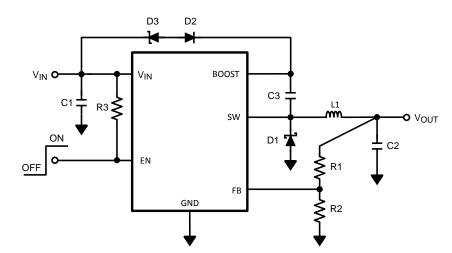


Figure 27. LMR12007X (1.6MHz) $V_{\rm BOOST}$ Derived from Series Zener Diode ($V_{\rm IN}$) 15V to 1.5V/750mA

Table 4. Bill of Materials for Figure 27

Part ID	Part Value	Part Number	Manufacturer
U1	750mA Buck Regulator	LMR12007X	Texas Instruments
C1, Input Cap	10μF, 25V, X7R	C3225X7R1E106M	TDK
C2, Output Cap	22μF, 6.3V, X5R	C3216X5ROJ226M	TDK
C3, Boost Cap	0.01µF, 16V, X7R	C1005X7R1C103K	TDK
D1, Catch Diode	0.4V _F Schottky 1A, 30VR	SS1P3L	Vishay
D2, Boost Diode	1V _F @ 50mA Diode	1N4148W	Diodes, Inc.
D3, Zener Diode	11V 350Mw SOT	BZX84C11T	Diodes, Inc.
L1	6.8µH, 1.6A,	SLF7032T-6R8M1R6	TDK
R1	2kΩ, 1%	CRCW06032001F	Vishay
R2	10kΩ, 1%	CRCW06031002F	Vishay
R3	100kΩ, 1%	CRCW06031003F	Vishay

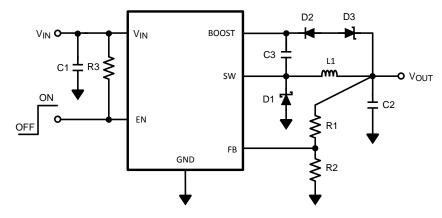


Figure 28. LMR12007X (1.6MHz) V_{BOOST} Derived from Series Zener Diode (V_{OUT}) 15V to 9V/750mA

Table 5. Bill of Materials for Figure 28

Part ID	Part Value	Part Number	Manufacturer
U1	750mA Buck Regulator	LMR12007X	Texas Instruments
C1, Input Cap	10μF, 25V, X7R	C3225X7R1E106M	TDK
C2, Output Cap	22µF, 16V, X5R	C3216X5R1C226M	TDK
C3, Boost Cap	0.01µF, 16V, X7R	C1005X7R1C103K	TDK
D1, Catch Diode	0.4V _F Schottky 1A, 30VR	SS1P3L	Vishay
D2, Boost Diode	1V _F @ 50mA Diode	1N4148W	Diodes, Inc.
D3, Zener Diode	4.3V 350mw SOT	BZX84C4V3	Diodes, Inc.
L1	6.8µH, 1.6A,	SLF7032T-6R8M1R6	TDK
R1	61.9kΩ, 1%	CRCW06036192F	Vishay
R2	10kΩ, 1%	CRCW06031002F	Vishay
R3	100kΩ, 1%	CRCW06031003F	Vishay

LMR12007Y Circuit Examples

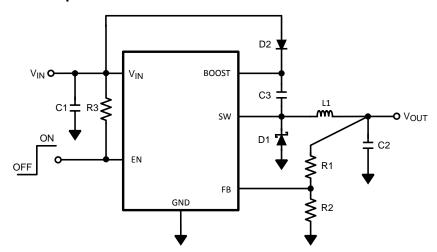


Figure 29. LMR12007Y (550kHz) V_{BOOST} Derived from V_{IN} 5V to 1.5V/750mA

Table 6. Bill of Materials for Figure 29

Part ID	Part Value	Part Number	Manufacturer
U1	750mA Buck Regulator	LMR12007Y	Texas Instruments
C1, Input Cap	10μF, 6.3V, X5R	C3216X5ROJ106M	TDK
C2, Output Cap	22μF, 6.3V, X5R	C3216X5ROJ226M	TDK
C3, Boost Cap	0.01μF, 16V, X7R	C1005X7R1C103K	TDK
D1, Catch Diode	0.3V _F Schottky 1A, 10VR	MBRM110L	ON Semi
D2, Boost Diode	1V _F @ 50mA Diode	1N4148W	Diodes, Inc.
L1	10μH, 1.6A,	SLF7032T-100M1R4	TDK
R1	2kΩ, 1%	CRCW06032001F	Vishay
R2	10kΩ, 1%	CRCW06031002F	Vishay
R3	100kΩ, 1%	CRCW06031003F	Vishay

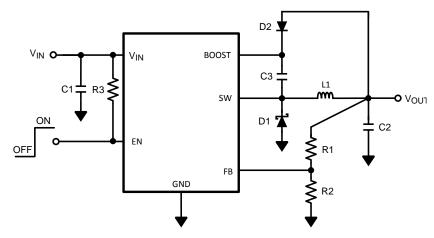


Figure 30. LMR12007Y (550kHz) V_{BOOST} Derived from V_{OUT} 12V to 3.3V/750mA

Table 7. Bill of Materials for Figure 30

Part ID	Part Value	Part Number	Manufacturer
U1	750mA Buck Regulator	LMR12007Y	Texas Instruments
C1, Input Cap	10μF, 25V, X7R	C3225X7R1E106M	TDK
C2, Output Cap	22μF, 6.3V, X5R	C3216X5ROJ226M	TDK
C3, Boost Cap	0.01μF, 16V, X7R	C1005X7R1C103K	TDK
D1, Catch Diode	0.34V _F Schottky 1A, 30VR	SS1P3L	Vishay
D2, Boost Diode	30V, 200 mA Schottky	BAT54	Diodes Inc.
L1	10μH, 1.6A,	SLF7032T-100M1R4	TDK
R1	16.5kΩ, 1%	CRCW06031652F	Vishay
R2	10.0 kΩ, 1%	CRCW06031002F	Vishay
R3	100kΩ, 1%	CRCW06031003F	Vishay

www.ti.com.cn

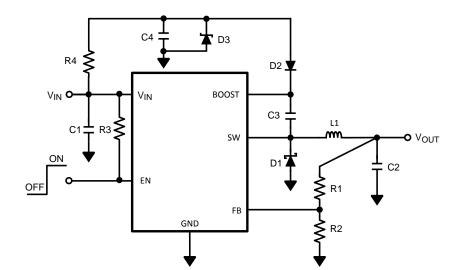


Figure 31. LMR12007Y (550kHz) V_{BOOST} Derived from V_{SHUNT} 18V to 1.5V/750mA

Table 8. Bill of Materials for Figure 31

Part ID	Part Value	Part Number	Manufacturer
U1	750mA Buck Regulator	LMR12007Y	Texas Instruments
C1, Input Cap	10μF, 25V, X7R	C3225X7R1E106M	TDK
C2, Output Cap	22µF, 6.3V, X5R	C3216X5ROJ226M	TDK
C3, Boost Cap	0.01µF, 16V, X7R	C1005X7R1C103K	TDK
C4, Shunt Cap	0.1μF, 6.3V, X5R	C1005X5R0J104K	TDK
D1, Catch Diode	0.4V _F Schottky 1A, 30VR	SS1P3L	Vishay
D2, Boost Diode	1V _F @ 50mA Diode	1N4148W	Diodes, Inc.
D3, Zener Diode	5.1V 250Mw SOT	BZX84C5V1	Vishay
L1	15µH, 1.5A	SLF7045T-150M1R5	TDK
R1	2kΩ, 1%	CRCW06032001F	Vishay
R2	10kΩ, 1%	CRCW06031002F	Vishay
R3	100kΩ, 1%	CRCW06031003F	Vishay
R4	4.12kΩ, 1%	CRCW06034121F	Vishay

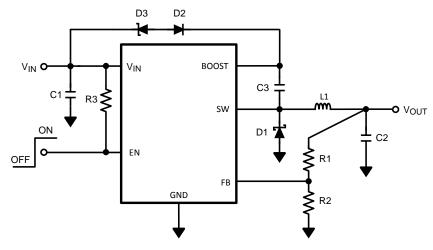


Figure 32. LMR12007Y (550kHz) $V_{\rm BOOST}$ Derived from Series Zener Diode ($V_{\rm IN}$) 15V to 1.5V/750mA

Table 9. Bill of Materials for Figure 32

Part ID	Part Value	Part Number	Manufacturer	
U1	750mA Buck Regulator	LMR12007Y	Texas Instruments	
C1, Input Cap	10μF, 25V, X7R	C3225X7R1E106M	TDK	
C2, Output Cap	22μF, 6.3V, X5R	C3216X5ROJ226M	TDK	
C3, Boost Cap	0.01µF, 16V, X7R	C1005X7R1C103K	TDK	
D1, Catch Diode	0.4V _F Schottky 1A, 30VR	SS1P3L	Vishay	
D2, Boost Diode	1V _F @ 50mA Diode	1N4148W	Diodes, Inc.	
D3, Zener Diode	11V 350Mw SOT	BZX84C11T	Diodes, Inc.	
L1	15µH, 1.5A,	SLF7045T-150M1R5	TDK	
R1	2kΩ, 1%	CRCW06032001F	Vishay	
R2	10kΩ, 1%	CRCW06031002F	Vishay	
R3	100kΩ, 1%	CRCW06031003F	Vishay	

www.ti.com.cn

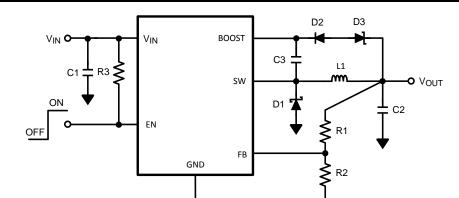


Figure 33. LMR12007Y (550kHz) V_{BOOST} Derived from Series Zener Diode (V_{OUT}) 15V to 9V/750mA

Table 10. Bill of Materials for Figure 33

Part ID	Part Value	Part Number	Manufacturer	
U1	750mA Buck Regulator	LMR12007Y	Texas Instruments	
C1, Input Cap	10μF, 25V, X7R	C3225X7R1E106M	TDK	
C2, Output Cap	22μF, 16V, X5R	C3216X5R1C226M	TDK	
C3, Boost Cap	0.01µF, 16V, X7R	C1005X7R1C103K	TDK	
D1, Catch Diode	0.4V _F Schottky 1A, 30VR	SS1P3L	Vishay	
D2, Boost Diode	1V _F @ 50mA Diode	1N4148W	Diodes, Inc.	
D3, Zener Diode	4.3V 350mw SOT	BZX84C4V3	Diodes, Inc.	
L1	22µH, 1.4A,	SLF7045T-220M1R3-1PF	TDK	
R1	61.9kΩ, 1%	CRCW06036192F	Vishay	
R2	10kΩ, 1%	CRCW06031002F	Vishay	
R3	100kΩ, 1%	CRCW06031003F	Vishay	

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
LMR12007XMK	ACTIVE	SOT-23-THIN	DDC	6	1000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	SP1B	Samples
LMR12007XMKX	ACTIVE	SOT-23-THIN	DDC	6	3000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	SP1B	Samples
LMR12007YMK	ACTIVE	SOT-23-THIN	DDC	6	1000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	SP2B	Samples
LMR12007YMKX	ACTIVE	SOT-23-THIN	DDC	6	3000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	SP2B	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

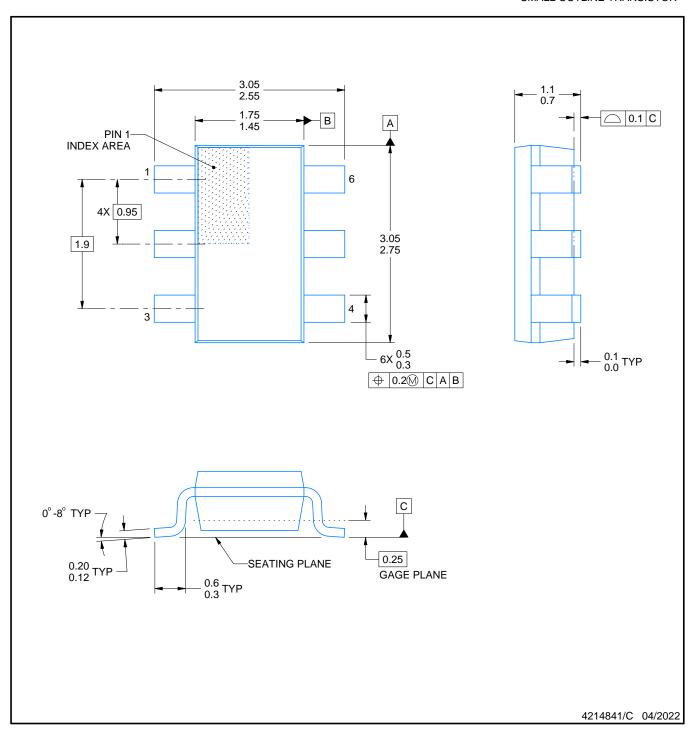
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

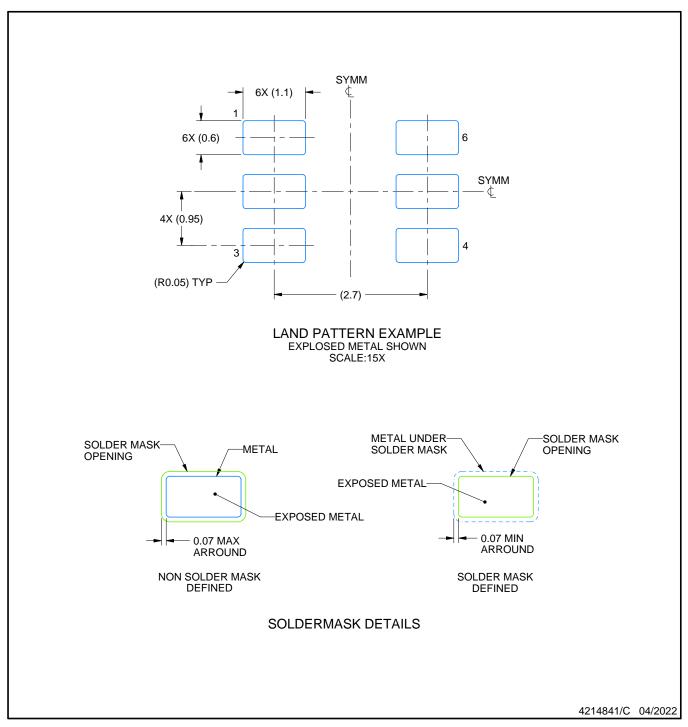
PACKAGE OPTION ADDENDUM


10-Dec-2020

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

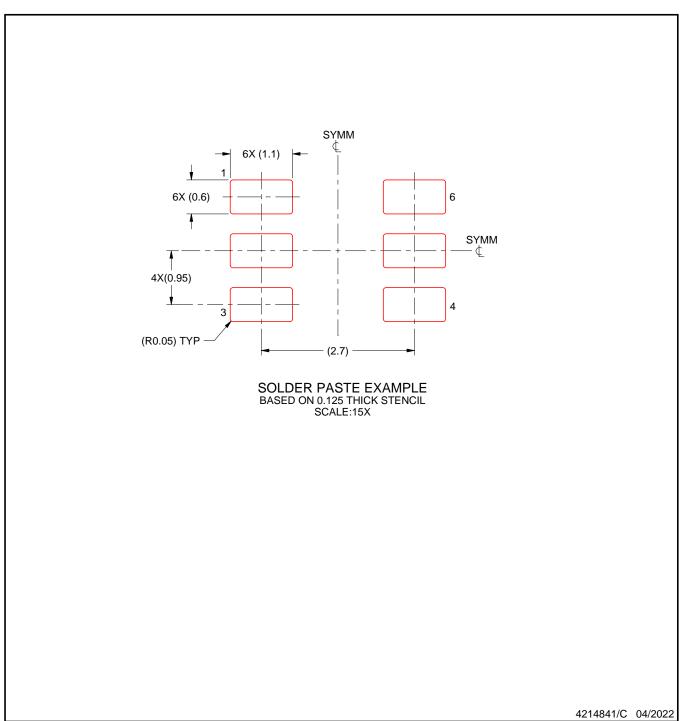
SMALL OUTLINE TRANSISTOR



NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC MO-193.

SMALL OUTLINE TRANSISTOR



NOTES: (continued)

- 4. Publication IPC-7351 may have alternate designs.
- 5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

 7. Board assembly site may have different recommendations for stencil design.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Voltage Regulators category:

Click to view products by Texas Instruments manufacturer:

Other Similar products are found below:

FAN53610AUC33X FAN53611AUC123X EN6310QA 160215 R3 KE177614 FAN53611AUC12X MAX809TTR NCV891234MW50R2G

AST1S31PUR NCP81203PMNTXG NCP81208MNTXG PCA9412AUKZ NCP81109GMNTXG NCP3235MNTXG NCP81109JMNTXG

NCP81241MNTXG NTE7223 NTE7222 NTE7224 L6986FTR MPQ4481GU-AEC1-P MP8756GD-P MPQ2171GJ-P MPQ2171GJ-AEC1-P

NJW4153U2-A-TE2 MP2171GJ-P MP28160GC-Z XDPE132G5CG000XUMA1 LM60440AQRPKRQ1 MP5461GC-P IW673-20

NCV896530MWATXG MPQ4409GQBE-AEC1-P S-19903DA-A8T1U7 S-19903CA-A6T8U7 S-19903CA-S8T1U7 S-19902BA-A6T8U7

S-19902CA-A6T8U7 S-19902AA-A6T8U7 S-19903AA-A6T8U7 S-19902AA-S8T1U7 S-19902BA-A8T1U7 AU8310

LMR23615QDRRRQ1 LMR33630APAQRNXRQ1 LMR33630APCQRNXRQ1 LMR36503R5RPER LMR36503RFRPER

LMR36503RS3QRPERQ1