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LMV84x CMOS 输输入入、、RRIO、、低低功功耗耗、、宽宽电电源源电电压压范范围围
4.5MHz 运运算算放放大大器器

1

1 特特性性

1• 除非另有说明，否则

TA = 25°C 时的典型值为 V+ = 5V。
• 小型 5 引脚 SC70 封装 (2.00mm × 1.25mm ×

0.95mm)
• 宽电源电压范围：2.7V 至 12V
• 可在 3.3V、5V 和 ±5V 额定电压下工作

• 低电源电流：每通道 1mA
• 单位增益带宽：4.5MHz
• 开环增益：133dB
• 输入失调电压：最大值为 500µV
• 输入偏置电流：0.3pA
• CMRR 为 112dB，PSSR 为 108dB
• 输入电压噪声：20nV/√Hz
• 温度范围：−40°C 至 125°C
• 轨至轨输入和输出 (RRIO)

2 应应用用

• 高阻抗传感器接口

• 电池供电仪表

• 高增益和仪表放大器

• DAC 缓冲器和有源滤波器

3 说说明明

LMV84x 器件是低电压和低功耗运算放大器，在 2.7V
至 12V 电源电压范围内工作，具有轨至轨输入和输出

功能。其低失调电压、低电源电流和 CMOS 输入特性

使得它们非常适合高阻抗传感器接口和电池供电的 应

用。

单 LMV841 采用节省空间的 5 引脚 SC70 封装，双

LMV842 采用 8 引脚 VSSOP 和 8 引脚 SOIC 封装，

而四 LMV844 采用 14 引脚 TSSOP 和 14 引脚 SOIC
封装。这些小型封装是空间受限型 PCB 和便携式电子

产品的理想解决方案。

器器件件信信息息(1)

器器件件型型号号 封封装装 封封装装尺尺寸寸（（标标称称值值））

LMV841 SC70 (5) 2.00mm × 1.25mm

LMV842
VSSOP (8) 3.00mm × 3.00mm
SOIC (8) 4.90mm x 3.91mm

LMV844
SOIC (14) 8.65mm x 3.91mm
TSSOP封装(14) 5.00mm x 4.40mm

(1) 如需了解所有可用封装，请参阅数据表末尾的可订购产品附
录。

典典型型 应应用用
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5 Pin Configuration and Functions

DCK Package
5-Pin SC70
Top View

D or DGK Package
8-Pin SOIC and VSSOP

Top View

D or PW Package
14-Pin SOIC and TSSOP

Top View

Pin Functions
PIN

DESCRIPTION
NAME I/O.
+IN I Noninverting Input
–IN I Inverting Input
OUT O Output
V+ P Positive Supply
V– P Negative Supply
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(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only and functional operation of the device at these conditions is not implied. Exposure to absolute-maximum-rated conditions for
extended periods may affect device reliability.

(2) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office / Distributors for availability and
specifications.

(3) The maximum power dissipation is a function of TJ(MAX), RθJA, and TA. The maximum allowable power dissipation at any ambient
temperature is PD = (TJ(MAX) - TA) / RθJA. All numbers apply for packages soldered directly onto a PCB.

6 Specifications

6.1 Absolute Maximum Ratings
See (1) (2)

MIN MAX UNIT
VIN differential –300 300 mV
Supply voltage (V+ – V−) 13.2 V
Voltage at input and output pins V+ + 0.3 V− – 0.3 V
Input current 10 mA
Junction temperature (3) 150 °C

Soldering
information

Infrared or convection (20 s) 235 °C
Wave soldering lead temperature (10 s) 260 °C

Storage temperature, Tstg −65 150 °C

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.2 ESD Ratings
VALUE UNIT

V(ESD)
Electrostatic
discharge

Human-body model (HBM) (1) ±2000
V

Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±250

(1) The maximum power dissipation is a function of TJ(MAX), RθJA, and TA. The maximum allowable power dissipation at any ambient
temperature is PD = (TJ(MAX) – TA) / RθJA. All numbers apply for packages soldered directly onto a PCB.

6.3 Recommended Operating Conditions
MIN MAX UNIT

Temperature (1) −40 125 °C
Supply voltage (V+ – V−) 2.7 12 V

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report.

(2) The maximum power dissipation is a function of TJ(MAX), RθJA, and TA. The maximum allowable power dissipation at any ambient
temperature is PD = (TJ(MAX) - TA) / RθJA. All numbers apply for packages soldered directly onto a PCB.

6.4 Thermal Information

THERMAL METRIC (1)

LMV84x

UNITDCK (SC70) DGK
(VSSOP)

D (SOIC) PW
(TSSOP)

5 PINS 8 PINS 8 PINS 14 PIN 14 PINS
RθJA Junction-to-ambient thermal resistance (2) 269.9 179.2 121.4 85.4 113.3 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 93.8 69.2 65.7 43.5 38.9 °C/W
RθJB Junction-to-board thermal resistance 48.8 99.7 62.0 39.8 56.3 °C/W
ψJT Junction-to-top characterization parameter 2.0 10.0 16.5 9.2 3.1 °C/W
ψJB Junction-to-board characterization parameter 47.9 98.3 61.4 39.6 55.6 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A N/A N/A N/A N/A °C/W
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(1) Electrical table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very
limited self-heating of the device.

(2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using
statistical quality control (SQC) method.

(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary
over time and will also depend on the application and configuration. The typical values are not tested and are not ensured on shipped
production material.

(4) This parameter is ensured by design and/or characterization and is not tested in production.
(5) Positive current corresponds to current flowing into the device.

6.5 Electrical Characteristics – 3.3 V
Unless otherwise specified, all limits are ensured for TA = 25°C, V+ = 3.3 V, V− = 0 V, VCM = V+ / 2, and RL > 10 MΩ to V+ /
2. (1)

PARAMETER TEST CONDITIONS MIN (2) TYP (3) MAX (2) UNIT

VOS Input offset voltage
–500 ±50 500

µV
at the temperature extremes –800 800

TCVOS
Input offset voltage drift (4) 0.5

µV/°C
at the temperature extremes –5 5

IB
Input bias current (4) (5) 0.3 10

pA
at the temperature extremes 300

IOS Input offset current 40 fA

CMRR

Common-mode rejection ratio
LMV841 0 V ≤ VCM ≤ 3.3 V

84 112
dBat the temperature

extremes 80

Common-mode rejection ratio
LMV842 and LMV844 0 V ≤ VCM ≤ 3.3 V

77 106
dBat the temperature

extremes 75

PSRR Power supply rejection ratio 2.7 V ≤ V+ ≤ 12 V, VO = V+

/ 2

86 108
dBat the temperature

extremes 82

CMVR Input common-mode voltage
range

CMRR ≥ 50 dB, at the temperature extremes –0.1 3.4 V

AVOL Large signal voltage gain

RL = 2 kΩ
VO = 0.3 V to 3 V

100 123
dBat the temperature

extremes 96

RL = 10 kΩ
VO = 0.2 V to 3.1 V

100 131
dBat the temperature

extremes 96

VO

Output swing high,
(measured from V+)

RL = 2 kΩ to V+/2
52 80

mVat the temperature
extremes 120

RL = 10 kΩ to V+/2
28 50

mVat the temperature
extremes 70

Output swing low,
(measured from V−)

RL = 2 kΩ to V+/2
65 100

mVat the temperature
extremes 120

RL = 10 kΩ to V+/2
33 65

mVat the temperature
extremes 75
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Electrical Characteristics – 3.3 V (continued)
Unless otherwise specified, all limits are ensured for TA = 25°C, V+ = 3.3 V, V− = 0 V, VCM = V+ / 2, and RL > 10 MΩ to V+ /
2.(1)

PARAMETER TEST CONDITIONS MIN (2) TYP (3) MAX (2) UNIT

(6) The maximum power dissipation is a function of TJ(MAX), RθJA, and TA. The maximum allowable power dissipation at any ambient
temperature is PD = (TJ(MAX) – TA) / RθJA. All numbers apply for packages soldered directly onto a PCB.

(7) Short circuit test is a momentary test.
(8) Number specified is the slower of positive and negative slew rates.

IO Output short-circuit current (6) (7)

Sourcing VO = V+/2
VIN = 100 mV

20 32
mAat the temperature

extremes 15

Sinking VO = V+/2
VIN = −100 mV

20 27
mAat the temperature

extremes 15

IS Supply current Per channel
0.93 1.5

mAat the temperature
extremes 2

SR Slew rate (8) AV = 1, VO = 2.3 VPP
10% to 90% 2.5 V/µs

GBW Gain bandwidth product 4.5 MHz
Φm Phase margin 67 Deg
en Input-referred voltage noise f = 1 kHz 20 nV/
ROUT Open-loop output impedance f = 3 MHz 70 Ω

THD+N Total harmonic distortion + noise f = 1 kHz , AV = 1
RL = 10 kΩ 0.005%

CIN Input capacitance 7 pF

(1) Electrical table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very
limited self-heating of the device.

(2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using
statistical quality control (SQC) method.

(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary
over time and will also depend on the application and configuration. The typical values are not tested and are not ensured on shipped
production material.

(4) This parameter is ensured by design and/or characterization and is not tested in production.
(5) Positive current corresponds to current flowing into the device.

6.6 Electrical Characteristics – 5 V
Unless otherwise specified, all limits are ensured for TA = 25°C, V+ = 5 V, V− = 0 V, VCM = V+ / 2, and RL > 10 MΩ to V+ / 2. (1)

PARAMETER TEST CONDITIONS MIN (2) TYP (3) MAX (2) UNIT

VOS Input offset voltage
–500 ±50 500

µV
at the temperature extremes –800 800

TCVOS Input offset voltage drift (4) 0.35
µV/°C

at the temperature extremes –5 5

IB Input bias current (4) (5) 0.3 10
pA

at the temperature extremes 300
IOS Input offset current 40 fA

CMRR

Common-mode rejection ratio
LMV841 0 V ≤ VCM ≤ 5 V

86 112
dBat the temperature

extremes 80

Common-mode rejection ratio
LMV842 and LMV844 0 V ≤ VCM ≤ 5 V

81 106
dBat the temperature

extremes 79

PSRR Power supply rejection ratio 2.7 V ≤ V+ ≤ 12 V, VO =
V+/2

86 108
dBat the temperature

extremes 82
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Electrical Characteristics – 5 V (continued)
Unless otherwise specified, all limits are ensured for TA = 25°C, V+ = 5 V, V− = 0 V, VCM = V+ / 2, and RL > 10 MΩ to V+ / 2.(1)

PARAMETER TEST CONDITIONS MIN (2) TYP (3) MAX (2) UNIT

(6) The maximum power dissipation is a function of TJ(MAX), RθJA, and TA. The maximum allowable power dissipation at any ambient
temperature is PD = (TJ(MAX) - TA) / RθJA. All numbers apply for packages soldered directly onto a PCB.

(7) Short circuit test is a momentary test.
(8) Number specified is the slower of positive and negative slew rates.

CMVR Input common-mode voltage
range

CMRR ≥ 50 dB, at the temperature extremes –0.2 5.2 V

AVOL Large signal voltage gain

RL = 2 kΩ
VO = 0.3V to 4.7 V

100 125
dBat the temperature

extremes 96

RL = 10 kΩ
VO = 0.2V to 4.8V

100 133
dBat the temperature

extremes 96

VO

Output swing high,
(measured from V+)

RL = 2 kΩ to V+/2
68 100

mVat the temperature
extremes 120

RL = 10 kΩ to V+/2
32 50

mVat the temperature
extremes 70

Output swing low,
(measured from V–)

RL = 2 kΩ to V+/2
78 120

mVat the temperature
extremes 140

RL = 10 kΩ to V+/2
38 70

mVat the temperature
extremes 80

IO Output short-circuit current (6) (7)

Sourcing VO = V+/2
VIN = 100 mV

20 33
mAat the temperature

extremes 15

Sinking VO = V+/2
VIN = −100 mV

20 28
mAat the temperature

extremes 15

IS Supply current Per channel
0.96 1.5

mAat the temperature
extremes 2

SR Slew rate (8) AV = 1, VO = 4 VPP
10% to 90% 2.5 V/µs

GBW Gain bandwidth product 4.5 MHz
Φm Phase margin 67 Deg
en Input-referred voltage noise f = 1 kHz 20 nV/
ROUT Open-loop output impedance f = 3 MHz 70 Ω

THD+N Total harmonic distortion +
noise

f = 1 kHz , AV = 1
RL = 10 kΩ 0.003%

CIN Input capacitance 6 pF

(1) Electrical table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very
limited self-heating of the device.

6.7 Electrical Characteristics – ±5-V
Unless otherwise specified, all limits are ensured for TA = 25°C, V+ = 5 V, V− = –5 V, VCM = 0 V, and RL > 10 MΩ to VCM. (1)
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Electrical Characteristics – ±5-V (continued)
Unless otherwise specified, all limits are ensured for TA = 25°C, V+ = 5 V, V− = –5 V, VCM = 0 V, and RL > 10 MΩ to VCM.(1)

(2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using
statistical quality control (SQC) method.

(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary
over time and will also depend on the application and configuration. The typical values are not tested and are not ensured on shipped
production material.

(4) This parameter is ensured by design and/or characterization and is not tested in production.
(5) Positive current corresponds to current flowing into the device.
(6) The maximum power dissipation is a function of TJ(MAX), RθJA, and TA. The maximum allowable power dissipation at any ambient

temperature is PD = (TJ(MAX) - TA) / RθJA. All numbers apply for packages soldered directly onto a PCB.
(7) Short circuit test is a momentary test.

PARAMETER TEST CONDITIONS MIN (2) TYP (3) MAX (2) UNIT

VOS Input offset voltage
–500 ±50 500

µV
at the temperature extremes –800 800

TCVOS Input offset voltage drift (4) 0.25
µV/°C

at the temperature extremes –5 5

IB
Input bias current (4) (5) 0.3 10

pA
at the temperature extremes 300

IOS Input offset current 40 fA

CMRR

Common-mode rejection ratio
LMV841 –5 V ≤ VCM ≤ 5 V

86 112
dBat the temperature

extremes 80

Common-mode rejection ratio
LMV842 and LMV844 –5 V ≤ VCM ≤ 5 V

86 106
dBat the temperature

extremes 80

PSRR Power supply rejection ratio 2.7 V ≤ V+ ≤ 12 V, VO =
0 V

86 108
dBat the temperature

extremes 82

CMVR Input common-mode voltage
range CMRR ≥ 50 dB –5.2 5.2 V

AVOL Large signal voltage gain

RL = 2 kΩ
VO = −4.7 V to 4.7 V

100 126
dBat the temperature

extremes 96

RL = 10 kΩ
VO = −4.8 V to 4.8 V

100 136
dBat the temperature

extremes 96

VO

Output swing high,
(measured from V+)

RL = 2 kΩ to 0 V
95 130

mVat the temperature
extremes 155

RL = 10 kΩ to 0 V
44 75

mVat the temperature
extremes 95

Output swing low,
(measured from V−)

RL = 2 kΩ to 0 V
105 160

mVat the temperature
extremes 200

RL = 10 kΩ to 0 V
52 80

mVat the temperature
extremes 100

IO Output short-circuit current (6) (7)

Sourcing VO = 0 V
VIN = 100 mV

20 37
mAat the temperature

extremes 15

Sinking VO = 0 V
VIN = −100 mV

20 29
mAat the temperature

extremes 15
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Electrical Characteristics – ±5-V (continued)
Unless otherwise specified, all limits are ensured for TA = 25°C, V+ = 5 V, V− = –5 V, VCM = 0 V, and RL > 10 MΩ to VCM.(1)

PARAMETER TEST CONDITIONS MIN (2) TYP (3) MAX (2) UNIT

(8) Number specified is the slower of positive and negative slew rates.

IS Supply current Per channel
1.03 1.7

mAat the temperature
extremes 2

SR Slew rate (8) AV = 1, VO = 9 VPP
10% to 90% 2.5 V/µs

GBW Gain bandwidth product 4.5 MHz
Φm Phase margin 67 Deg
en Input-referred voltage noise f = 1 kHz 20 nV/
ROUT Open-loop output impedance f = 3 MHz 70 Ω

THD+N Total harmonic distortion + noise f = 1 kHz , AV = 1
RL = 10kΩ 0.006%

CIN Input capacitance 3 pF
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6.8 Typical Characteristics
At TA = 25°C, RL = 10 kΩ, VS = 5 V. Unless otherwise specified.

Figure 1. VOS vs VCM Over Temperature at 3.3 V Figure 2. VOS vs VCM Over Temperature at 5 V

Figure 3. VOS vs VCM Over Temperature at ±5 V Figure 4. VOS vs Supply Voltage

Figure 5. VOS vs Temperature Figure 6. DC Gain vs VOUT
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Typical Characteristics (continued)
At TA = 25°C, RL = 10 kΩ, VS = 5 V. Unless otherwise specified.

Figure 7. Input Bias Current vs VCM Figure 8. Input Bias Current vs VCM

Figure 9. Input Bias Current vs VCM Figure 10. Supply Current Per Channel vs Supply Voltage

Figure 11. Sinking Current vs Supply Voltage Figure 12. Sourcing Current vs Supply Voltage
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Typical Characteristics (continued)
At TA = 25°C, RL = 10 kΩ, VS = 5 V. Unless otherwise specified.

Figure 13. Output Swing High vs Supply Voltage RL = 2 kΩ Figure 14. Output Swing High vs Supply Voltage RL = 10 kΩ

Figure 15. Output Swing Low vs Supply Voltage RL = 2 kΩ Figure 16. Output Swing Low vs Supply Voltage RL = 10 kΩ

Figure 17. Output Voltage Swing vs Load Current Figure 18. Open-Loop Frequency Response Over
Temperature
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Typical Characteristics (continued)
At TA = 25°C, RL = 10 kΩ, VS = 5 V. Unless otherwise specified.

Figure 19. Open-Loop Frequency Response Over Load
Conditions

Figure 20. Phase Margin vs CL

Figure 21. PSRR vs Frequency Figure 22. CMRR vs Frequency

Figure 23. Channel Separation vs Frequency Figure 24. Large Signal Step Response With Gain = 1
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Typical Characteristics (continued)
At TA = 25°C, RL = 10 kΩ, VS = 5 V. Unless otherwise specified.

Figure 25. Large Signal Step Response With Gain = 10 Figure 26. Small Signal Step Response With Gain = 1

Figure 27. Small Signal Step Response With Gain = 10 Figure 28. Slew Rate vs Supply Voltage

Figure 29. Overshoot vs CL
Figure 30. Input Voltage Noise vs Frequency
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Typical Characteristics (continued)
At TA = 25°C, RL = 10 kΩ, VS = 5 V. Unless otherwise specified.

Figure 31. THD+N vs Frequency Figure 32. THD+N vs VOUT

Figure 33. Closed-Loop Output Impedance vs Frequency
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7 Detailed Description

7.1 Overview
The LMV84x devices are operational amplifiers with near-precision specifications: low noise, low temperature
drift, low offset, and rail-to-rail input and output. Possible application areas include instrumentation, medical, test
equipment, audio, and automotive applications.

Its low supply current of 1 mA per amplifier, temperature range of −40°C to +125°C, 12-V supply with CMOS
input, and the small SC70 package for the LMV841 make the LMV84x a unique op amp family and a perfect
choice for portable electronics.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Input Protection
The LMV84x devices have a set of anti-parallel diodes D1 and D2 between the input pins, as shown in Figure 34.
These diodes are present to protect the input stage of the amplifier. At the same time, they limit the amount of
differential input voltage that is allowed on the input pins.

A differential signal larger than one diode voltage drop can damage the diodes. The differential signal between
the inputs needs to be limited to ±300 mV or the input current needs to be limited to ±10 mA.

NOTE
When the op amp is slewing, a differential input voltage exists that forward-biases the
protection diodes. This may result in current being drawn from the signal source. While
this current is already limited by the internal resistors R1 and R2 (both 130 Ω), a resistor of
1 kΩ can be placed in the feedback path, or a 500-Ω resistor can be placed in series with
the input signal for further limitation.
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Feature Description (continued)

Figure 34. Protection Diodes Between the Input Pins

7.3.2 Input Stage
The input stage of this amplifier consists of both a PMOS and an NMOS input pair to achieve a rail-to-rail input
range. For input voltages close to the negative rail, only the PMOS pair is active. Close to the positive rail, only
the NMOS pair is active. In a transition region that extends from approximately 2 V below V+ to 1 V below V+,
both pairs are active, and one pair gradually takes over from the other. In this transition region, the input-referred
offset voltage changes from the offset voltage associated with the PMOS pair to that of the NMOS pair. The input
pairs are trimmed independently to ensure an input offset voltage of less then 0.5 mV at room temperature over
the complete rail-to-rail input range. This also significantly improves the CMRR of the amplifier in the transition
region.

NOTE
The CMRR and PSRR limits in the tables are large-signal numbers that express the
maximum variation of the input offset of the amplifier over the full common-mode voltage
and supply voltage range, respectively. When the common-mode input voltage of the
amplifier is within the transition region, the small signal CMRR and PSRR may be slightly
lower than the large signal limits.

7.4 Device Functional Modes

7.4.1 Driving Capacitive Load
The LMV84x can be connected as noninverting unity gain amplifiers. This configuration is the most sensitive to
capacitive loading. The combination of a capacitive load placed on the output of an amplifier along with the
output impedance of the amplifier creates a phase lag, which reduces the phase margin of the amplifier. If the
phase margin is significantly reduced, the response is under-damped, which causes peaking in the transfer.
When there is too much peaking, the op amp might start oscillating.

The LMV84x can directly drive capacitive loads up to 100 pF without any stability issues. To drive heavier
capacitive loads, an isolation resistor (RISO) must be used, as shown in Figure 35. By using this isolation resistor,
the capacitive load is isolated from the output of the amplifier, and hence, the pole caused by CL is no longer in
the feedback loop. The larger the value of RISO, the more stable the output voltage is. If values of RISO are
sufficiently large, the feedback loop is stable, independent of the value of CL. However, larger values of RISO
result in reduced output swing and reduced output current drive.
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Device Functional Modes (continued)

Figure 35. Isolating Capacitive Load

7.4.2 Noise Performance
The LMV84x devices have good noise specifications and are frequently used in low-noise applications. Therefore
it is important to determine the noise of the total circuit. Besides the input-referred noise of the op amp, the
feedback resistors may have an important contribution to the total noise.

For applications with a voltage input configuration, in general it is beneficial general, beneficial to keep the
resistor values low. In these configurations high resistor values mean high noise levels. However, using low
resistor values will increase the power consumption of the application. This is not always acceptable for portable
applications, so there is a trade-off between noise level and power consumption.

Besides the noise contribution of the signal source, three types of noise need to be taken into account for
calculating the noise performance of an op amp circuit:
• Input-referred voltage noise of the op amp
• Input-referred current noise of the op amp
• Noise sources of the resistors in the feedback network, configuring the op amp

To calculate the noise voltage at the output of the op amp, the first step is to determine a total equivalent noise
source. This requires the transformation of all noise sources to the same reference node. A convenient choice for
this node is the input of the op amp circuit. The next step is to add all the noise sources. The final step is to
multiply the total equivalent input voltage noise with the gain of the op amp configuration.

If the input-referred voltage noise of the op amp is already placed at the input, the user can use the input-
referred voltage noise without further transferring. The input-referred current noise needs to be converted to an
input-referred voltage noise. The current noise is negligibly small, as long as the equivalent resistance is not
unrealistically large, so the user can leave the current noise out for these examples. That leaves the user with
the noise sources of the resistors, being the thermal noise voltage. The influence of the resistors on the total
noise can be seen in the following examples, one with high resistor values and one with low resistor values. Both
examples describe an op amp configuration with a gain of 101 which gives the circuit a bandwidth of 44.5 kHz.
The op amp noise is the same for both cases, that is, an input-referred noise voltage of 20 nV/ and a
negligibly small input-referred noise current.

Figure 36. Noise Circuit
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Device Functional Modes (continued)
To calculate the noise of the resistors in the feedback network, the equivalent input-referred noise resistance is
needed. For the example in Figure 36, this equivalent resistance Req can be calculated using Equation 1:

(1)

The voltage noise of the equivalent resistance can be calculated using Equation 2:

where
• enr = thermal noise voltage of the equivalent resistor
• Req (V/ )
• k = Boltzmann constant (1.38 x 10–23 J/K)
• T = absolute temperature (K)
• Req = resistance (Ω) (2)

The total equivalent input voltage noise is given by Equation 3:

where
• en in = total input equivalent voltage noise of the circuit
• env = input voltage noise of the op amp (3)

The final step is multiplying the total input voltage noise by the noise gain using Equation 4, which is in this case
the gain of the op amp configuration:

(4)

The equivalent resistance for the first example with a resistor RF of 10 MΩ and a resistor RG of 100 kΩ at 25°C
(298 K) equals Equation 5:

(5)

Now the noise of the resistors can be calculated using Equation 6, yielding:

(6)

The total noise at the input of the op amp is calculated in Equation 7:

(7)

For the first example, this input noise, multiplied with the noise gain, in Equation 8 gives a total output noise of:

(8)

In the second example, with a resistor RF of 10 kΩ and a resistor RG of 100 Ω at 25°C (298 K), the equivalent
resistance equals Equation 9:

(9)

The resistor noise for the second example is calculated in Equation 10:
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Device Functional Modes (continued)

(10)

The total noise at the input of the op amp is calculated in Equation 10:

(11)

For the second example the input noise, multiplied with the noise gain, in Equation 12 gives an output noise of:

(12)

In the first example the noise is dominated by the resistor noise due to the very high resistor values, in the
second example the very low resistor values add only a negligible contribution to the noise and now the
dominating factor is the op amp itself. When selecting the resistor values, it is important to choose values that do
not add extra noise to the application. Choosing values above 100 kΩ may increase the noise too much. Low
values keep the noise within acceptable levels; choosing very low values however, does not make the noise
even lower, but can increase the current of the circuit.

7.5 Interfacing to High Impedance Sensor
With CMOS inputs, the LMV84x are particularly suited to be used as high impedance sensor interfaces.

Many sensors have high source impedances that may range up to 10 MΩ. The input bias current of an amplifier
loads the output of the sensor, and thus cause a voltage drop across the source resistance, as shown in
Figure 37. When an op amp is selected with a relatively high input bias current, this error may be unacceptable.

The low input current of the LMV84x significantly reduces such errors. The following examples show the
difference between a standard op amp input and the CMOS input of the LMV84x.

The voltage at the input of the op amp can be calculated with Equation 13:
VIN+ = VS – IB × RS (13)

For a standard op amp, the input bias Ib can be 10 nA. When the sensor generates a signal of 1 V (VS) and the
sensors impedance is 10 MΩ (RS), the signal at the op amp input is calculated in Equation 14:

VIN = 1 V – 10 nA × 10 MΩ = 1 V - 0.1 V = 0.9 V (14)

For the CMOS input of the LMV84x, which has an input bias current of only 0.3 pA, this would give Equation 15:
VIN = 1 V – 0.3 pA × 10 MΩ = 1 V – 3 µV = 0.999997 V (15)

The conclusion is that a standard op amp, with its high input bias current input, is not a good choice for use in
impedance sensor applications. The LMV84x devices, in contrast, are much more suitable due to the low input
bias current. The error is negligibly small; therefore, the LMV84x are a must for use with high-impedance
sensors.

Figure 37. High Impedance Sensor Interface
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8 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.

8.1 Application Information
The rail-to-rail input and output of the LMV84x and the wide supply voltage range make these amplifiers ideal to
use in numerous applications. Three sample applications, namely the active filter circuit, high-side current
sensing, and thermocouple sensor interface, are provided in the Typical Applications section.

8.2 Typical Applications

8.2.1 Active Filter Circuit

Figure 38. Active Band-Pass Filter Implementation

8.2.1.1 Design Requirements
In this example it is required to design a bandpass filter with band-pass frequency of 10 kHz, and a center
frequence of approximately 10% from the total frequence of the filter. This is achieved by cascading two band-
pass filters, A and B, with slightly different center frequencies.

8.2.1.2 Detailed Design Procedure
The center frequency of the separate band-pass filters A, and B can be calculated by Equation 16:

where
• C = 33 nF
• R1 = 2 KΩ
• R2 = 6.2 KΩ
• and R3 = 45 Ω (16)

This gives Equation 17 for filter A:

(17)

and Equation 18 for filter B with C = 27nF:

(18)

Bandwidth can be calculated by Equation 19:



ZLOAD

+

-

RF

RF

RS

V
+

RG

RG

FREQUENCY (Hz)

G
A

IN
 (

dB
)

10

0

-10

-20

-30

-40
1k 10k 100k

FILTER A FILTER B

COMBINED
FILTER

B kHz
k nF

1
1.9

6.2 27
= =

p ´ W ´

B kHz
k nF

1
1.6

6.2 33
= =

p ´ W ´

B
R C

2

1
=

p

22

LMV841, LMV842, LMV844

ZHCSGZ5I –OCTOBER 2006–REVISED OCTOBER 2017 www.ti.com.cn

Copyright © 2006–2017, Texas Instruments Incorporated

Typical Applications (continued)

(19)

For filter A, this gives Equation 20:

(20)

and Equation 21 for filter B:

(21)

8.2.1.3 Application Curve
The responses of filter A and filter B are shown as the thin lines in Figure 39; the response of the combined filter
is shown as the thick line. Shifting the center frequencies of the separate filters farther apart, results in a wider
band; however, positioning the center frequencies too far apart results in a less flat gain within the band. For
wider bands more band-pass filters can be cascaded.

Figure 39. Active Band-Pass Filter Curve

NOTE
Use the WEBENCH internet tools at www.ti.com for your filter application.

8.2.2 High-Side, Current-Sensing Circuit

Figure 40. High-Side, Current-Sensing Circuit
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Typical Applications (continued)
8.2.2.1 Design Requirements
In this example, it is desired to measure a current between 0 A and 2 A using a sense resistor of 100 mΩ, and
convert it to an output voltage of 0 to 5 V. A current of 2 A flowing through the load and the sense resistor results
in a voltage of 200 mV across the sense resistor. The op amp amplifies this 200 mV to fit the current range to the
output voltage range.

8.2.2.2 Detailed Design Procedure
To measure current at a point in a circuit, a sense resistor is placed in series with the load, as shown in
Figure 40. The current flowing through this sense resistor results in a voltage drop, that is amplified by the op
amp. The rail-to-rail input and the low VOS features make the LMV84x ideal op amps for high-side, current-
sensing applications.

The input and the output relation of the circuit is given by Equation 22:
VOUT = RF/RG × VSENSE (22)

For a load current of 2 A and an output voltage of 5 V the gain would be VOUT / VSENSE = 25.

If the feedback resistor, RF, is 100 kΩ, then the value for RG is 4 kΩ. The tolerance of the resistors has to be low
to obtain a good common-mode rejection.

8.2.3 Thermocouple Sensor Signal Amplification
Figure 41 is a typical example for a thermocouple amplifier application using an LMV841, LMV842, or LMV844. A
thermocouple senses a temperature and converts it into a voltage. This signal is then amplified by the LMV841,
LMV842, or LMV844. An ADC can then convert the amplified signal to a digital signal. For further processing the
digital signal can be processed by a microprocessor, and can be used to display or log the temperature, or the
temperature data can be used in a fabrication process.

Figure 41. Thermocouple Sensor Interface

8.2.3.1 Design Requirements
In this example it is desired to measure temperature in the range of 0°C to 500°C with a resolution of 0.5°C using
a K-type thermocouple sensor. The power supply for both the LMV84x and the ADC is
3.3 V.

8.2.3.2 Detailed Design Procedure
A thermocouple is a junction of two different metals. These metals produce a small voltage that increases with
temperature. A K-type thermocouple is a very common temperature sensor made of a junction between nickel-
chromium and nickel-aluminum. There are several reasons for using the K-type thermocouple. These include
temperature range, the linearity, the sensitivity, and the cost.
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Typical Applications (continued)
A K-type thermocouple has a wide temperature range. The range of this thermocouple is from approximately
−200°C to approximately 1200°C, as can be seen in Figure 42. This covers the generally used temperature
ranges.

Over the main part of the range the behavior is linear. This is important for converting the analog signal to a
digital signal. The K-type thermocouple has good sensitivity when compared to many other types; the sensitivity
is 41 µV/°C. Lower sensitivity requires more gain and makes the application more sensitive to noise. In addition,
a K-type thermocouple is not expensive, many other thermocouples consist of more expensive materials or are
more difficult to produce.

Figure 42. K-Type Thermocouple Response

The temperature range of 0°C to 500°C results in a voltage range from 0 mV to 20.6 mV produced by the
thermocouple. This is shown in Figure 42.

To obtain the best accuracy the full ADC range of 0 to 3.3 V is used and the gain needed for this full range can
be calculated Equation 23:

AV = 3.3 V / 0.0206 V = 160 (23)

If RG is 2 kΩ, then the value for RF can be calculated with this gain of 160. Because AV = RF / RG, RF can be
calculated in Equation 24:

RF = AV × RG = 160 × 2 kΩ = 320 kΩ (24)

To achieve a resolution of 0.5°C a step smaller than the minimum resolution is needed. This means that at least
1000 steps are necessary (500°C/0.5°C). A 10-bit ADC would be sufficient as this gives 1024 steps. A 10-bit
ADC such as the two channel 10-bit ADC102S021 would be a good choice.

At the point where the thermocouple wires are connected to the circuit on the PCB unwanted parasitic
thermocouple is formed, introducing error in the measurements of the actual thermocouple sensor.

Using an isothermal block as a reference will compensate for this additional thermocouple effect. An isothermal
block is a good heat conductor. This means that the two thermocouple connections both have the same
temperature. The temperature of the isothermal block can be measured, and thereby the temperature of the
thermocouple connections. This is usually called the cold junction reference temperature. In the example, an
LM35 is used to measure this temperature. This semiconductor temperature sensor can accurately measure
temperatures from −55°C to 150°C.

The ADC in this example also coverts the signal from the LM35 to a digital signal, hence, the microprocessor can
compensate for the amplified thermocouple signal of the unwanted thermocouple junction at the connector.
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9 Power Supply Recommendations
The LMV84x is specified for operation from 2.7 V to 12 V (±1.35 V to ±6 V) over a –40°C to 125°C temperature
range. Parameters that can exhibit significant variance with regard to operating voltage or temperature are
presented in the Absolute Maximum Ratings.

CAUTION
Supply voltages larger than 13.2 V can permanently damage the device.

For proper operation, the power supplies must be properly decoupled. For decoupling the supply lines, TI
suggests placing 10-nF capacitors as close as possible to the operational amplifier power supply pins. For single
supply, place a capacitor between V+ and V– supply leads. For dual supplies, place one capacitor between V+

and ground, and one capacitor between V– and ground.

10 Layout

10.1 Layout Guidelines
• The V+ pin must be bypassed to ground with a low-ESR capacitor.
• The optimum placement is closest to the V+ and ground pins.
• Take care to minimize the loop area formed by the bypass capacitor connection between V+ and ground.
• The ground pin must be connected to the PCB ground plane at the pin of the device.
• The feedback components must be placed as close to the device as possible to minimize strays.

10.2 Layout Example

Figure 43. Layout Example (Top View)
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11 器器件件和和文文档档支支持持

11.1 相相关关链链接接

下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件以及立即订购快速访问。

表表 1. 相相关关链链接接

器器件件 产产品品文文件件夹夹 立立即即订订购购 技技术术文文档档 工工具具和和软软件件 支支持持和和社社区区

LMV841 请单击此处 请单击此处 请单击此处 请单击此处 请单击此处

LMV842 请单击此处 请单击此处 请单击此处 请单击此处 请单击此处

LMV844 请单击此处 请单击此处 请单击此处 请单击此处 请单击此处

11.2 接接收收文文档档更更新新通通知知

要接收文档更新通知，请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我进行注册，即可每周接收产品
信息更改摘要。有关更改的详细信息，请查看任何已修订文档中包含的修订历史记录。

11.3 社社区区资资源源

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商“按照原样”提供。这些内容并不构成 TI 技术规范，
并且不一定反映 TI 的观点；请参阅 TI 的 《使用条款》。
TI E2E™ 在在线线社社区区 TI 的的工工程程师师对对工工程程师师 (E2E) 社社区区。。此社区的创建目的在于促进工程师之间的协作。在

e2e.ti.com 中，您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。
设设计计支支持持 TI 参参考考设设计计支支持持可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。

11.4 商商标标

E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

11.5 静静电电放放电电警警告告

这些装置包含有限的内置 ESD 保护。 存储或装卸时，应将导线一起截短或将装置放置于导电泡棉中，以防止 MOS 门极遭受静电损
伤。

11.6 Glossary
SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 机机械械、、封封装装和和可可订订购购信信息息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更，恕不另行通知
和修订此文档。如欲获取此数据表的浏览器版本，请参阅左侧的导航。
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PACKAGING INFORMATION

Orderable Device Status
(1)

Package Type Package
Drawing

Pins Package
Qty

Eco Plan
(2)

Lead/Ball Finish
(6)

MSL Peak Temp
(3)

Op Temp (°C) Device Marking
(4/5)

Samples

LMV841MG/NOPB ACTIVE SC70 DCK 5 1000 Green (RoHS
& no Sb/Br)

CU SN Level-1-260C-UNLIM -40 to 125 A97

LMV841MGX/NOPB ACTIVE SC70 DCK 5 3000 Green (RoHS
& no Sb/Br)

CU SN Level-1-260C-UNLIM -40 to 125 A97

LMV842MA/NOPB ACTIVE SOIC D 8 95 Green (RoHS
& no Sb/Br)

CU SN Level-1-260C-UNLIM -40 to 125 LMV84
2MA

LMV842MAX/NOPB ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br)

CU SN Level-1-260C-UNLIM -40 to 125 LMV84
2MA

LMV842MM/NOPB ACTIVE VSSOP DGK 8 1000 Green (RoHS
& no Sb/Br)

CU NIPDAUAG | CU SN Level-1-260C-UNLIM -40 to 125 AC4A

LMV842MMX/NOPB ACTIVE VSSOP DGK 8 3500 Green (RoHS
& no Sb/Br)

CU NIPDAUAG | CU SN Level-1-260C-UNLIM -40 to 125 AC4A

LMV844MA/NOPB ACTIVE SOIC D 14 55 Green (RoHS
& no Sb/Br)

CU SN Level-1-260C-UNLIM -40 to 125 LMV844MA

LMV844MAX/NOPB ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br)

CU SN Level-1-260C-UNLIM -40 to 125 LMV844MA

LMV844MT/NOPB ACTIVE TSSOP PW 14 94 Green (RoHS
& no Sb/Br)

CU SN Level-1-260C-UNLIM -40 to 125 LMV844
MT

LMV844MTX/NOPB ACTIVE TSSOP PW 14 2500 Green (RoHS
& no Sb/Br)

CU SN Level-1-260C-UNLIM -40 to 125 LMV844
MT

 
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

 
(2) RoHS:  TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based
flame retardants must also meet the <=1000ppm threshold requirement.

 
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
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(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

 
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.

 
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.

 
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

 
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

 
 OTHER QUALIFIED VERSIONS OF LMV841, LMV842, LMV844 :

• Automotive: LMV841-Q1, LMV842-Q1, LMV844-Q1

 NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects



TAPE AND REEL INFORMATION

*All dimensions are nominal

Device Package
Type

Package
Drawing

Pins SPQ Reel
Diameter

(mm)

Reel
Width

W1 (mm)

A0
(mm)

B0
(mm)

K0
(mm)

P1
(mm)

W
(mm)

Pin1
Quadrant

LMV841MG/NOPB SC70 DCK 5 1000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3

LMV841MGX/NOPB SC70 DCK 5 3000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3

LMV842MAX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1

LMV842MM/NOPB VSSOP DGK 8 1000 178.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1

LMV842MMX/NOPB VSSOP DGK 8 3500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1

LMV844MAX/NOPB SOIC D 14 2500 330.0 16.4 6.5 9.35 2.3 8.0 16.0 Q1

LMV844MTX/NOPB TSSOP PW 14 2500 330.0 12.4 6.95 5.6 1.6 8.0 12.0 Q1
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*All dimensions are nominal

Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)

LMV841MG/NOPB SC70 DCK 5 1000 210.0 185.0 35.0

LMV841MGX/NOPB SC70 DCK 5 3000 210.0 185.0 35.0

LMV842MAX/NOPB SOIC D 8 2500 367.0 367.0 35.0

LMV842MM/NOPB VSSOP DGK 8 1000 210.0 185.0 35.0

LMV842MMX/NOPB VSSOP DGK 8 3500 367.0 367.0 35.0

LMV844MAX/NOPB SOIC D 14 2500 367.0 367.0 35.0

LMV844MTX/NOPB TSSOP PW 14 2500 367.0 367.0 35.0
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德州仪器 (TI) 公司有权按照最新发布的 JESD46 对其半导体产品和服务进行纠正、增强、改进和其他修改，并不再按最新发布的 JESD48 提
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买方和在系统中整合 TI 产品的其他开发人员（总称“设计人员”）理解并同意，设计人员在设计应用时应自行实施独立的分析、评价和判断，且
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于任何专利权、版权、屏蔽作品权或与使用TI产品或服务的任何整合、机器制作、流程相关的其他知识产权。涉及或参考了第三方产品或服务
的信息不构成使用此类产品或服务的许可或与其相关的保证或认可。使用 TI 资源可能需要您向第三方获得对该等第三方专利或其他知识产权
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