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LMV796/LMV796Q/LMV797 17 MHz, Low Noise, CMOS Input, 1.8V Operational Amplifiers
Check for Samples: LMV796, LMV797

1FEATURES DESCRIPTION
The LMV796/LMV796Q (Single) and the LMV797

2(Typical 5V Supply, Unless Otherwise Noted)
(Dual) low noise, CMOS input operational amplifiers

• Input Referred Voltage Noise 5.8 nV/√Hz offer a low input voltage noise density of 5.8 nV/√Hz
• Input Bias Current 100 fA while consuming only 1.15 mA (LMV796/LMV796Q)

of quiescent current. The LMV796/LMV796Q and• Unity Gain Bandwidth 17 MHz
LMV797 are unity gain stable op amps and have gain• Supply Current per Channel bandwidth of 17 MHz. The LMV796/LMV796Q/

– LMV796/LMV796Q 1.15 mA LMV797 have a supply voltage range of 1.8V to 5.5V
and can operate from a single supply. The– LMV797 1.30 mA
LMV796/LMV796Q/LMV797 each feature a rail-to-rail• Rail-to-Rail Output Swing
output stage capable of driving a 600Ω load and

– @ 10 kΩ Load 25 mV from Rail sourcing as much as 60 mA of current.
– @ 2 kΩ Load 45 mV from Rail The LMV796/LMV796Q family provides optimal

• Guaranteed 2.5V and 5.0V Performance performance in low voltage and low noise systems. A
CMOS input stage, with typical input bias currents in• Total Harmonic Distortion 0.01% @ 1kHz, 600Ω
the range of a few femtoAmperes, and an input• Temperature Range −40°C to 125°C
common mode voltage range, which includes ground,

• LMV796Q is an Automotive Grade Product that make the LMV796/LMV796Q and the LMV797 ideal
is AEC-Q100 Grade 1 Qualified and is for low power sensor applications.
Manufactured on an Automotive Grade Flow.

The LMV796/LMV796Q/LMV797 are manufactured
using TI’s advanced VIP50 process. The LMV796/APPLICATIONS LMV796Q are offered in 5–pin SOT-23 package. The
LMV797 is offered in 8–pin VSSOP package.• Photodiode Amplifiers

• Active Filters and Buffers
• Low Noise Signal Processing
• Medical Instrumentation
• Sensor Interface Applications
• Automotive

Typical Application

Figure 1. Photodiode Transimpedance Amplifier Figure 2. Input Referred Voltage Noise vs.
Frequency

1

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

2All trademarks are the property of their respective owners.

PRODUCTION DATA information is current as of publication date. Copyright © 2006–2013, Texas Instruments Incorporated
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
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These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1) (2)

Human Body Model 2000V

ESD Tolerance (3) Machine Model 200V

Charge-Device Model 1000V

VIN Differential ±0.3V

Supply Voltage (V+ – V−) 6.0V

Input/Output Pin Voltage V+ +0.3V, V− −0.3V

Storage Temperature Range −65°C to 150°C

Junction Temperature (4) +150°C

Infrared or Convection (20 sec) 235°C
Soldering Information

Wave Soldering Lead Temperature (10 sec) 260°C

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for
which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test
conditions, see the Electrical Characteristics tables.

(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and
specifications.

(3) Human Body Model is 1.5kΩ in series with 100pF. Machine Model is 0Ω in series with 200pF.
(4) The maximum power dissipation is a function of TJMAX, θJA. The maximum allowable power dissipation at any ambient temperature is PD

= (TJMAX - TA) / θJA. All numbers apply for packages soldered directly onto a PC Board.

Operating Ratings (1)

Temperature Range (2) −40°C to 125°C

−40°C ≤ TA ≤ 125°C 2.0V to 5.5V
Supply Voltage (V+ – V−)

0°C ≤ TA ≤ 125°C 1.8V to 5.5V

5-Pin SOT-23 180°C/W
Package Thermal Resistance (θJA) (2)

8-Pin VSSOP 236°C/W

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for
which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test
conditions, see the Electrical Characteristics tables.

(2) The maximum power dissipation is a function of TJMAX, θJA. The maximum allowable power dissipation at any ambient temperature is PD
= (TJMAX - TA) / θJA. All numbers apply for packages soldered directly onto a PC Board.

2.5V Electrical Characteristics
Unless otherwise specified, all limits are specified for TA = 25°C, V+ = 2.5V, V− = 0V, VCM = V+/2 = VO. Boldface limits apply
at the temperature extremes.

Min Typ MaxSymbol Parameter Conditions Units(1) (2) (1)

0.1 ±1.35VOS Input Offset Voltage mV±1.65

LMV796/LMV796Q (3) −1.0
TC VOS Input Offset Voltage Temperature Drift μV/°C

LMV797 (3) −1.8

0.05 1−40°C ≤ TA ≤ 85°C 25
IB Input Bias Current VCM = 1.0V (4) (5) pA

0.05 1−40°C ≤ TA ≤ 125°C 100

IOS Input Offset Current VCM = 1.0V (5) 10 fA

(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlations using the
statistical quality control (SQC) method.

(2) Typical values represent the parametric norm at the time of characterization.
(3) Offset voltage average drift is determined by dividing the change in VOS by temperature change.
(4) Positive current corresponds to current flowing into the device.
(5) This parameter is specified by design and/or characterization and is not tested in production.

2 Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated
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2.5V Electrical Characteristics (continued)
Unless otherwise specified, all limits are specified for TA = 25°C, V+ = 2.5V, V− = 0V, VCM = V+/2 = VO. Boldface limits apply
at the temperature extremes.

Min Typ MaxSymbol Parameter Conditions Units(1) (2) (1)

80 94CMRR Common Mode Rejection Ratio 0V ≤ VCM ≤ 1.4V dB75

2.0V ≤ V+ ≤ 5.5V, VCM = 0V 80 100
75PSRR Power Supply Rejection Ratio dB

1.8V ≤ V+ ≤ 5.5V, VCM = 0V 80 98

CMRR ≥ 60 dB −0.3 1.5CMVR Common Mode Voltage Range VCMRR ≥ 55 dB -0.3 1.5

LMV796/LMV796Q 85 98
80VOUT = 0.15V to 2.2V,

RLOAD = 2 kΩ to V+/2 LMV797 82 92AVOL Open Loop Voltage Gain dB78

VOUT = 0.15V to 2.2V, 88 110
RLOAD = 10 kΩ to V+/2 84

RLOAD = 2 kΩ to V+/2 25 75
82

Output Voltage Swing High
RLOAD = 10 kΩ to V+/2 20 65

71 mV fromVOUT either rail30 75RLOAD = 2 kΩ to V+/2 78
Output Voltage Swing Low

15 65RLOAD = 10 kΩ to V+/2 67

Sourcing to V− 35 47
VIN = 200 mV (6) 28

IOUT Output Current mA
Sinking to V+ 7 15
VIN = –200 mV (6) 5

LMV796/LMV796Q 0.95 1.30
1.65

IS Supply Current per Amplifier mA
LMV797 1.1 1.50
per channel 1.85

AV = +1, Rising (10% to 90%) 8.5
SR Slew Rate V/μs

AV = +1, Falling (90% to 10%) 10.5

GBW Gain Bandwidth 14 MHz

en Input Referred Voltage Noise Density f = 1 kHz 6.2 nV/√Hz

in Input Referred Current Noise Density f = 1 kHz 0.01 pA/√Hz

THD+N Total Harmonic Distortion + Noise f = 1 kHz, AV = 1, RLOAD = 600Ω 0.01 %

(6) The short circuit test is a momentary test, the short circuit duration is 1.5ms.

5V Electrical Characteristics
Unless otherwise specified, all limits are specified for TA = 25°C, V+ = 5V, V− = 0V, VCM = V+/2 = VO. Boldface limits apply at
the temperature extremes.

Min Typ MaxSymbol Parameter Conditions Units(1) (2) (1)

0.1 ±1.35VOS Input Offset Voltage mV±1.65

LMV796/LMV796Q (3) −1.0
TC VOS Input Offset Voltage Temperature Drift μV/°C

LMV797 (3) −1.8

(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlations using the
statistical quality control (SQC) method.

(2) Typical values represent the parametric norm at the time of characterization.
(3) Offset voltage average drift is determined by dividing the change in VOS by temperature change.

Copyright © 2006–2013, Texas Instruments Incorporated Submit Documentation Feedback 3
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5V Electrical Characteristics (continued)
Unless otherwise specified, all limits are specified for TA = 25°C, V+ = 5V, V− = 0V, VCM = V+/2 = VO. Boldface limits apply at
the temperature extremes.

−40°C ≤ TA ≤ 85°C 0.1 1
25

IB Input Bias Current VCM = 2.0V (4) (5) pA
−40°C ≤ TA ≤ 125°C 0.1 1

100

IOS Input Offset Current VCM = 2.0V (5) 10 fA

0V ≤ VCM ≤ 3.7V 80 100CMRR Common Mode Rejection Ratio dB75

2.0V ≤ V+ ≤ 5.5V, VCM = 0V 80 100
75PSRR Power Supply Rejection Ratio dB

1.8V ≤ V+ ≤ 5.5V, VCM = 0V 80 98

CMRR ≥ 60 dB −0.3 4CMVR Common Mode Voltage Range VCMRR ≥ 55 dB -0.3 4

LMV796/LMV796Q 85 97
80VOUT = 0.3V to 4.7V,

RLOAD = 2 kΩ to V+/2 LMV797 82 89AVOL Open Loop Voltage Gain dB78

VOUT = 0.3V to 4.7V, 88 110
RLOAD = 10 kΩ to V+/2 84

RLOAD = 2 kΩ to V+/2 35 75
82

Output Voltage Swing High
RLOAD = 10 kΩ to V+/2 25 65

71

LMV796/LM796Q 42 75 mV fromVOUT 78 either rail
RLOAD = 2 kΩ to V+/2

LMV797 45 80Output Voltage Swing Low 83

RLOAD = 10 kΩ to V+/2 20 65
67

Sourcing to V− 45 60
VIN = 200 mV (6) 37

IOUT Output Current mA
Sinking to V+ 10 21
VIN = –200 mV (6) 6

1.15 1.40LMV796/LMV796Q 1.75
IS Supply Current per Amplifier mA

1.30 1.70LMV797per channel 2.05

AV = +1, Rising (10% to 90%) 6.0 9.5
SR Slew Rate V/μs

AV = +1, Falling (90% to 10%) 7.5 11.5

GBW Gain Bandwidth 17 MHz

en Input Referred Voltage Noise Density f = 1 kHz 5.8 nV/√Hz

in Input Referred Current Noise Density f = 1 kHz 0.01 pA/√Hz

THD+N Total Harmonic Distortion + Noise f = 1 kHz, AV = 1, RLOAD = 600Ω 0.01 %

(4) Positive current corresponds to current flowing into the device.
(5) This parameter is specified by design and/or characterization and is not tested in production.
(6) The short circuit test is a momentary test, the short circuit duration is 1.5ms.
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Connection Diagram

Figure 3. 5-Pin SOT-23 Figure 4. 8-Pin VSSOP
Top View Top View
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Typical Performance Characteristics
Unless otherwise specified, TA = 25°C, V– = 0, V+ = Supply Voltage = 5V, VCM = V+/2.

Supply Current vs. Supply Voltage (LMV796/LMV796Q) Supply Current vs. Supply Voltage (LMV797)

Figure 5. Figure 6.

VOS vs. VCM VOS vs. VCM

Figure 7. Figure 8.

VOS vs. VCM VOS vs. Supply Voltage

Figure 9. Figure 10.
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Typical Performance Characteristics (continued)
Unless otherwise specified, TA = 25°C, V– = 0, V+ = Supply Voltage = 5V, VCM = V+/2.

Slew Rate vs. Supply Voltage Input Bias Current vs. VCM

Figure 11. Figure 12.

Input Bias Current vs. VCM Sourcing Current vs. Supply Voltage

Figure 13. Figure 14.

Sinking Current vs. Supply Voltage Sourcing Current vs. Output Voltage

Figure 15. Figure 16.
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Typical Performance Characteristics (continued)
Unless otherwise specified, TA = 25°C, V– = 0, V+ = Supply Voltage = 5V, VCM = V+/2.

Sinking Current vs. Output Voltage Positive Output Swing vs. Supply Voltage

Figure 17. Figure 18.

Negative Output Swing vs. Supply Voltage Positive Output Swing vs. Supply Voltage

Figure 19. Figure 20.

Negative Output Swing vs. Supply Voltage Positive Output Swing vs. Supply Voltage

Figure 21. Figure 22.
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Typical Performance Characteristics (continued)
Unless otherwise specified, TA = 25°C, V– = 0, V+ = Supply Voltage = 5V, VCM = V+/2.

Negative Output Swing vs. Supply Voltage Time Domain Voltage Noise

Figure 23. Figure 24.

Input Referred Voltage Noise vs. Frequency Overshoot and Undershoot vs. CLOAD

Figure 25. Figure 26.

THD+N vs. Peak-to-Peak Output Voltage (VOUT) THD+N vs. Peak-to-Peak Output Voltage (VOUT)

Figure 27. Figure 28.
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Typical Performance Characteristics (continued)
Unless otherwise specified, TA = 25°C, V– = 0, V+ = Supply Voltage = 5V, VCM = V+/2.

THD+N vs. Frequency THD+N vs. Frequency

Figure 29. Figure 30.

Open Loop Gain and Phase with Capacitive Load Open Loop Gain and Phase with Resistive Load

Figure 31. Figure 32.

Closed Loop Output Impedance vs. Frequency Crosstalk Rejection

Figure 33. Figure 34.
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Typical Performance Characteristics (continued)
Unless otherwise specified, TA = 25°C, V– = 0, V+ = Supply Voltage = 5V, VCM = V+/2.

Small Signal Transient Response, AV = +1 Large Signal Transient Response, AV = +1

Figure 35. Figure 36.

Small Signal Transient Response, AV = +1 Large Signal Transient Response, AV = +1

Figure 37. Figure 38.

Phase Margin vs. Capacitive Load (Stability) Phase Margin vs. Capacitive Load (Stability)

Figure 39. Figure 40.
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Typical Performance Characteristics (continued)
Unless otherwise specified, TA = 25°C, V– = 0, V+ = Supply Voltage = 5V, VCM = V+/2.

Positive PSRR vs. Frequency Negative PSRR vs. Frequency

Figure 41. Figure 42.

CMRR vs. Frequency Input Common Mode Capacitance vs. VCM

Figure 43. Figure 44.
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APPLICATION INFORMATION

ADVANTAGES OF THE LMV796/LMV797

Wide Bandwidth at Low Supply Current

The LMV796 and LMV797 are high performance op amps that provide a unity gain bandwidth of 17 MHz while
drawing a low supply current of 1.15 mA. This makes them ideal for providing wideband amplification in portable
applications.

Low Input Referred Noise and Low Input Bias Current

The LMV796/LMV797 have a very low input referred voltage noise density (5.8 nV/√Hz at 1 kHz). A CMOS input
stage ensures a small input bias current (100 fA) and low input referred current noise (0.01 pA/√Hz). This is very
helpful in maintaining signal fidelity, and makes the LMV796 and LMV797 ideal for audio and sensor based
applications.

Low Supply Voltage

The LMV796 and the LMV797 have performance specified at 2.5V and 5V supply. The LMV796 family is
specified to be operational at all supply voltages between 2.0V and 5.5V, for ambient temperatures ranging from
−40°C to 125°C, thus utilizing the entire battery lifetime. The LMV796 and LMV797 are also specified to be
operational at 1.8V supply voltage, for temperatures between 0°C and 125°C. This makes the LMV796 family
ideal for usage in low-voltage commercial applications.

RRO and Ground Sensing

Rail-to-rail output swing provides maximum possible dynamic range at the output. This is particularly important
when operating at low supply voltages. An innovative positive feedback scheme is used to boost the current drive
capability of the output stage. This allows the LMV796 and the LMV797 to source more than 40 mA of current at
1.8V supply. This also limits the performance of the LMV796 family as comparators, and hence the usage of the
LMV796 and the LMV797 in an open-loop configuration is not recommended. The input common-mode range
includes the negative supply rail which allows direct sensing at ground in single supply operation.

Small Size

The small footprint of the LMV796 and the LMV797 package saves space on printed circuit boards, and enables
the design of smaller electronic products, such as cellular phones, pagers, or other portable systems. Long
traces between the signal source and the op amp make the signal path susceptible to noise. By using the
physically smaller LMV796 or LMV797 package, the op amp can be placed closer to the signal source, reducing
noise pickup and increasing signal integrity.

CAPACITIVE LOAD TOLERANCE

The LMV796 and LMV797 can directly drive 120 pF in unity-gain without oscillation. The unity-gain follower is the
most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of
amplifiers. The combination of the amplifier’s output impedance and the capacitive load induces phase lag. This
results in either an underdamped pulse response or oscillation. To drive a heavier capacitive load, the circuit in
Figure 45 can be used.

In Figure 45, the isolation resistor RISO and the load capacitor CL form a pole to increase stability by adding more
phase margin to the overall system. The desired performance depends on the value of RISO. The bigger the RISO
resistor value, the more stable VOUT will be. Increased RISO would, however, result in a reduced output swing and
short circuit current.

Figure 45. Isolation of CL to Improve Stability
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INPUT CAPACITANCE AND FEEDBACK CIRCUIT ELEMENTS

The LMV796 family has a very low input bias current (100 fA) and a low 1/f noise corner frequency (400 Hz),
which makes it ideal for sensor applications. However, to obtain this performance a large CMOS input stage is
used, which adds to the input capacitance of the op amp, CIN. Though this does not affect the DC and low
frequency performance, at higher frequencies the input capacitance interacts with the input and the feedback
impedances to create a pole, which results in lower phase margin and gain peaking. This can be controlled by
being selective in the use of feedback resistors, as well as, by using a feedback capacitance, CF. For example, in
the inverting amplifier shown in Figure 46, if CIN and CF are ignored and the open loop gain of the op amp is
considered infinite then the gain of the circuit is −R2/R1. An op amp, however, usually has a dominant pole, which
causes its gain to drop with frequency. Hence, this gain is only valid for DC and low frequency. To understand
the effect of the input capacitance coupled with the non-ideal gain of the op amp, the circuit needs to be
analyzed in the frequency domain using a Laplace transform.

Figure 46. Inverting Amplifier

For simplicity, the op amp is modeled as an ideal integrator with a unity gain frequency of A0 . Hence, its transfer
function (or gain) in the frequency domain is A0/s. Solving the circuit equations in the frequency domain, ignoring
CF for the moment, results in an expression for the gain shown in Equation 1.

(1)

It can be inferred from the denominator of the transfer function that it has two poles, whose expressions can be
obtained by solving for the roots of the denominator and are shown in Equation 2.

(2)

Equation 2 shows that as the values of R1 and R2 are increased, the magnitude of the poles, and hence the
bandwidth of the amplifier, is reduced. This theory is verified by using different values of R1 and R2 in the circuit
shown in Figure 45 and by comparing their frequency responses. In Figure 47 the frequency responses for three
different values of R1 and R2 are shown. When both R1 and R2 are 1 kΩ, the response is flattest and widest;
whereas, it narrows and peaks significantly when both their values are changed to 10 kΩ or 30 kΩ. So it is
advisable to use lower values of R1 and R2 to obtain a wider and flatter response. Lower resistances also help in
high sensitivity circuits since they add less noise.
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Figure 47. Gain Peaking Caused by Large R1, R2

A way of reducing the gain peaking is by adding a feedback capacitance CF in parallel with R2. This introduces
another pole in the system and prevents the formation of pairs of complex conjugate poles which cause the gain
to peak. Figure 48 shows the effect of CF on the frequency response of the circuit. Adding a capacitance of 2 pF
removes the peak, while a capacitance of 5 pF creates a much lower pole and reduces the bandwidth
excessively.

Figure 48. Gain Peaking Eliminated by CF

AUDIO PREAMPLIFIER WITH BAND PASS FILTERING

With low input referred voltage noise, low supply voltage and current, and a low harmonic distortion, the LMV796
family is ideal for audio applications. Its wide unity gain bandwidth allows it to provide large gain for a wide range
of frequencies and it can be used to design a preamplifier to drive a load of as low as 600Ω with less than 0.01%
distortion. Two amplifier circuits are shown in Figure 49 and Figure 50. Figure 49 is an inverting amplifier, with a
10 kΩ feedback resistor, R2, and a 1kΩ input resistor, R1, and hence provides a gain of −10. Figure 50 is a non-
inverting amplifier, using the same values of R1and R2, and provides a gain of 11. In either of these circuits, the
coupling capacitor CC1 decides the lower frequency at which the circuit starts providing gain, while the feedback
capacitor CF decides the frequency at which the gain starts dropping off. Figure 51 shows the frequency
response of the inverting amplifier with different values of CF.
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Figure 49. Inverting Audio Preamplifier

Figure 50. Non-inverting Audio Preamplifier

Figure 51. Frequency Response of the Inverting Audio Preamplifier

TRANSIMPEDANCE AMPLIFIER

CMOS input op amps are often used in transimpedance applications as they have an extremely high input
impedance. A transimpedance amplifier converts a small input current into a voltage. This current is usually
generated by a photodiode. The transimpedance gain, measured as the ratio of the output voltage to the input
current, is expected to be large and wide-band. Since the circuit deals with currents in the range of a few nA, low
noise performance is essential. The LMV796/LMV797 are CMOS input op amps providing wide bandwidth and
low noise performance, and are hence ideal for transimpedance applications.
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Usually, a transimpedance amplifier is designed on the basis of the current source driving the input. A
photodiode is a very common capacitive current source, which requires transimpedance gain for transforming its
miniscule current into easily detectable voltages. The photodiode and the amplifier’s gain are selected with
respect to the speed and accuracy required of the circuit. A faster circuit would require a photodiode with lesser
capacitance and a faster amplifier. A more sensitive circuit would require a sensitive photodiode and a high gain.
A typical transimpedance amplifier is shown in Figure 52. The output voltage of the amplifier is given by the
equation VOUT = −IINRF. Since the output swing of the amplifier is limited, RF should be selected such that all
possible values of IIN can be detected.

The LMV796/LMV797 have a large gain-bandwidth product (17 MHz), which enables high gains at wide
bandwidths. A rail-to-rail output swing at 5.5V supply allows detection and amplification of a wide range of input
currents. A CMOS input stage with negligible input current noise and low input voltage noise allows the
LMV796/LMV797 to provide high fidelity amplification for wide bandwidths. These properties make the
LMV796/LMV797 ideal for systems requiring wide-band transimpedance amplification.

Figure 52. Photodiode Transimpedance Amplifier

As mentioned earlier, the following parameters are used to design a transimpedance amplifier: the amplifier gain-
bandwidth product, A0; the amplifier input capacitance, CCM; the photodiode capacitance, CD; the
transimpedance gain required, RF; and the amplifier output swing. Once a feasible RF is selected using the
amplifier output swing, these numbers can be used to design an amplifier with the desired transimpedance gain
and a maximally flat frequency response.

An essential component for obtaining a maximally flat response is the feedback capacitor, CF. The capacitance
seen at the input of the amplifier, CIN, combined with the feedback capacitor, RF, generate a phase lag which
causes gain-peaking and can destabilize the circuit. CIN is usually just the sum of CD and CCM. The feedback
capacitor CF creates a pole, fP in the noise gain of the circuit, which neutralizes the zero in the noise gain, fZ,
created by the combination of RF and CIN. If properly positioned, the noise gain pole created by CF can ensure
that the slope of the gain remains at 20 dB/decade till the unity gain frequency of the amplifier is reached, thus
ensuring stability. As shown in Figure 53, fP is positioned such that it coincides with the point where the noise
gain intersects the op amp’s open loop gain. In this case, fP is also the overall −3 dB frequency of the
transimpedance amplifier. The value of CF needed to make it so is given by Equation 3. A larger value of CF
causes excessive reduction of bandwidth, while a smaller value fails to prevent gain peaking and instability.

(3)
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Figure 53. CF Selection for Stability

Calculating CF from Equation 3 can sometimes return unreasonably small values (<1 pF), especially for high
speed applications. In these cases, it is often more practical to use the circuit shown in Figure 54 in order to
allow more reasonable values. In this circuit, the capacitance CF′ is (1+ RB/RA) times the effective feedback
capacitance, CF. A larger capacitor can now be used in this circuit to obtain a smaller effective capacitance.

For example, if a CF of 0.5 pF is needed, while only a 5 pF capacitor is available, RB and RA can be selected
such that RB/RA = 9. This would convert a CF′ of 5 pF into a CF of 0.5 pF. This relationship holds as long as RA
<< RF.

Figure 54. Obtaining Small CF from Large CF′

LMV796 AS A TRANSIMPEDANCE AMPLIFIER

The LMV796 was used in the designs for a number of amplifiers with varying transimpedance gains and source
capacitances. The gains, bandwidths and feedback capacitances of the circuits created are summarized in
Table 1. The frequency responses are presented in Figure 55 and Figure 56. The feedback capacitances are
slightly different from the formula in Equation 3, since the parasitic capacitance of the board and the feedback
resistor RF had to be accounted for.

Table 1.

Transimpedance, ATI CIN CF −3 dB Frequency

470000 50 pF 1.5 pF 350 kHz

470000 100 pF 2.0 pF 250 kHz

470000 200 pF 3.0 pF 150 kHz

47000 50 pF 4.5 pF 1.5 MHz

47000 100 pF 6.0 pF 1 MHz

47000 200 pF 9.0 pF 700 kHz
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Figure 55. Frequency Response for ATI = 470000

Figure 56. Frequency Response for ATI = 47000

HIGH GAIN WIDEBAND TRANSIMPEDANCE AMPLIFIER USING THE LMV797

The LMV797 dual, low noise, wide bandwidth, CMOS input op amp IC can be used for compact, robust and
integrated solutions for sensing and amplifying wide-band signals obtained from sensitive photodiodes. One of
the two op amps available can be used to obtain transimpedance gain while the other can be used for amplifying
the output voltage to further enhance the transimpedance gain. The wide bandwidth of the op amps (17 MHz)
ensures that they are capable of providing high gain for a wide range of frequencies. The low input referred noise
(5.8 nV/√Hz) allows the amplifier to deliver an output with a high SNR (signal to noise ratio). The small 8-pin
VSSOP footprint saves space on printed circuit boards and allows ease of design in portable products.

The circuit shown in Figure 57, has the first op amp acting as a transimpedance amplifier with a gain of 47000,
while the second stage provides a voltage gain of 10. This provides a total transimpedance gain of 470000 with a
−3 dB bandwidth of about 1.5 MHz, for a total input capacitance of 50 pF. The frequency response for the circuit
is shown in Figure 58
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Figure 57. 1.5 MHz Transimpedance Amplifier with ATI = 470000

Figure 58. 1.5 MHz Transimpedance Amplifier Frequency Response

SENSOR INTERFACES

The low input bias current and low input referred noise of the LMV796 and LMV797 make them ideal for sensor
interfaces. These circuits are required to sense voltages of the order of a few μV and currents amounting to less
than a nA hence, the op amp needs to have low voltage noise and low input bias current. Typical applications
include infra-red (IR) thermometry, thermocouple amplifiers and pH electrode buffers. Figure 59 is an example of
a typical circuit used for measuring IR radiation intensity, often used for estimating the temperature of an object
from a distance. The IR sensor generates a voltage proportional to I, which is the intensity of the IR radiation
falling on it. As shown in Figure 59, K is the constant of proportionality relating the voltage across the IR sensor
(VIN) to the radiation intensity, I. The resistances RA and RB are selected to provide a high gain to amplify this
voltage, while CF is added to filter out the high frequency noise.

Figure 59. IR Radiation Sensor
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 OTHER QUALIFIED VERSIONS OF LMV796, LMV796-Q1 :
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 NOTE: Qualified Version Definitions:
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LMV796MF/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3

LMV796MFX/NOPB SOT-23 DBV 5 3000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3

LMV796QMF/NOPB SOT-23 DBV 5 1000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3

LMV796QMFX/NOPB SOT-23 DBV 5 3000 178.0 8.4 3.2 3.2 1.4 4.0 8.0 Q3

LMV797MM/NOPB VSSOP DGK 8 1000 178.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1

LMV797MMX/NOPB VSSOP DGK 8 3500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
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*All dimensions are nominal

Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)

LMV796MF/NOPB SOT-23 DBV 5 1000 208.0 191.0 35.0

LMV796MFX/NOPB SOT-23 DBV 5 3000 208.0 191.0 35.0

LMV796QMF/NOPB SOT-23 DBV 5 1000 208.0 191.0 35.0

LMV796QMFX/NOPB SOT-23 DBV 5 3000 208.0 191.0 35.0

LMV797MM/NOPB VSSOP DGK 8 1000 208.0 191.0 35.0

LMV797MMX/NOPB VSSOP DGK 8 3500 367.0 367.0 35.0
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PACKAGE OUTLINE
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SMALL OUTLINE TRANSISTOR

4214839/F   06/2021

NOTES: 
 
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
    per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Refernce JEDEC MO-178.
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
    exceed 0.25 mm per side.
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EXAMPLE BOARD LAYOUT
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SOT-23 - 1.45 mm max heightDBV0005A
SMALL OUTLINE TRANSISTOR

NOTES: (continued)
 
5. Publication IPC-7351 may have alternate designs. 
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
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EXAMPLE STENCIL DESIGN
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SOT-23 - 1.45 mm max heightDBV0005A
SMALL OUTLINE TRANSISTOR

4214839/F   06/2021

NOTES: (continued)
 
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
     design recommendations. 
8. Board assembly site may have different recommendations for stencil design.
 

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
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IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE 
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” 
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY 
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD 
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate 
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable 
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an 
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license 
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you 
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these 
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with 
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for 
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE
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