LP55231 可编程 9 输出 LED 驱动器

1 特性

－三个独立的程序执行引擎， 9 个满量程电流为
25.5 mA 的可编程输出， 8 位电流设置分辨率和 12位 PWM 控制分辨率

- 自适应高效 $1 x / 1.5 x$ 分数型电荷泵－效率高达 94%
- LED 驱动效率高达 93%
- 电荷泵具有软启动和过流／短路保护
- 内置 LED 测试
- 待机电流典型值 $200 n A$
- 自动节能模式；$I_{V D D}=10 \mu \mathrm{~A}$（典型值）
- 两线制 $\mathrm{I}^{2} \mathrm{C}$ 兼容控制接口
- 灵活的指令集
- 大容量 SRAM 程序存储器
- 小型应用电路
- 源极（高侧）驱动器
- 架构支持颜色控制

2 应用

- 彩灯和指示灯
- LED 背景照明
- 触觉反馈
- 可编程电流源

3 说明

LP55231 是一款 9 通道 LED 驱动器，专用于为移动设备制造灯光效果。采用高效的电荷泵，支持在锂离子电池电压范围内驱动 LED。该器件配有内部程序存储器，可在不使用处理器控制的情况下运行。

LP55231 有一个 I ${ }^{2}$ C 兼容控制接口并配有四个引脚可选地址。INT引脚可用于在照明序列结束时（中断功能）通知处理器。 另外，该器件具有一个触发输入接口，可实现多个 LP55231 器件之间的同步。根据 LED 正向电压要求自主选择最佳电荷泵增益，可在宽运行电压范围内保持出色的效率。当 LED 输出未激活时，该器件能够自动进入节能模式，从而将空闲流耗降至 $10 \mu \mathrm{~A}$（典型值）。仅需四个小型的低成本陶瓷电容。

器件信息 ${ }^{(1)}$

年器件型号	封装	封装尺寸（标称值）
LP55231	WQFN（24）	$4.00 \mathrm{~mm} \times 4.00 \mathrm{~mm}$

（1）要了解所有可用封装，请见数据表末尾的可订购产品附录。

简化电路原理图

目录

1 特性 1
2 应用 1
3 说明 1
4 修订历史记录 2
5 Pin Configuration and Functions 3
6 Specifications 4
6．1 Absolute Maximum Ratings 4
6．2 Handling Ratings 4
6．3 Recommended Operating Conditions 4
6．4 Thermal Information 4
6．5 Electrical Characteristics． 5
6．6 Charge Pump Electrical Characteristics 5
6．7 LED Driver Electrical Characteristics 5
6．8 LED Test Electrical Characteristics 6
6．9 Logic Interface Characteristics 6
6．10 Recommended External Clock Source Conditions． 7 7
6．11 Serial Bus Timing Parameters（SDA，SCL） 7
6．12 Typical Characteristics 8
7 Detailed Description 10
7．1 Overview 10
7．2 Functional Block Diagram 10
7．3 Feature Description 11
7．4 Device Functional Modes 16
7．5 Programming 17
7．6 Register Maps 19
8 Application and Implementation 45
8．1 Application Information 45
8．2 Typical Applications 45
9 Power Supply Recommendations 49
10 Layout． 49
10．1 Layout Guidelines 49
10．2 Layout Example 49
11 器件和文档支持 50
11.1 器件支持 50
11.2 商标 50
11.3 静电放电警告 50
11.4 术语表 50
12 机械封装和可订购信息 50

4 修订历史记录

Changes from Original（March 2013）to Revision A Page
－已添加器件信息和处理额定值表，特性描述，器件功能模式，应用和实施，电源相关建议，布局，器件和文档支持以 及机械，封装和可订购信息部分；已将一些曲线移至应用曲线部分 1

5 Pin Configuration and Functions

Pin Functions

PIN		TYPE ${ }^{(1)}$	DESCRIPTION
NUMBER	NAME		
1	C2+	A	Flying capacitor 2 positive terminal
2	C1+	A	Flying capacitor 1 positive terminal
3	VDD	P	Input power supply
4	GND	G	Ground
5	EN	1	Enable
6	CLK	1	32 kHz clock input. Connect to ground if not used
7	INT	OD/O	Interrupt for microcontroller unit. Leave unconnected if not used
8	SDA	I/OD	Serial interface data
9	SCL	I	Serial interface clock
10	TRIG	I/OD	Trigger. Connect to ground if not used
11	D9	A	Current source output 9. Note: powered from VDD
12	D8	A	Current source output 8. Note: powered from VDD
13	D7	A	Current source output 7. Note: powered from VDD
14	D6	A	Current source output 6
15	D5	A	Current source output 5
16	D4	A	Current source output 4
17	D3	A	Current source output 3
18	D2	A	Current source output 2
19	D1	A	Current source output 1
20	ASELO	1	Serial interface address select input
21	ASEL1	1	Serial interface address select input
22	VOUT	A	Charge pump output
23	C2-	A	Flying capacitor 2 negative terminal
24	C1-	A	Flying capacitor 1 negative terminal
DAP			Connect the die attach pad to GND

(1) A: Analog Pin; G: Ground Pin; P: Power Pin; I: Input Pin; I/O Input/Output Pin; O: Output Pin; OD: Open Drain Pin

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1) (2)

		MIN MAX	UNIT
Voltage	Voltage on power pin VDD	-0.3 6	V
	Voltage on D1 to D9, C1-, C1+, C2-, C2+, VOUT	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ with 6 V max	V
Power	Continuous power dissipation ${ }^{(3)}$	Internally limited	
Temperature	Junction temperature ($\mathrm{T}_{\mathrm{J}-\mathrm{MAX}}$)	125	${ }^{\circ} \mathrm{C}$
	Maximum lead temperature (soldering)	See ${ }^{(4)}$	

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage are with respect to the potential at the GND pin.
(3) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at $\mathrm{T}_{J}=150^{\circ} \mathrm{C}$ (typ.) and disengages at $\mathrm{T}_{J}=130^{\circ} \mathrm{C}$ (typ.).
(4) For detailed soldering specifications and information, please refer to Texas Instruments Application Note AN-1187: Leadless Leadframe Package (LLP)(SNOA401).

6.2 Handling Ratings

			MIN	MAX	UNIT
$\mathrm{T}_{\text {stg }}$	Storage temperature ran		-65	150	${ }^{\circ} \mathrm{C}$
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ${ }^{(1)}$	-2500	2500	
$\mathrm{V}_{\text {(ESD) }}$	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ${ }^{(2)}$	-1000	1000	V
		Machine model: all pins	-250	250	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions ${ }^{(1)(2)}$

Over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
VDD	Input voltage	2.7	5.5	V
	Voltage on logic pins (input or output pins)	0	VDD	
IOUT	Recommended charge pump load current	0	100	mA
T_{J}	Junction temperature	-30	125	C
T_{A}	Ambient temperature ${ }^{(3)}$	-30	85	C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage are with respect to the potential at the GND pin.
(3) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature ($T_{A-M A X}$) is dependent on the maximum operating junction temperature ($T_{J-M A X-O P}=$ $125^{\circ} \mathrm{C}$), the maximum power dissipation of the device in the application ($\mathrm{P}_{\mathrm{D}-\mathrm{MAX}}$), and the junction-to ambient thermal resistance of the part/package in the application ($\theta J A$), as given by the following equation: $T_{A-M A X}=T_{J-M A X-O P}-\left(R_{\theta J A} \times P_{D-M A X}\right)$.

6.4 Thermal Information

THERMAL METRIC ${ }^{(1)}$		LP55231	UNIT
		WQFN (RTW)	
		24 PINS	
$\mathrm{R}_{\text {өJA }}$	Junction-to-ambient thermal resistance ${ }^{(2)}$	36.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
(2) Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design.

LP55231
www.ti.com.cn

6.5 Electrical Characteristics ${ }^{(1)(2)(3)}$

Typical (TYP) values apply for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and minimum (MIN) and maximum (MAX) apply over the operating ambient temperature range $\left(-30^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}\right)$. Specifications apply to the LP55231 Functional Block Diagram with: $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}$ $=1.65 \mathrm{~V}, \mathrm{C}_{\text {OUT }}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{C}_{1-2}=0.47 \mu \mathrm{~F}$, unless otherwise specified. ${ }^{(4)}$

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
IvDD	Standby supply current	$\mathrm{V}_{\text {EN }}=0 \mathrm{~V}$, CHIP_EN=0 (bit), external $32-\mathrm{kHz}$ clock running or not running		0.2	1	$\mu \mathrm{A}$
		CHIP_EN=0 (bit), external 32-kHz clock not running		1	1.7	$\mu \mathrm{A}$
		CHIP_EN=0 (bit), external 32-kHz clock running		1.4	2.3	$\mu \mathrm{A}$
	Normal mode supply current	External $32-\mathrm{kHz}$ clock running, charge pump and current source outputs disabled		0.6	0.75	mA
		Charge pump in 1 x mode, no load, current source outputs disabled		0.8	0.95	mA
		Charge pump in 1.5 x mode, no load, current source outputs disabled		1.8		mA
	Power save mode supply current	External 32-kHz clock running		10	15	$\mu \mathrm{A}$
		Internal oscillator running		0.6	0.75	mA
fosc	Internal oscillator frequency accuracy	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-4\%		4\%	
			-7\%		7\%	

(1) The Electrical Characteristics tables list specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Test Conditions and/or Notes. Typical specifications are estimations only and are not verified.
(2) All voltages are with respect to the potential at the GND pin.
(3) Min and Max limits are verified by design, test, or statistical analysis.
(4) Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics.

6.6 Charge Pump Electrical Characteristics

Typical (TYP) values apply for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and minimum (MIN) and maximum (MAX) apply over the operating ambient temperature range $\left(-30^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}\right)$. Specifications apply to the LP55231 Functional Block Diagram with: $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}$ $=1.65 \mathrm{~V}, \mathrm{C}_{\text {OUT }}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{C}_{1-2}=0.47 \mu \mathrm{~F}$, unless otherwise specified. ${ }^{(1)}$

PARAMETER		TEST CONDITIONS	MIN	TYP
$R_{\text {OUT }}$	Charge pump output resistance	Gain $=1.5 \mathrm{x}$ Gain $=1 \mathrm{x}$	3.5	MAX
$f_{\text {SW }}$	Uwitching frequency		1.25	Ω
$\mathrm{I}_{\mathrm{GND}}$	Ground current	Gain $=1.5 \mathrm{x}$ Gain $=1 \mathrm{x}$	1.2	MHz
I_{ON}	V $_{\text {OUT }}$ turnon time ${ }^{(2)}$	$\mathrm{V}_{\text {DD }}=3.6 \mathrm{~V}$, I OUT $=60 \mathrm{~mA}$	0.3	mA

(1) Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics.
(2) Turnon time is measured from the moment the charge pump is activated until the $\mathrm{V}_{\text {OUT }}$ crosses 90% of its target value.

6.7 LED Driver Electrical Characteristics

Typical (TYP) values apply for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and minimum (MIN) and maximum (MAX) apply over the operating ambient temperature range $\left(-30^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}\right)$. Specifications apply to the LP55231 Functional Block Diagram with: $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}$ $=1.65 \mathrm{~V}, \mathrm{C}_{\text {OUT }}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{C}_{1-2}=0.47 \mu \mathrm{~F}$, unless otherwise specified. ${ }^{(1)}$

PARAMETER		TEST CONDITIONS	MIN	TYP
$I_{\text {LEAKAGE }}$	Leakage current (outputs D1 to D9)	PWM = 0\%	0.1	1
$I_{\text {MAX }}$	Maximum source current	Outputs D1 to D9	μA	

[^0]
LED Driver Electrical Characteristics (continued)

Typical (TYP) values apply for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and minimum (MIN) and maximum (MAX) apply over the operating ambient temperature range $\left(-30^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}\right)$. Specifications apply to the LP55231 Functional Block Diagram with: $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}$ $=1.65 \mathrm{~V}, \mathrm{C}_{\text {OUT }}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{C}_{1-2}=0.47 \mu \mathrm{~F}$, unless otherwise specified. ${ }^{(1)}$

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Iout	Output current accuracy ${ }^{(2)}$	Output current set to 17.5 mA	-4\%		4\%	
		Output current set to 17.5 mA $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-5\%		5\%	
$\mathrm{I}_{\text {MATCH }}$	Matching ${ }^{(2)}$	Output current set to 17.5 mA $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1\%	2.5\%	
$f_{\text {LED }}$	LED switching frequency			312		Hz
$\mathrm{V}_{\text {SAT }}$	Saturation voltage ${ }^{(3)}$	Output current set to 17.5 mA $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		45	100	mV

(2) Output Current Accuracy is the difference between the actual value of the output current and programmed value of this current. Matching is the maximum difference from the average. For the constant current outputs on the part (D1 to D9), the following are determined: the maximum output current (MAX), the minimum output current (MIN), and the average output current of all outputs (AVG). Two matching numbers are calculated: (MAX-AVG)/AVG and (AVG-MIN)/AVG. The largest number of the two (worst case) is considered the matching figure. Note that some manufacturers have different definitions in use.
(3) Saturation voltage is defined as the voltage when the LED current has dropped 10% from the value measured at $\mathrm{V}_{\text {OUT }}-1 \mathrm{~V}$.

6.8 LED Test Electrical Characteristics

Typical (TYP) values apply for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and minimum (MIN) and maximum (MAX) apply over the operating ambient temperature range $\left(-30^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}\right)$. Specifications apply to the LP55231 Functional Block Diagram with: $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}$ $=1.65 \mathrm{~V}, \mathrm{C}_{\text {OUT }}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{C}_{1-2}=0.47 \mu \mathrm{~F}$, unless otherwise specified. ${ }^{(1)}$

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
LSB	Least significant bit			30		mV
$\mathrm{E}_{\text {ABS }}$	Total unadjusted error ${ }^{(2)}$	$\begin{aligned} & \mathrm{V}_{\text {IN_TEST }}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		$< \pm 3$	± 4	LSB
tconv	Conversion time			2.7		ms
$\mathrm{V}_{\text {IN_TEST }}$	DC voltage range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0		5	V

(1) Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics.
(2) Total unadjusted error includes offset, full-scale, and linearity errors.

6.9 Logic Interface Characteristics

Typical (TYP) values apply for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and minimum (MIN) and maximum (MAX) apply over the operating ambient temperature range $\left(-30^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}\right)$. Specifications apply to the LP55231 Functional Block Diagram with: $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}$ $=1.65 \mathrm{~V}, \mathrm{C}_{\text {OUT }}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {IN }}=1 \mu \mathrm{~F}, \mathrm{C}_{1-2}=0.47 \mu \mathrm{~F}$, unless otherwise specified. ${ }^{(1)}$

PARAMETER		TEST CONDITIONS	MIN	TYP		
MAX						UNIT
V_{IL}	Input low level			0.5		
$\mathrm{~V}_{\text {IH }}$	Input high level		1.2	V		
I_{I}	Input current		-1	V		
$\mathrm{I}_{\text {DELAY }}$	Input delay ${ }^{(2)}$			1		

LOGIC INPUT SCL, SDA, TRIG, CLK, ASELO, ASEL1

$\mathrm{V}_{\text {IL }}$	Input low level		$0.2 \times \mathrm{V}_{\text {EN }}$			V
V_{IH}	Input high level		$0.8 x \mathrm{~V}_{\text {EN }}$			V
I_{1}	Input current		-1		1	$\mu \mathrm{A}$
LOGIC OUTPUT SDA, TRIG, INT						
$\mathrm{V}_{\text {OL }}$	Output low level	$\mathrm{I}_{\text {Out }}=3 \mathrm{~mA}$ (pullup current)		0.3	0.5	V
I_{L}	Output leakage current	$\mathrm{V}_{\text {OUT }}=2.8 \mathrm{~V}$			1	$\mu \mathrm{A}$

(1) Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics.
(2) The $\mathrm{I}^{2} \mathrm{C}$ host should allow at least 500μ s before sending data to the LP55231 after the rising edge of the enable line.

LP55231
www.ti.com.cn

6.10 Recommended External Clock Source Conditions ${ }^{(1)(2)}$

			MIN		NOM
MOGIC INPUT CLK			UNIT		
$f_{\text {CLK }}$	Clock frequency		32.7	kHz	
$\mathrm{t}_{\text {CLKH }}$	High time		6	$\mu \mathrm{~s}$	
$\mathrm{t}_{\text {CLKL }}$	Low time		6	$\mu \mathrm{~s}$	
t_{r}	Clock rise time	10% to 90%		2	$\mu \mathrm{~s}$
t_{f}	Clock fall time	90% to 10%		2	$\mu \mathrm{~s}$

(1) Specification is verified by design and is not tested in production. $\mathrm{V}_{\mathrm{EN}}=1.65 \mathrm{~V}$ to VDD.
(2) The ideal external clock signal for the LP55231 is a $0-\mathrm{V}$ to $\mathrm{V}_{\mathrm{EN}} 25 \%$ to 75% duty-cycle square wave. At frequencies above 32.7 kHz , program execution will be faster, and at frequencies below 32.7 kHz program execution will be slower.
6.11 Serial Bus Timing Parameters (SDA, SCL) ${ }^{(1)}$

		MIN	MAX	UNIT
$f_{\text {SCL }}$	Clock frequency		400	kHz
1	Hold time (repeated) START condition	0.6		$\mu \mathrm{s}$
2	Clock low time	1.3		$\mu \mathrm{s}$
3	Clock high time	600		ns
4	Setup time for a repeated START condition	600		ns
5	Data hold time	50		ns
6	Data setup time	100		ns
7	Rise time of SDA and SCL	$20+0.1 \mathrm{C}_{\mathrm{b}}$	300	ns
8	Fall time of SDA and SCL	$15+0.1 \mathrm{C}_{\mathrm{b}}$	300	ns
9	Setup time for STOP condition	600		ns
10	Bus free time between a STOP and a START condition	1.3		$\mu \mathrm{s}$
C_{b}	Capacitive load parameter for each bus line Load of One picofarad corresponds to one nanosecond.	10	200	ns

(1) Specification is verified by design and is not tested in production. $\mathrm{V}_{\mathrm{EN}}=1.65 \mathrm{~V}$ to V_{DD}.

Figure 1. External Clock Signal

Figure 2. Timing Parameters

6.12 Typical Characteristics

Unless otherwise specified: $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{C}_{\text {IN }}=\mathrm{C}_{\text {OUT }}=1 \mu \mathrm{~F}, \mathrm{C}_{1}=\mathrm{C}_{2}=0.47 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{C}_{\text {IN }}, \mathrm{C}_{\mathrm{OUT}}, \mathrm{C} 1$, C 2 : Low-ESR surface-mount ceramic capacitors (MLCCs) used in setting electrical characteristics.

Figure 3. Charge Pump 1.5x Efficiency vs Load Current

6×1-mA Load (6 Nichia NSCW100 WLEDs On D1 To D6)

Figure 5. Gain Change Hysteresis Loop at Factory Settings

17.5 mA Current

Figure 7. LED Current Matching Distribution

Figure 4. Output Voltage of the Charge Pump (1.5x) as a Function of Load Current at Four Input Voltage Levels

Load: 6 x Nichia NSCW100 WLEDs On D1 To D6 @ 100\% PWM

Figure 6. Effect of Adaptive Hysteresis on the Width of the Hysteresis Loop

17.5 mA Current

Figure 8. LED Current Accuracy Distribution

Typical Characteristics (continued)

Unless otherwise specified: $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=\mathrm{C}_{\text {OUT }}=1 \mu \mathrm{~F}, \mathrm{C}_{1}=\mathrm{C}_{2}=0.47 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{C}_{\text {IN }}, \mathrm{C}_{\text {OUT }}, \mathrm{C} 1$, C 2 : Low-ESR surface-mount ceramic capacitors (MLCCs) used in setting electrical characteristics.

Charge Pump In 1x Mode
If the charge pump is OFF the supply current is even lower.
Figure 9. Power Save Mode Supply Current vs VD

Figure 11. 100\% PWM RGB LED Efficiency vs. VDD

TIME ($40 \mu \mathrm{~s} / \mathrm{DIV}$)
51h To Addr 36h

$$
\mathrm{I}_{\mathrm{LOAD}}=60 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{DD}}=3.6 \mathrm{~V}
$$

Figure 10. Serial Bus Write and Charge Pump Start-up Waveform

Figure 12. 100\% PWM WLED Efficiency vs. $V_{D D}$

7 Detailed Description

7.1 Overview

The LP55231 is a fully integrated lighting management unit for producing lighting effects for mobile devices. The LP55231 includes all necessary power management, high-side current sources, temperature compensation, twowire control interface and programmable pattern generators. The overall maximum current for each driver is set by an 8 -bit register.

The LP55231 controls LED luminance with a pulse width modulation (PWM) scheme with a resolution of 12 bits. Also, the temperature compensation is done by PWM.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Programming

The LP55231 provides flexibility and programmability for dimming and sequencing control. Each LED can be controlled directly and independently through the serial bus, or LED drivers can be grouped together for preprogrammed flashing patterns.
The LP55231 has three independent program execution engines, so it is possible to form three independently programmable LED banks. LED drivers can be grouped based on their function so that, for example, the first bank of drivers can be assigned to the keypad illumination, the second bank to the "funlights", and the third group to the indicator LED(s).
Each bank can contain 1 to 9 LED driver outputs. Instructions for program execution engines are stored in the program memory. The total amount of the program memory is 96 instructions, and the user can allocate the memory as required by the engines.

7.3.2 LED Error Detection

The LP55231 has built-in LED error detection. Error detection does not only detect open and short circuit, but provides an opportunity to measure the $\mathrm{V}_{\mathrm{F}} \mathrm{S}$ of the LEDs. The test event is activated by a serial interface write, and the result can be read through the serial interface during the next cycle. This feature can also be addressed to measure the voltage on the VDD, VOUT, and INT pins. Typical example usage includes monitoring battery voltage or using INT pin as a light sensor interface.

7.3.3 Energy Efficiency

When charge-pump automatic mode selection is enabled, the LP55231 monitors the voltage over the drivers of D1 to D6 so that the device can select the best charge-pump gain and maintain good efficiency over the whole operating voltage range. The red LED element of an RGB LED typically has a forward voltage of about 2 V . For that reason, the outputs D7, D8, and D9 are internally powered by VDD, since battery voltage is high enough to drive red LEDs over the whole operating voltage range. This allows the driving of three RGB LEDs with good efficiency because the red LEDs don't load the charge pump. LP55231 is able to automatically enter power-save mode when LED outputs are not active, thus lowering idle current consumption down to $10 \mu \mathrm{~A}$ (typ.). Also, during the "down time" of the PWM cycle (constant current output status is low), additional power savings can be achieved when the PWM Powersave feature is enabled.

7.3.4 Temperature Compensation

The luminance of an LED is typically a function of its temperature even though the current flowing through the LED remains constant. Since luminance is temperature dependent, many LED applications require some form of temperature compensation to decrease luminance and color purity variations due to temperature changes. The LP55231 has a built-in temperature-sensing element, and PWM duty cycle of the LED drivers changes linearly in relationship to changes in temperature. User can select the slope of the graph (31 slopes) based on the LED characteristics (see Figure 13). This compensation can be done either constantly, or only right after the device wakes up from powersave mode, to avoid error due to self-heating of the device. Linear compensation is considered to be practical and accurate enough for most LED applications.
Compensation is effective over the temperature range $-40^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$.

Feature Description (continued)

Figure 13. Temperature Compensation Principle

7.3.5 Charge Pump Operational Description

7.3.5.1 Overview

The LP55231 includes a pre-regulated switched-capacitor charge pump with a programmable voltage multiplication of 1 and 1.5 x . In 1.5 x mode, by combining the principles of a switched-capacitor charge pump and a linear regulator, a regulated 4.5 V output is generated from the Li-lon input voltage range. A two-phase nonoverlapping clock generated internally controls the operation of the charge pump. During the charge phase, both flying capacitors (C1 and C2) are charged from input voltage. In the pump phase that follows, the flying capacitors are discharged to output. A traditional switched-capacitor charge pump operating in this manner will use switches with very low on-resistance, ideally 0Ω, to generate an output voltage that is 1.5 x the input voltage. The LP55231 regulates the output voltage by controlling the resistance of the input-connected pass-transistor switches in the charge pump.

7.3.5.2 Output Resistance

At lower input voltages, the charge pump output voltage may degrade due to effective output resistance ($\mathrm{R}_{\mathrm{OUT}}$) of the charge pump. The expected voltage drop can be calculated by using a simple model for the charge pump illustrated in Figure 14 below.

Figure 14. Charge Pump Output Resistance Model
The model shows a linear pre-regulation block (REG), a voltage multiplier (1.5 x), and an output resistance ($\mathrm{R}_{\text {Out }}$). Output resistance models the output voltage drop that is inherent to switched capacitor converters. The output resistance is 3.5Ω (typ.), and it is a function of switching frequency, input voltage, flying capacitors' capacitance value, internal resistances of the switches and ESR of the flying capacitors. When the output voltage is in regulation, the regulator in the model controls the voltage V^{\prime} to keep the output voltage equal to 4.5 V (typ.).

With increased output current, the voltage drop across $\mathrm{R}_{\text {Out }}$ increases. To prevent drop in output voltage, the voltage drop across the regulator is reduced, V^{\prime} increases, and $\mathrm{V}_{\text {OUt }}$ remains at 4.5 V . When the output current increases to the point that there is zero voltage drop across the regulator, V' equals the input voltage, and the output voltage is "on the edge" of regulation. Additional output current causes the output voltage to fall out of regulation, so that the operation is similar to a basic open-loop $1.5 x$ charge pump. In this mode, output current results in output voltage drop proportional to the output resistance of the charge pump. The out-of-regulation output voltage can be approximated by: $\mathrm{V}_{\text {OUT }}=1.5 \times \mathrm{V}_{\text {IN }}-\mathrm{I}_{\text {OUT }} \times \mathrm{R}_{\text {OUT }}$.

Feature Description (continued)

7.3.5.3 Controlling The Charge Pump

The charge pump is controlled with two CP_MODE bits in MISC register (address 36H). When both of the bits are low, the charge pump is disabled, and output voltage is pulled down with an internal $300 \mathrm{k} \Omega$ (typ.) resistor. The charge pump can be forced to bypass mode, so the battery voltage is connected directly to the current sources; in 1.5 x mode output voltage is boosted to 4.5 V . In automatic mode, charge-pump operation mode is determined by saturation of constant current drivers, as described in LED Forward Voltage Monitoring below.

7.3.5.4 LED Forward Voltage Monitoring

When the charge-pump automatic mode selection is enabled, voltages over LED drivers D1 to D6 are monitored. (Note: Power input for current source outputs D7, D8, and D9 are internally connected to the VDD pin.) If the D1 to D6 drivers do not have enough headroom, charge-pump gain is set to 1.5 x . Driver saturation monitor does not have a fixed voltage limit, since saturation voltage is a function of temperature and current. Charge pump gain is set to 1 x , when battery voltage is high enough to supply all LEDs.
In automatic gain change mode, the charge pump is switched to bypass mode (1x), when LEDs are inactive for over 50 ms .

7.3.5.5 Gain Change Hysteresis

Charge pump gain control utilizes digital filtering to prevent supply voltage disturbances (for example, the transient voltage on the power supply during the GSM burst) from triggering unnecessary gain changes. Hysteresis is provided to prevent periodic gain changes (which could occur due to LED driver) and charge-pump voltage drop in 1x mode. The hysteresis of the gain change is user-configurable; default setting is factoryprogrammable. Flexible configuration ensures that hysteresis can be minimized or set to desired level in each application.
LED forward voltage monitoring and gain control block diagram is shown in Figure 15.

Figure 15. Forward Voltage Monitoring and Gain Control Block

Feature Description (continued)

7.3.6 LED Driver Operational Description

7.3.6.1 Overview

LP55231 LED drivers are constant current sources. Output current can be programmed by control registers up to 25.5 mA . The overall maximum current is set by 8 -bit output current control registers with $100 \mu \mathrm{~A}$ step size. Each of the 9 LED drivers has a separate output current control register.
The LED luminance pattern (dimming) is controlled with PWM (pulse width modulation) technique, which has internal resolution of 12 bits (8 -bit control can be seen by user). PWM frequency is 312 Hz . See Figure 16 below.

Figure 16. LED Pattern And Current Control Principle
LED dimming is controlled according to a logarithmic or linear scale, see Figure 17. A logarithmic or linear scheme can be set for both the program execution engine control and direct PWM control. Note: if the temperature compensation is active, the maximum PWM duty cycle is limited to 50% at $+25^{\circ} \mathrm{C}$. This is required to allow enough headroom for temperature compensation over the whole temperature range $-30^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$.

Figure 17. Logarithmic vs Linear Dimming

7.3.6.2 Powering LEDs

The LP55231 is very suitable for white LED and general purpose applications, and it is particularly well suited to use with RGB LEDs. The LP55231architecture is optimized for use with three RGB LEDs. Typically, the red LEDs have forward voltages below 2 volts, thus red LEDs can be powered directly from V_{DD}. In the LP55231 D7, D8, and D9 drivers are powered from the battery voltage (V_{DD}), not from the charge-pump output. D1 to D6 drivers are internally connected to the charge-pump output, and these outputs can be used for driving green and blue ($\mathrm{V}_{\mathrm{F}}=2.7 \mathrm{~V}$ to 3.7 V typ.) or white LEDs. Of course, D7, D8, and D9 outputs can be used for green, blue or white LEDs if the $V_{D D}$ voltage is high enough.
An RGB LED configuration example is given in the Typical Applications section at the end of this document.

Feature Description (continued)

7.3.6.3 Controlling The High-Side LED Drivers

1. Direct PWM Control: All LP55231 LED drivers, D1 to D9, can be controlled independently through the twowire serial $\mathrm{I}^{2} \mathrm{C}$-compatible interface. For each high-side driver there is a PWM control register. Direct PWM control is active by default.
2. Controlling by Program Execution Engines: Engine control is used when the user wants to create programmed sequences. The program execution engine has a higher priority than direct control registers. Therefore, if the user has set the PWM register to a certain value, it will be automatically overridden when the program execution engine controls the driver. LED control and program execution engine operation is described in the Control Register Details section.
3. Master Fader Control: In addition to LED-by-LED PWM register control, the LP55231 is equipped with socalled master fader control, which allows the user to fade in or fade out multiple LEDs by writing to only one register. This is a useful function to minimize serial bus traffic between the MCU and the LP55231. The LP55231 has three master fader registers, so it is possible to form three master fader groups.

7.3.7 Automatic Power-Save Mode

Automatic power-save mode is enabled when POWERSAVE_EN bit in register address 36 H is "1". Almost all analog blocks are powered down in power-save if an external clock signal is used. Only the charge-pump protection circuits remain active. However, if the internal clock has been selected, only charge pump and LED drivers are disabled during the power save; the digital part of the LED controller needs to stay active. In both cases the charge pump enters the weak 1 x mode. In this mode the charge pump utilizes a passive current limited keep-alive switch, which keeps the output voltage at the battery level. During the program execution LP55231 can enter power save if there is no PWM activity in any of the LED driver outputs. To prevent short power-save sequences during program execution, LP55231 has an instruction look-ahead filter. During program execution engine 1, engine 2 and engine 3 instructions are constantly analyzed, and if there are time intervals of more than 50 ms in length with no PWM activity on LED driver outputs, the device will enter power save. In power-save mode program execution continues uninterrupted. When an instruction that requires PWM activity is executed, a fast internal start-up sequence will be started automatically.

7.3.8 PWM Power-Save Mode

PWM cycle power-save mode is enabled when register 36 bit [2] PWM_PS_EN is set to "1". In PWM power-save mode analog blocks are powered down during the "down time" of the PWM cycle. Which blocks are powered down depends whether the external or internal clock is used. While the Automatic Power-Save Mode (see above) saves energy when there is no PWM activity at all, the PWM Power-Save mode saves energy during PWM cycles. Like the Automatic Power-Save Mode, PWM Power-Save Mode also works during program execution. Figure 18 shows the principle of the PWM power-save technique. An LED on D9 output is driven at 50% PWM, 5 mA current (top waveform). After PWM Power-save enable, the LED-current remains the same, but the LP55231 input current drops down to about $50 \mu \mathrm{~A}$ when the LED is OFF, or to approximately $200 \mu \mathrm{~A}$ when the charge-pump-powered output(s) are used.

Figure 18. PWM Power-Save Principle External Clock, $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$

7.4 Device Functional Modes

7.4.1 Modes Of Operation

RESET: In the RESET mode all the internal registers are reset to the default values. Reset is always entered if Reset Register (3DH) is written FFH or internal Power-On Reset is active. Power-On Reset (POR) will activate during the chip start-up or when the supply voltage V_{DD} fall below 1.5 V (typ.). Once V_{DD} rises above 1.5 V (typ.), POR will deactivate, and the chip will continue to the STANDBY mode. CHIP_EN control bit is low after POR by default.
STANDBY: The STANDBY mode is entered if the register bit CHIP_EN or EN pin is LOW and Reset is not active. This is the low-power consumption mode, when all circuit functions are disabled. Most registers can be written in this mode if EN pin is risen to high so that control bits will be effective right after the start-up (see Control Register Details).
START-UP: When CHIP_EN bit is written high, and EN pin is high, the INTERNAL START-UP SEQUENCE powers up all the needed internal blocks (VREF, Bias, Oscillator etc.). Start-up delay is $500 \mu \mathrm{~s}$. If the chip temperature rises too high, the Thermal Shutdown (TSD) disables the chip operation, and the chip waits in START-UP mode until no thermal shutdown event is present.

NORMAL: During NORMAL mode the user controls the chip using the Control Registers.
POWER SAVE: In POWER-SAVE mode analog blocks are disabled to minimize power consumption. See Automatic Power-Save Mode section for further information.

Figure 19. Modes of Operation

LP55231
www.ti.com.cn

7.5 Programming

7.5.1 $\quad I^{2} \mathrm{C}$-Compatible Control Interface

The $I^{2} \mathrm{C}$-compatible synchronous serial interface provides access to the programmable functions and registers on the device. This protocol uses a two-wire interface for bidirectional communications between the ICs connected to the bus. The two interface lines are the Serial Data Line (SDA) and the Serial Clock Line (SCL). Every device on the bus is assigned a unique address and acts as either a Master or a Slave depending on whether it generates or receives the serial clock SCL. The SCL and SDA lines should each have a pullup resistor placed somewhere on the line and remain HIGH even when the bus is idle. Note: CLK pin is not used for serial bus data transfer.

7.5.1.1 Data Validity

The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, state of the data line can only be changed when clock signal is LOW.

Figure 20. Data Validity Diagram

7.5.1.2 Start And Stop Conditions

START and STOP conditions classify the beginning and the end of the data transfer session. A START condition is defined as the SDA signal transitioning from HIGH to LOW while SCL line is HIGH. A STOP condition is defined as the SDA transitioning from LOW to HIGH while SCL is HIGH. The bus master always generates START and STOP conditions. The bus is considered to be busy after a START condition and free after a STOP condition. During data transmission, the bus master can generate repeated START conditions. First START and repeated START conditions are equivalent, function-wise.

7.5.1.3 Transferring Data

Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first. Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated by the master. The master releases the SDA line (HIGH) during the acknowledge clock pulse. The LP55231 pulls down the SDA line during the 9th clock pulse, signifying an acknowledge. The LP55231 generates an acknowledge after each byte has been received.
There is one exception to the "acknowledge after every byte" rule. When the master is the receiver, it must indicate to the transmitter an end of data by not acknowledging ("negative acknowledge") the last byte clocked out of the slave. This "negative acknowledge" still includes the acknowledge clock pulse (generated by the master), but the SDA line is not pulled down.
After the START condition, the bus master sends a chip address. This address is seven bits long followed by an eighth bit which is a data direction bit (READ or WRITE). The LP55231 address is defined with ASELO and ASEL1 pins, and it is 32 h when ASEL1 and ASELO are connected to GND. For the eighth bit, a " 0 " indicates a WRITE and a " 1 " indicates a READ. The second byte selects the register to which the data will be written. The third byte contains data to write to the selected register.

Programming (continued)

7.5.2 $\mathrm{I}^{2} \mathrm{C}$-Compatible Chip Address

ASELO and ASEL1 pins configure the chip address for the LP55231 as shown in Table 1.
Table 1. LP55231 Chip Address Configuration

ASEL1	ASELO	ADDRESS	(HEX)
		32	WRITE/READ
GND	GND	33	$64 / 65$
GND	VEN	34	$66 / 67$
VEN	GND	35	$68 / 69$
VEN	VEN	$6 A / 6 B$	

Figure 21. LP55231 Chip Address

Id = Chip Address $=32 \mathrm{~h}$ For Lp55231. This Data Pattern Writes Temperature Information To The Temperature Write Register (40h).

Figure 22. Write Cycle ($\mathrm{W}=$ Write; SDA = " 0 "),

Id $=$ Chip Address $=32 \mathrm{~h}$ For LP55231. This Data Pattern Reads Temperature Information From The Temperature Read Register (3fh). When A Read Function Is To Be Accomplished, A Write Function Must Precede The Read Function, As Show Above.

Figure 23. Read Cycle ($\mathrm{R}=$ Read; SDA = "1")

7.5.2.1 Control Register Write Cycle

- Master device generates start condition.
- Master device sends slave address (7 bits) and the data direction bit $(r / w=0)$.
- Slave device sends acknowledge signal if the slave address is correct
- Master sends control register address (8 bits).
- Slave sends acknowledge signal.
- Master sends data byte to be written to the addressed register.
- Slave sends acknowledge signal.
- If master sends further data bytes, the slave's control register address will be incremented by one after acknowledge signal. In order to reduce program load time, the LP55231 supports address auto incrementation. Register address is incremented after each 8 data bits. For example, the whole program memory page can be written in one serial bus write sequence. Note: serial bus address auto increment is not supported for register addresses from 16 to 1 E .
- Write cycle ends when the master creates stop condition.

7.5.2.2 Control Register Read Cycle

- Master device generates a start condition.
- Master device sends slave address (7 bits) and the data direction bit $(r / w=0)$.
- Slave device sends acknowledge signal if the slave address is correct
- Master sends control register address (8 bits).
- Slave sends acknowledge signal.
- Master device generates repeated start condition.
- Master sends the slave address (7 bits) and the data direction bit (r/w = 1).
- Slave sends acknowledge signal if the slave address is correct.
- Slave sends data byte from addressed register.
- If the master device sends an acknowledge signal, the control register address will be incremented by one. Slave device sends data byte from addressed register.
- Read cycle ends when the master does not generate acknowledge signal after data byte and generates stop condition

7.5.2.3 Auto-Increment Feature

The auto-increment feature allows writing several consecutive registers within one transmission. Every time an 8bit word is sent to the LP55231, the internal address index counter will be incremented by one, and the next register will be written. Table 2 shows writing sequence to two consecutive registers. Auto-increment feature is enabled by writing EN_AUTO_INCR bit high in the MISC register (addr 36h). Note: serial bus address auto increment is not supported for register addresses from 16 to 1 E .

Table 2. Auto Increment Example

MASTER	START	CHIP ADDR $=32 H$	WRITE		REG ADDR		DATA		DATA		STOP
LP55231				ACK		ACK		ACK		ACK	

7.6 Register Maps

7.6.1 Register Set

The LP55231 is controlled by a set of registers through the two-wire serial interface port. Some register bits are reserved for future use. Table 3 below lists device registers, their addresses and their abbreviations. A more detailed description is given in section Control Register Details.

Register Maps (continued)

Table 3. Control Register Map

HEX ADDRESS	REGISTER NAME	BIT(s)	READ/ WRITE	DEFAULT VALUE AFTER RESET	BIT MNEMONIC AND DESCRIPTION
00	ENABLE / ENGINE CNTRL1	[6]	R/W	x0xxxxxx	$\begin{aligned} & \text { CHIP_EN } \\ & 0=\text { LP55231 not enabled } \\ & 1=\text { LP55231 enabled } \end{aligned}$
		[5:4]	R/W	xx00xxxx	ENGINE1_EXEC Engine 1 program execution control
		[3:2]	R/W	xxxx00xx	ENGINE2_EXEC Engine 2 program execution control
		[1:0]	R/W	xxxxxx00	ENGINE3 EXEC Engine 3 program execution control
01	ENGINE CNTRL2	[5:4]	R/W	xx00xxxx	ENGINE1_MODE ENGINE 1 mode control
		[3:2]	R/W	xxxx00xx	ENGINE2 MODE ENGINE 2 mode control
		[1:0]	R/W	xxxxxx00	ENGINE3 MODE ENGINE 3 mode control
02	OUTPUT DIRECT/RATIOMETRIC MSB	[0]	R/W	xxxxxxx0	D9_RATIO_EN Enables ratiometric dimming for D9 output.
03	OUTPUT DIRECT/RATIOMETRIC LSB	[7]	R/W	0xxxxxxx	D8_RATIO_EN Enables ratiometric dimming for D8 output.
		[6]	R/W	x0xxxxxx	D7_RATIO_EN Enābles ratiometric dimming for D7 output.
		[5]	R/W	xx0xxxxx	D6 RATIO EN Enābles ratiometric dimming for D6 output.
		[4]	R/W	xxx0xxxx	D5_RATIO_EN Enables ratiometric dimming for D5 output.
		[3]	R/W	xxxx0xxx	D4_RATIO_EN Enables ratiometric dimming for D4 output.
		[2]	R/W	xxxxx0xx	D3_RATIO_EN Enables ratiometric dimming for D3 output.
		[1]	R/W	xxxxxx0x	D2_RATIO_EN Enables ratiometric dimming for D2 output.
		[0]	R/W	xxxxxxx0	D1_RATIO_EN Enables ratiometric dimming for D1 output.
04	OUTPUT ON/OFF CONTROL MSB	[0]	R/W	xxxxxxx1	D9_ON ON/OFF Control for D9 output
05	OUTPUT ON/OFF CONTROL LSB	[7]	R/W	1xxxxxxx	D8_ON ON/OFF Control for D8 output
		[6]	R/W	x1xxxxxx	D7 ON ON/OFF Control for D7 output
		[5]	R/W	xx1xxxxx	D6 ON ON/OFF Control for D6 output
		[4]	R/W	xxx1xxxx	D5 ON ON/OFF Control for D5 output
		[3]	R/W	xxxx1xxx	D4 ON ON/OFF Control for D4 output
		[2]	R/W	xxxxx1xx	D3 ON ON/OFF Control for D3 output
		[1]	R/W	xxxxxx1x	D2 ON ON/OFF Control for D2 output
		[0]	R/W	xxxxxxx1	D1 ON ON/OFF Control for D1 output

Register Maps (continued)

Table 3. Control Register Map (continued)

HEX ADDRESS	REGISTER NAME	BIT(s)	READ/ WRITE	DEFAULT VALUE AFTER RESET	BIT MNEMONIC AND DESCRIPTION
06	D1 CONTROL	[7:6]	R/W	00xxxxxx	MAPPING Mapping for D1 output
		[5]	R/W	xx0xxxxx	LOG EN Logarithmic dimming control for D1
		[4:0]	R/W	xxx00000	TEMP COMP Temperature compensation control for D1 output
07	D2 CONTROL	[7:6]	R/W	00xxxxxx	MAPPING Mapping for D2 output
		[5]	R/W	xx0xxxxx	LOG EN Logarithmic dimming control for D2 output
		[4:0]	R/W	xxx00000	TEMP COMP Temperature compensation control for D2 output
08	D3 CONTROL	[7:6]	R/W	00xxxxxx	MAPPING Mapping for D3 output
		[5]	R/W	xx0xxxxx	LOG_EN Logarithmic dimming control for D3 output
		[4:0]	R/W	xxx00000	TEMP COMP Temperature compensation control for D3 output
09	D4 CONTROL	[7:6]	R/W	00xxxxxx	MAPPING Mapping for D4 output
		[5]	R/W	xx0xxxxx	LOG EN Logarithmic dimming control for D4 output
		[4:0]	R/W	xxx00000	TEMP COMP Temperature compensation control for D4 output
OA	D5 CONTROL	[7:6]	R/W	00xxxxxx	MAPPING Mapping for D5 ouput
		[5]	R/W	xx0xxxxx	LOG_EN Logarithmic dimming control for D5 output
		[4:0]	R/W	xxx00000	TEMP COMP Temperature compensation control for D5
OB	D6 CONTROL	[7:6]	R/W	00xxxxxx	MAPPING Mapping for D6 output
		[5]	R/W	xx0xxxxx	LOG_EN Logarithmic dimming control for D6 output
		[4:0]	R/W	xxx00000	TEMP COMP Temperature compensation control for D6 output
OC	D7 CONTROL	[7:6]	R/W	00xxxxxx	MAPPING Mapping for D7 output
		[5]	R/W	xx0xxxxx	LOG_EN Logarithmic dimming control for D7 output
		[4:0]	R/W	xxx00000	TEMP COMP Temperature compensation control for D7 output
OD	D8 CONTROL	[7:6]	R/W	00xxxxxx	MAPPING Mapping for D8 output
		[5]	R/W	xx0xxxxx	LOG_EN Logarithmic dimming control for D8 output
		[4:0]	R/W	xxx00000	TEMP COMP Temperature compensation control for D8 output
OE	D9 CONTROL	[7:6]	R/W	00xxxxxx	MAPPING Mapping for D9 output
		[5]	R/W	xx0xxxxx	LOG_EN Logarithmic dimming control for D9 output
		[4:0]	R/W	xxx00000	TEMP COMP Temperature compensation control for D9 output
0F TO 15	RESERVED	[7:0]			RESERVED FOR FUTURE USE
16	D1 PWM	[7:0]	R/W	00000000	PWM PWM duty cycle control for D1
17	D2 PWM	[7:0]	R/W	00000000	PWM PWM duty cycle control for D2

Register Maps (continued)

Table 3. Control Register Map (continued)

HEX ADDRESS	REGISTER NAME	BIT(s)	READ/ WRITE	DEFAULT VALUE AFTER RESET	BIT MNEMONIC AND DESCRIPTION
18	D3 PWM	[7:0]	R/W	00000000	PWM PWM duty cycle control for D3
19	D4 PWM	[7:0]	R/W	00000000	PWM PWM duty cycle control for D4
1A	D5 PWM	[7:0]	R/W	00000000	PWM PWM duty cycle control for D5
1B	D6 PWM	[7:0]	R/W	00000000	PWM PWM duty cycle control for D6
1 C	D7 PWM	[7:0]	R/W	00000000	PWM PWM duty cycle control for D7
1D	D8 PWM	[7:0]	R/W	00000000	PWM PWM duty cycle control for D8
1E	D9 PWM	[7:0]	R/W	00000000	PWM PWM duty cycle control for D9
1F TO 25	RESERVED	[7:0]			RESERVED FOR FUTURE USE
26	D1 CURRENT CONTROL	[7:0]	R/W	10101111	CURRENT D1 output current control register. Default 17.5 mA (typ.)
27	D2 CURRENT CONTROL	[7:0]	R/W	10101111	CURRENT D2 output current control register. Default 17.5 mA (typ.)
28	D3 CURRENT CONTROL	[7:0]	R/W	10101111	CURRENT D3 output current control register. Default 17.5 mA (typ.)
29	D4 CURRENT CONTROL	[7:0]	R/W	10101111	CURRENT D4 output current control register. Default current is 17.5 mA (typ.)
2 A	D5 CURRENT CONTROL	[7:0]	R/W	10101111	CURRENT D5 output current control register. Default current is 17.5 mA (typ.)
2B	D6 CURRENT CONTROL	[7:0]	R/W	10101111	CURRENT D6 output current control register. Default current is 17.5 mA (typ.)
2 C	D7 CURRENT CONTROL	[7:0]	R/W	10101111	CURRENT D7 output current control register. Default current is 17.5 mA (typ.)
2D	D8 CURRENT CONTROL	[7:0]	R/W	10101111	CURRENT D8 output current control register. Default current is 17.5 mA (typ.)
2E	D9 CURRENT CONTROL	[7:0]	R/W	10101111	CURRENT D9 output current control register. Default current is 17.5 mA (typ.)
2F TO 35	RESERVED FOR FUTURE USE	[7:0]			RESERVED FOR FUTURE USE

Register Maps (continued)

Table 3. Control Register Map (continued)

HEX ADDRESS	REGISTER NAME	BIT(s)	READ/ WRITE	DEFAULT VALUE AFTER RESET	BIT MNEMONIC AND DESCRIPTION
36	MISC	[7]	R/W	0xxxxxxx	VARIABLE D SEL Variable D source selection
		[6]	R/W	x1xxxxxx	EN_AUTO_INCR Serial bus address auto increment enable
		[5]	R/W	xx0xxxxx	POWERSAVE_EN Powersave mode enable
		[4:3]	R/W	xxx00xxx	CP_MODE Charge pump gain selection
		[2]	R/W	xxxxx0xx	PWM_PS_EN PWM cycle powersave enable
		[1]	R/W	xxxxxx0x	CLK_DET_EN External clock detection
		[0]	R/W	xxxxxxx0	INT_CLK_EN Clock source selection
37	ENGINE1 PC	[6:0]	R/W	x0000000	PC Program counter for engine 1
38	ENGINE2 PC	[6:0]	R/W	x0000000	PC Program counter for engine 2
39	ENGINE3 PC	[6:0]	R/W	x0000000	PC Program counter for engine 3
3A	STATUS/INTERRUPT	[7]	R	0xxxxxxx	LEDTEST_MEAS_DONE Indicates when the LED test measurement is done.
		[6]	R	x1xxxxxx	MASK_BUSY Mask bit for interrupts generated by STARTUP_BUSY or ENGINE_BUSY.
		[5]	R	xx0xxxxx	START-UP_BUSY This bit indicates that the start-up sequence is running.
		[4]	R	xxx0xxxx	ENGINE_BUSY This bit indicates that a program execution engine is clearing internal registers.
		[3]	R	xxxx0xxx	EXT_CLK_USED Indicates when external clock signal is in use.
		[2]	R	xxxxx0xx	ENG1_INT Interrupt bit for program execution engine 1
		[1]	R	xxxxxx0x	ENG2_INT Interrupt bit for program execution engine 2
		[0]	R	xxxxxxx0	ENG3_INT Interrupt bit for program execution engine 3
3B	INT/GPO	[2]	R/W	xxxxx0xx	INT_CONF INT pin can be configured to function as a GPO with this bit
		[0]	R/W	xxxxxxx0	INT_GPO GPO $\overline{\text { pin }}$ control for INT pin when INT_CONF is set "1"
3 C	VARIABLE	[7:0]	R/W	00000000	VARIABLE Global 8-bit variable
3D	RESET	[7:0]	R/W	00000000	RESET Writing 11111111 into this register resets the LP55231

Register Maps (continued)

Table 3. Control Register Map (continued)

HEX ADDRESS	REGISTER NAME	BIT(s)	READ/ WRITE	DEFAULT VALUE AFTER RESET	BIT MNEMONIC AND DESCRIPTION
3E	TEMP ADC CONTROL	[7]	R	0xxxxxxx	TEMP_MEAS_BUSY Indicates when temperature measurement is active
		[2]	R/W	xxxxx0xx	EN_TEMP_SENSOR Reads the internal temperature sensor once
		[1]	R/W	xxxxxx0x	CONTINUOUS CONV Continuous temperature measurement selection
		[0]	R/W	xxxxxxx0	SEL EXT TEMP Internal/external temperature sensor selection
3F	TEMPERATURE READ	[7:0]	R	00011001	TEMPERATURE Bits for temperature information
40	TEMPERATURE WRITE	[7:0]	R/W	00000000	TEMPERATURE Bits for temperature information
41	LED TEST CONTROL	[7]	R/W	$0 x x x x x x x$	EN_LED_TEST_ADC
		[6]	R/W	x0xxxxxx	EN_LED_TEST_INT
		[5]	R/W	xx0xxxxx	CONTINUOUS CONV Continuous LE \bar{D} test measurement selection
		[4:0]	R/W	xxx00000	LED_TEST_CTRL Control bits for LED test
42	LED TEST ADC	[7:0]	R	N/A	LED_TEST_ADC LED test result
43	RESERVED	[7:0]			RESERVED FOR FUTURE USE
44	RESERVED	[7:0]			RESERVED FOR FUTURE USE
45	ENGINE1 VARIABLE A	[7:0]	R	00000000	VARIABLE FOR ENGINE1
46	ENGINE2 VARIABLE A	[7:0]	R	00000000	VARIABLE FOR ENGINE2
47	ENGINE3 VARIABLE A	[7:0]	R	00000000	VARIABLE FOR ENGINE3
48	MASTER FADER1	[7:0]	R/W	00000000	MASTER FADER
49	MASTER FADER2	[7:0]	R/W	00000000	MASTER FADER
4A	MASTER FADER3	[7:0]	R/W	00000000	MASTER FADER
4B	RESERVED FOR FUTURE USE				RESERVED FOR FUTURE USE
4C	ENG1 PROG START ADDR	[6:0]	R/W	x0000000	ADDR
4D	ENG2 PROG START ADDR	[6:0]	R/W	x0001000	ADDR
4E	ENG3 PROG START ADDR	[6:0]	R/W	x0010000	ADDR
4F	PROG MEM PAGE SEL	[2:0]	R/W	xxxxx000	PAGE_SEL

LP55231
www.ti.com.cn

Register Maps (continued)

Table 3. Control Register Map (continued)

Register Maps (continued)

Table 3. Control Register Map (continued)

HEX ADDRESS	REGISTER NAME	BIT(s)	READ/ WRITE	DEFAULT VALUE AFTER RESET	BIT MNEMONIC AND DESCRIPTION
71	ENG1 MAPPING LSB	[7]	R	0xxxxxxx	D8 Engine 1 mapping information, D8 output
		[6]	R	x0xxxxxx	D7 Engine 1 mapping information, D7 output
		[5]	R	xx0xxxxx	D6 Engine 1 mapping information, D6 output
		[4]	R	xxx0xxxx	D5 Engine 1 mapping information, D5 output
		[3]	R	xxxx0xxx	D4 Engine 1 mapping information, D4 output
		[2]	R	xxxxx0xx	D3 Engine 1 mapping information, D3 output
		[1]	R	xxxxxx0x	D2 Engine 1 mapping information, D2 output
		[0]	R	xxxxxxx0	D1 Engine 1 mapping information, D1 output
72	ENG2 MAPPING MSB	[0]	R	xxxxxxx0	D9 Engine 2 mapping information, D9 output
73	ENG2 MAPPING LSB	[7]	R	0xxxxxxx	D8 Engine 2 mapping information, D8 output
		[6]	R	x0xxxxxx	D7 Engine 2 mapping information, D7 output
		[5]	R	xx0xxxxx	D6 Engine 2 mapping information, D6 output
		[4]	R	xxx0xxxx	D5 Engine 2 mapping information, D5 output
		[3]	R	xxxx0xxx	D4 Engine 2 mapping information, D4 output
		[2]	R	xxxxx0xx	D3 Engine 2 mapping information, D3 output
		[1]	R	xxxxxx0x	D2 Engine 2 mapping information, D2 output
		[0]	R	xxxxxxx0	D1 Engine 2 mapping information, D1 output
74	ENG3 MAPPING MSB	[0]	R	xxxxxxx0	D9 Engine 3 mapping information, D9 output
75	ENG3 MAPPING LSB	[7]	R	0xxxxxxx	D8 Engine 3 mapping information, D8 output
		[6]	R	x0xxxxxx	D7 Engine 3 mapping information, D7 output
		[5]	R	xx0xxxxx	D6 Engine 3 mapping information, D6 output
		[4]	R	xxx0xxxx	D5 Engine 3 mapping information, D5 output
		[3]	R	xxxx0xxx	D4 Engine 3 mapping information, D4 output
		[2]	R	xxxxx0xx	D3 Engine 3 mapping information, D3 output
		[1]	R	xxxxxx0x	D2 Engine 3 mapping information, D2 output
		[0]	R	xxxxxxx0	D1 Engine 3 mapping information, D1 output

LP55231

Register Maps (continued)

Table 3. Control Register Map (continued)

HEX ADDRESS	REGISTER NAME	BIT(s)	READ WRITE	DEFAULT VALUE AFTER RESET	BIT MNEMONIC AND DESCRIPTION
76	GAIN CHANGE CTRL	[7:6]	R/W	00xxxxxx	THRESHOLD Threshold voltage (typ.). $00-400 \mathrm{mV}$ 01 - 300 mV 10-200mV 11-100mV
		[5]	R/W	xx0xxxxx	ADAPTIVE THRESH EN Activates adaptive threshold.
		[4:3]	R/W	xxx00xxx	TIMER $00-5 \mathrm{~ms}$ $01-10 \mathrm{~ms}$ $10-50 \mathrm{~ms}$ 11 - Infinite
		[2]	R/W	xxxxx0xx	FORCE_1x Activates 1.5 x to 1 x timer.

7.6.2 Control Register Details

00 ENABLE/ ENGINE CONTROL1

- 00 - Bit [6] CHIP_EN

- 1 = internal start-up sequence powers up all the needed internal blocks and the device enters normal mode.
- $0=$ standby mode is entered. Control registers can still be written or read, excluding bits[5:0] in reg 00 (this register), registers 16h to 1E (LED PWM registers) and 37h to 39h (program counters).
- 00 - Bits [5:4] ENGINE1_EXEC
- Engine 1 program execution control. Execution register bits define how the program is executed. Program start address can be programmed to Program Counter (PC) register 37H.
- $00=$ hold: Hold causes the execution engine to finish the current instruction and then stop. Program counter (PC) can be read or written only in this mode.
- 01 = step: Execute the instruction at the location pointed by the PC, increment the PC by one and then reset ENG1_EXEC bits to 00 (that is, enter hold).
- $10=$ free run: Start program execution from the location pointed by the PC.
- 11 = execute once: Execute the instruction pointed by the current PC value and reset ENG1_EXEC to 00 (that is, enter hold). The difference between step and execute once is that execute once does not increment the PC.
- 00 - Bits [3:2] ENGINE2_EXEC
- Engine 2 program execution control. Equivalent to above definition of control bits. Program start address can be programmed to Program Counter (PC) register 38 H .
- 00 - Bits [1:0] ENGINE3_EXEC
- Engine 3 program execution control. Equivalent to engine 1 control bits. Program start address can be programmed to Program Counter (PC) register 39H.

01 ENGINE CONTROL2

- Operation modes are defined in this register.
- Disabled: Engines can be configured to disabled mode each one separately.
- Load program: Writing to program memory is allowed only when the engine is in load program operation mode and engine busy bit (reg 3A) is not set. Serial bus master should check the busy bit before writing to program memory or allow at least 1 ms delay after entering to load mode before memory write, to ensure initalization. All the three engines are in hold while one or more engines are in load program mode. PWM values are frozen, also. Program execution continues when all the engines are out of load program mode. Load program mode resets the program counter of the respective engine. Load program mode can be entered from the disabled mode only. Entering load program mode from the run program mode is not allowed.
- Run Program: Run program mode executes the instructions stored in the program memory. Execution register (ENG1_EXEC etc.) bits define how the program is executed (hold, step, free run or execute once).

Program start address can be programmed to the Program Counter (PC) register. The Program Counter is reset to zero when the PC's upper limit value is reached.

- Halt: Instruction execution aborts immediately and engine operation halts.
- 01 - Bit [5:4] ENGINE1_MODE
- $00=$ disabled.
- 01 = load program to SRAM, reset engine 1 PC.
- $10=$ run program as defined by ENGINE1_EXEC bits.
- 11 = halts the engine.
- 01 - Bits [3:2] ENGINE2_MODE
- $00=$ disabled.
- 01 = load program to SRAM, reset engine 2 PC.
- $10=$ run program as defined by ENGINE2_EXEC bits.
- 11 = halts the engine.
- 01 - Bits [3:2] ENGINE3_MODE
- $00=$ disabled.
- 01 = load program to SRAM, reset engine 3 PC.
- 10 = run program as defined by ENGINE3_EXEC bits.
- 11 = halts the engine.

02 OUTPUT DIRECT/RATIOMETRIC MSB

- A particular feature of the LP55231 is the ratiometric up/down dimming of the RGB-LEDs. In other words, the LED driver PWM output will vary in a ratiometric manner. By a ratiometric approach the emitted color of an RGB-LED remains the same regardless of the initial magnitudes of the R/G/B PWM outputs. For example, if the PWM output of the red LED output is doubled, the output of green LED is doubled also.
- 02 - Bit [0] D9_RATIO_EN
- 1 = enables ratiometric diming for D9 output.
- $0=$ disables ratiometric dimming for D9 output.

03 OUTPUT DIRECT/RATIOMETRIC LSB

- 03 - Bit [7] D8_RATIO_EN
- 1 = enables ratiometric diming for D8 output.
- $0=$ disables ratiometric dimming for D8 output.
- 03 - Bit [0] D1_RATIO_EN to Bit [6] D7_RATIO_EN
- The options for D1 output to D7 output are the same as above - see the " 03 — Bit [7]" section.

04 OUTPUT ON/OFF CONTROL MSB

- 04 - Bit [0] D9_ON
- 1 = D9 output ON.
- $0=$ D9 output OFF.
- Note: Engine mapping overrides this control.

05 OUTPUT ON/OFF CONTROL MSB

- 05 - Bit [7] D8_ON
- 1 = D8 output ON.
- $0=$ D8 output OFF.
- Note: Engine mapping over rides this control.
- 05 - Bit [0] D1_ON to Bit [6] D7_ON
- The options for D1 output to D7 output are the same as above - see the " 05 - Bit [7]" section.

06 D1 CONTROL

- This is the register used to assign the D1 output to the MASTER FADER group 1, 2, or 3, or none of them. Also, this register sets the correction factor for the D1 output temperature compensation and selects between linear and logarithmic PWM brightness adjustment. By using logarithmic PWM-scale the visual effect looks like linear. When the logarithmic adjustment is enabled, the chip handles internal PWM values with 12-bit resolution. This allows very fine-grained PWM control at low PWM duty cycles.

- 06 - Bit [7:6] MAPPING

- $00=$ no master fader set, clears master fader set for D1. Default setting.
- 01 = MASTER FADER1 controls the D1 output.
- $10=$ MASTER FADER2 controls the D1 output.
- 11 = MASTER FADER3 controls the D1 output.
- The duty cycle on D1 output will be D1 PWM register value (address 16 H) multiplied with the value in the MASTER FADER register.
- 06 - Bit [5] LOG_EN
- $0=$ linear adjustment.
- 1 = logarithmic adjustment.
- This bit is effective for both the program execution engine control and direct PWM control.
- 06 - Bit [4:0] TEMP_COMP
- The reference temperature is $25^{\circ} \mathrm{C}$ (that is, the temperature at which the compensation has no effect) and the correction factor (slope) can be set in $0.1 \% 1 /{ }^{\circ} \mathrm{C}$ steps to any value between $-1.5 \% 1 /{ }^{\circ} \mathrm{C}$ and $+1.5 \% 1 /{ }^{\circ} \mathrm{C}$, with a default to $0.0 \% 1 /{ }^{\circ} \mathrm{C}$.

TEMP_COMP BITS	CORRECTION FACTOR (\%)
00000	Not activated - default setting after reset.
11111	$-1.51 /{ }^{\circ} \mathrm{C}$
11110	$-1.41 /{ }^{\circ} \mathrm{C}$
\ldots	\ldots
10001	$-0.11 /{ }^{\circ} \mathrm{C}$
10000	$01 /{ }^{\circ} \mathrm{C}$
00001	$+0.11 /{ }^{\circ} \mathrm{C}$
\ldots	\ldots
01110	$+1.41 /{ }^{\circ} \mathrm{C}$
01111	$+1.51 /{ }^{\circ} \mathrm{C}$

The PWM duty cycle at temperature T (in centigrade) can be obtained as follows: $\mathrm{PWM}_{\mathrm{F}}=\left[\mathrm{PWM}_{\mathrm{S}}-(25-\mathrm{T})\right.$ * correction factor * $\mathrm{PWM}_{\mathrm{S}}$] / 2, where $P W M_{F}$ is the final duty cycle at temperature $T, P W M_{S}$ is the set PWM duty cycle (PWM duty cycle is set in registers 16 H to 1 EH) and the value of the correction factor is obtained from the table above.
For example, if the set PWM duty cycle in register 16 H is 90%, temperature T is $-10^{\circ} \mathrm{C}$ and the chosen correction factor is $1.5 \% 1 /{ }^{\circ} \mathrm{C}$, the final duty-cycle $P W M_{F}$ for D1 output will be $\left[90 \%-\left(25^{\circ} \mathrm{C}-\left(-10^{\circ} \mathrm{C}\right)\right){ }^{*} 1.5 \%\right.$ $\left.1 /{ }^{\circ} \mathrm{C} * 90 \%\right] / 2=[90 \%-35 * 0.015 * 90 \%] / 2=21.4 \%$. Default setting 00000 means that the temperature compensation is non-active and the PWM output (0 to 100%) is set solely by PWM registers D1 PWM to D9 PWM.

07 D2 CONTROL to 0E D9 CONTROL

- The control registers and control bits for D2 output to D9 output are similar to that given to D1, see the 06 Bit [5] and 06 - Bits [4:0] sections.

16 D1 PWM

- This is the PWM duty cycle control for D1 output. D1 PWM register is effective during direct control operation - direct PWM control is active after power up by default. Note: serial bus address auto increment is not supported for register addresses from 16 to 1 E .
- 16 - Bits [7:0] PWM
- These bits set the D1 output PWM as shown in the figure below. Note: if the temperature compensation is active, the maximum PWM duty cycle is 50% at $+25^{\circ} \mathrm{C}$. This is required to allow enough headroom for temperature compensation over the temperature range $-30^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$.

Figure 24. Direct PWM Control Bits vs. PWM Duty Cycle

17 D2 PWM to 1E D9 PWM

- PWM duty cycle control for outputs D2 to D9. The control registers and control bits for D2 output to D9 output are similar to that given to D1.

26 D1 CURRENT CONTROL

- D1 LED driver output current control register. The resolution is 8 -bits and step size is $100 \mu \mathrm{~A}$. .

CURRENT BITS	OUTPUT CURRENT (mA, typ.)
00000000	0.0
00000001	0.1
00000010	0.2
\ldots	\ldots
10101111	17.5 (default setting)
\ldots	\ldots.
1111110	25.4
1111111	25.5

27 D2 CURRENT CONTROL to 2E D9 CURRENT CONTROL

- The control registers and control bits for D2 output up to D9 output are similar to that given to D1 output.

36 MISC

- This register contains miscellaneous control bits.
- 36 - Bit [7] VARIABLE_D_SEL
- Variable D source selection.
- 1 = variable D source is the LED test ADC output (LED TEST ADC). This allows, for example, program execution control with analog signal.
- $0=$ variable D source is the register 3C (VARIABLE).
- 36 - Bit [6] EN_AUTO_INCR
- The automatic increment feature of the serial bus address enables a quick memory write of successive registers within one transmission.
- $1=$ serial bus address automatic increment is enabled.
- $0=$ serial bus address automatic increment is disabled.
- 36 - Bit [5] POWERSAVE_EN
- 1 = power save mode is enabled.
- $0=$ power save mode is disabled. See Automatic Power-Save Mode section for further details.
- 36 - Bits [4:3] CP_MODE
- Charge pump operation mode.
- $00=$ OFF.
- 01 = forced to bypass mode (1 x).
- $10=$ forced to $1.5 x$ mode; output voltage is boosted to 4.5 V .
- 11 = automatic mode selection.
- 36 - Bit [2] PWM_PS_EN
- Enables PWM powersave operation. Significant power savings can be achieved, for example, during ramp instruction.
- 36 - Bits [1:0] CLK_DET_EN and INT_CLK_EN
- Program execution is clocked with internal 32.7 kHz clock or with external clock. Clocking is controlled with bits INT_CLK_EN and CLK_DET_EN in the following way:
- $00=$ forced external clock (CLK pin).
- 01 = forced internal clock.
- 10 = automatic selection.
- 11 = internal clock.
- External clock can be used if a clock signal is present on CLK-pin. External clock frequency must be 32.7 kHz for correct operation. If a higher or a lower frequency is used, it will affect on the program execution engine operation speed. The detector block does not limit the maximum frequency. External clock status can be checked with read only bit EXT_CLK_USED in register address 3A, when the external clock detection is enabled (Bit [1] CLK_DET_EN = high).
- If external clock is not used in the application, CLK pin should be connected to GND to avoid oscillation on this pin and extra current consumption.

37 ENGINE1 PC

- Program counter starting value for program execution engine 1; A value from 0000000 to 1011111. The maximum value depends on program memory allocation between the three program execution engines.

38 ENGINE2 PC

- 38 - Bits [6:0] PC
- Program counter starting value for program execution engine 2; A value from 0000000 to 1011111.

39 ENGINE3 PC

- 39 - Bits [6:0] PC
- Program counter starting value for program execution engine 3; A value from 0000000 to 1011111.

3A STATUS/INTERRUPT

- 3A - Bit [7] LEDTEST_MEAS_DONE
- This bit indicates when the LED test is done, and the result is written to the LED TEST ADC register. Typically the conversion takes 2.7 milliseconds to complete.
- 1 = LED test done.
- $0=$ LED test not done.
- This bit is a read-only bit, and it is cleared (to " 0 ") automatically after a read operation.
- 3A - Bit [6] MASK_BUSY
- Mask bit for interrupts generated by START-UP_BUSY or ENGINE_BUSY.
- 1 = Interrupt events will be masked; that is, no external interrupt will be generated from START-UP_BUSY or ENGINE_BUSY event (default).
- $0=$ External interrupt will be generated when START-UP_BUSY or ENGINE_BUSY condition is no longer true. Reading the register 3A clears the status bits [5:4] and releases INT pin to high state.
- 3A - Bit [5] START-UP_BUSY
- A status bit which indicates that the device is running the internal start-up sequence. See Modes Of Operation for details.
- 1 = internal start-up sequence running. Note: START-UP_BUSY = $\mathbf{1}$ always when CHIP_EN bit is " 0 ".
- $0=$ internal start-up sequence completed.
- 3A - Bit [4] ENGINE_BUSY
- A status bit which indicates that a program execution engine is clearing internal registers. Serial bus master should not write or read program memory, or registers $00 \mathrm{H}, 37 \mathrm{H}$ to 39 H or 4 CH to 4 EH , when this bit is set to "1".
- $1=$ at least one of the engines is clearing internal registers.
- $0=$ engine ready.
- 3A - Bit [3] EXT_CLK_USED
- 1 = external clock detected.
- $0=$ external clock not detected.
- This bit is high when external clock signal on CLK pin is detected. CLK_DET_EN bit high in address 36 enables the clock detection.
- 3A - Bits [2:0] ENG1_INT, ENG2_INT, ENG3_INT
- $1=$ interrupt set.
- $0=$ interrupt unset/cleared.
- Interrupt bits for program execution engine 1, 2 and 3, respectively. These bits are set by END or INT instruction. Reading the interrupt bit clears the interrupt.

3B INT/GPO

- INT pin can be configured to function as a GPO by setting the bit INT_CONF. When INT is configured to function as a GPO, output level is defined by the $V_{D D}$ voltage.
- 3B - Bit [2] INT_CONF
- $0=$ INT pin is set to function as an interrupt pin (default).
- $1=\operatorname{INT}$ pin is configured to function as a GPO.
- 3B - Bit [0] INT_GPO
- $0=I N T$ pin state is low (if INT_CONF = 1).
- $1=\operatorname{INT}$ pin state is high (if INT_CONF = 1).
- When INT pin's GPO function is disabled, it operates as an open drain pin. INT signal is active low; that is, when interrupt signal is sent, the pin is pulled to GND. External pullup resistor is needed for proper functionality.

3C VARIABLE

- 3C - Bits [7:0] VARIABLE
- These bits are used for storing a global 8-bit variable. Variable can be used to control program flow.

3D RESET

- 3D - Bits [7:0] RESET
- Writing 11111111 into this register resets the LP55231. Internal registers are reset to the default values. Reading RESET register returns 00000000.

3E TEMP ADC CONTROL

- 3E - Bit [7] TEMP_MEAS_BUSY
- $1=$ temperature measurement active.
- $0=$ temperature measurement done or not activated.
- 3E — Bit [2] EN_TEMP_SENSOR
- 1 = enables internal temperature sensor. Every time when EN_TEMP_SENSOR is written high a new measurement period is started. The length of the measurement period depends on temperature. At $25^{\circ} \mathrm{C}$ a measurement takes 20 milliseconds. Temperature can be read from register 3F.
- $0=$ temp sensor disabled.
- 3E - Bit [1] CONTINUOUS _CONV
- This bit is effective when EN_TEMP_SENSOR = 1 .
- 1 = continuous temperature measurement. Not active when the device is in power save.
- $0=$ new temperature measurement period initiated during start-up or after exit from power-save mode.

3E - Bit [0] SEL_EXT_TEMP

- 1 = temperature compensation source register addr 40 H .
- $0=$ temperature compensation source register addr 3FH.

3F TEMPERATURE READ

- 3F - Bits [7:0] TEMPERATURE

- These bits are used for storing an 8-bit temperature reading acquired from the internal temperature sensor.

This register is a read-only register. Temperature reading is stored in 8 -bit two's complement format.

TEMPERATURE READ BITS	TEMPERATURE INTERPRETATION (${ }^{\circ} \mathbf{C}$, typ.)
11010111	-41
11011000	-40
\ldots	\ldots
11111110	-2
11111111	-1
00000000	0
00000001	1
00000010	2
\ldots	\ldots
01011000	88
01011001	89

40 TEMPERATURE WRITE

- 40 - Bits [7:0] TEMPERATURE

- These bits are used for storing an 8-bit temperature reading acquired from an external sensor, if such a sensor is used. Temperature reading is stored in 8 -bit two's complement format, like in 3F TEMPERATURE READ register.
- When writing temperature data outside the range of the temperature compensation: Values greater than $89^{\circ} \mathrm{C}$ will be set to $89^{\circ} \mathrm{C}$; values less than $-39^{\circ} \mathrm{C}$ will be set to $-39^{\circ} \mathrm{C}$.

41 LED TEST CONTROL

- LED test control register
- 41 - Bit [7] EN_LEDTEST_ADC
- Writing this bit high (1) fires single LED test conversion. LED test measurement cycle is 2.7 milliseconds.
- 41 - Bit [6] EN_LEDTEST_INT
- 1 = interrupt signal will be sent to the INT pin when the LED test is accomplished.
- $0=$ no interrupt signal will be sent to the INT pin when the LED test is accomplished.
- Interrupt can be cleared by reading STATUS/INTERRUPT register 3A.
- 41 - Bit [5] CONTINUOUS_CONV
- 1 = continuous LED test measurement. Not active in power-save mode.
- $0=$ continuous conversion is disabled.
- 41 - Bits [4:0] LED__TEST_CTRL
- These bits are used for choosing the LED driver output to be measured. V_{DD}, INT-pin and charge-pump output voltage can be measured, also.

LED_TEST_CTRL BITS	MEASUREMENT
00000	D1
00001	D 2
00010	D 3
00011	D 4
00100	D 5
00101	D 6
00110	D 7
00111	D 8
01000	D 9
01001 to 01110	Reserved
01111	VOUT
10000	VDD
10001	INT-pin voltage

LED_TEST_CTRL BITS	MEASUREMENT
10010 to 11111	N/A

42 LED TEST ADC

- 42 - Bits [7:0] LED_TEST_ADC
- This is used to store the LED test result. Read-only register. LED test ADC's least significant bit corresponds to 30 mV . The measured voltage V (typ.) is calculated as follows: $\mathrm{V}=(\mathrm{RESULT}(\mathrm{DEC}) \times 0.03-1.478 \mathrm{~V}$. For example, if the result is $10100110=166(\mathrm{DEC})$, the measured voltage is 3.50 V (typ.). See Figure 25 below.

Figure 25. LED Test Results vs. Measured Voltage

45 ENGINE1 VARIABLE A

- 45 - Bits [7:0] VARIABLE FOR ENGINE1
- These bits are used for Engine 1 local variable. Read-only register.

46 ENGINE2 VARIABLE A

- 46 - Bits [7:0] VARIABLE FOR ENGINE2
- These bits are used for Engine 2 local variable. Read-only register.

47 ENGINE3 VARIABLE A

- 47 - Bits [7:0] VARIABLE FOR ENGINE3
- These bits are used for Engine 3 local variable. Read-only register.

48 MASTER FADER1

- 48 - Bits [7:0] MASTER_FADER

- An 8-bit register to control all the LED-drivers mapped to MASTER FADER1. Master fader allows the user to control dimming of multiple LEDS with a single serial bus write. This is a faster method to control the dimming of multiple LEDs compared to the dimming done with the PWM registers (address 16 H to 1 EH), which would need multiple writes.

49 MASTER FADER2

- 49 - Bits [7:0] MASTER_FADER
- An 8-bit register to control all the LED-drivers mapped to MASTER FADER2. See MASTER FADER1 description.

4A MASTER FADER3

- 4A - Bits [7:0] MASTER_FADER
- An 8-bit register to control all the LED-drivers mapped to MASTER FADER3. See MASTER FADER1 description.

4C ENG1 PROG START ADDR

- Program memory allocation for program execution engines is defined with PROG START ADDR registers.
- 4C - Bits [6:0] — ADDR
- Engine 1 program start address.

4D ENG2 PROG START ADDR

LP55231
www.ti.com.cn

- 4D - Bits [6:0] — ADDR
- Engine 2 program start address.

4E ENG3 PROG START ADDR

- 4E - Bits [6:0] — ADDR
- Engine 3 program start address.

4F PROG MEM PAGE SELECT

- 4F - Bits [2:0] — PAGE_SEL
- These bits select the program memory page. The program memory is divided into six pages of 16 instructions; thus, the total amount of the program memory is 96 instructions.

70H ENG1 MAPPING MSB

- Valid engine 1-to-LED -mapping information can be read from ENG1 MAPPING register.
- 70H - Bit [0] D9
- 1 = D9 pin is mapped to the program execution engine 1.
- $0=\mathrm{D} 9$ pin non-mapped to the program execution engine 1 .

71H ENG1 MAPPING LSB

- 71H - Bit [7] D8

- $1=\mathrm{D} 8$ pin is mapped to the program execution engine 1.
- $0=\mathrm{D} 8$ pin non-mapped to the program execution engine 1 .
- 71H - Bit [6] D7
- $1=\mathrm{D} 7$ pin is mapped to the program execution engine 1 .
- $0=\mathrm{D} 7$ pin non-mapped to the program execution engine 1 .
- 71H - Bit [5] D6
- $1=\mathrm{D} 6$ pin is mapped to the program execution engine 1.
- $0=\mathrm{D} 6$ pin non-mapped to the program execution engine 1 .
- 71H - Bit [4] D5
- 1 = D5 pin is mapped to the program execution engine 1.
- $0=\mathrm{D} 5$ pin non-mapped to the program execution engine 1 .
- 71H - Bit [3] D4
- $1=\mathrm{D} 4$ pin is mapped to the program execution engine 1.
- $0=\mathrm{D} 4$ pin non-mapped to the program execution engine 1 .
- 71H - Bit [2] D3
- $1=\mathrm{D} 3$ pin is mapped to the program execution engine 1.
- $0=$ D3 pin non-mapped to the program execution engine 1 .
- 71H — Bit [1] D2
- $1=\mathrm{D} 2$ pin is mapped to the program execution engine 1 .
- $0=$ D2 pin non-mapped to the program execution engine 1 .
- 71H - Bit [0] D1
- $1=\mathrm{D} 1$ pin is mapped to the program execution engine 1.
- $0=\mathrm{D} 1$ pin non-mapped to the program execution engine 1 .

72H ENG2 MAPPING MSB

- Valid engine 2-to-LED -mapping information can be read from ENG2 MAPPING register.
- 72H - Bit [0] D9
- See description above for ENG1 MAPPING register.

73H ENG2 MAPPING LSB

- 73H — Bit [7] D8 to Bit [0] D1

- See description above for ENG1 MAPPING register.

74H ENG3 MAPPING MSB

- Valid engine 3-to-LED -mapping information can be read from ENG3 MAPPING register.
- 74H - Bit [0] D9
- See description above for ENG1 MAPPING register.

75H ENG3 MAPPING LSB

- 75H — Bit [7] D8 to Bit [0] D1
- See description above for ENG1 MAPPING register.

76H GAIN_CHANGE_CTRL

- With hysteresis and timer bits the user can optimize the charge pump performance to better meet the requirements of the application at hand. Some applications need to be optimized for efficiency and others need to be optimized for minimum EMI, for example.
- 76H - Bits[7:6] THRESHOLD
- Threshold voltage (typ.) pre-setting. Bits set the threshold voltage at which the charge-pump gain changes from 1.5 x to 1 x . The threshold voltage is defined as the voltage difference between highest voltage output (D1 to D 6) and input voltage V_{DD} : $\mathrm{V}_{\text {THRESHOLD }}=\mathrm{V}_{\mathrm{DD}}-\mathrm{MAX}$ (voltage on D1 to D6).
- If $\mathrm{V}_{\text {THRESHold }}$ is larger than the set value (100 mV to 400 mV), the charge pump is in 1 x mode.
- $00=400 \mathrm{mV}$
- $01=300 \mathrm{mV}$
- $10=200 \mathrm{mV}$
- $11=100 \mathrm{mV}$
- Values above are typical and should not be used as product-specification.
- Writing to threshold [7:6] bits by the user overrides factory settings. Factory settings aren't user-accessible.
- 76H - Bit [5] ADAPTIVE_TRESH_EN
- 1 = Adaptive threshold enabled.
- $0=$ Adaptive threshold disabled.
- Gain-change hysteresis prevents the mode from toggling back and forth ($1 \mathrm{x}->1.5 \mathrm{x}->1 \mathrm{x} . .$.), which would cause ripple on $\mathrm{V}_{\mathbb{I N}}$ and LED flicker. When the adaptive threshold is enabled, the width of the hysteresis region depends on the choice of threshold bits (see above), saturation of the current sources, charge pump load current, PWM overlap and temperature.
- 76H - Bits [4:3] TIMER
- A forced mode change from 1.5 x to 1 x is attempted at the interval specified with these bits. Mode change is allowed if there is enough voltage over the LED drivers to ensure proper operation. Set FORCE_1x to "1" (see below) to activate this feature.
- $00=5 \mathrm{~ms}$
- $01=10 \mathrm{~ms}$
- $10=50 \mathrm{~ms}$
- 11 = infinite. The charge pump switches gain from 1 x mode to 1.5 x mode only. The gain reset back to 1 x is enabled under certain conditions, for example in the powersave mode.
- 76H - Bit [2] FORCE_1x
- Activates forced mode change. In forced mode, charge pump mode change from 1.5 x to 1 x is attempted at the constant interval specified with the TIMER bits.
- 1 = forced mode changes enabled.
- $0=$ forced mode changes disabled.

7.6.3 Instruction Set

The LP55231 has three independent programmable execution engines. All the program execution engines have their own program memory block allocated by the user. Note that in order to access program memory the operation mode needs to be load program, at least for one of the three program execution engines. Program execution is clocked with a $32.7-\mathrm{kHz}$ clock. This clock can be generated internally or an external $32-\mathrm{kHz}$ clock can be connected to CLK pin. Using an external clock enables synchronization of LED timing to the external clock signal.
Supported instruction set is listed in Table 4, Table 5, Table 6, and Table 7 below:

LP55231
www.ti.com.cn
ZHCSD18A -MARCH 2013-REVISED OCTOBER 2014
Table 4. LP55231 LED Driver Instructions

Inst.	$\begin{gathered} \mathrm{Bit} \\ {[15]} \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { [14] } \end{gathered}$	$\begin{gathered} \text { Bit } \\ {[13]} \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { [12] } \end{gathered}$	$\begin{gathered} \text { Bit } \\ {[11]} \end{gathered}$	$\begin{gathered} \text { Bit } \\ {[10]} \end{gathered}$	Bit [9]	Bit [8]	Bit [7]	Bit [6]	Bit [5]	Bit [4]	Bit [3]	Bit [2]	Bit [1]	Bit [0]
ramp ${ }^{(1)}$	0	pre- scale	step time					sign	\# of increments							
ramp ${ }^{(2)}$	1	0	0	0	0	1	0	0	0	0	pre- scale	sign	step	time	$\begin{array}{r} \# \\ \text { incre } \end{array}$	of ments
$\text { set_pwm }{ }^{(1}$	0	1	0	0	0	0	0	0	PWM value							
$\text { set_pwm }{ }^{(2)}$	1	0	0	0	0	1	0	0	0	1	1	0	0	0	PWM value	
wait	0	prescale	time					0	0	0	0	0	0	0	0	0

(1) This opcode is used with numerical operands.
(2) This opcode is used with variables.

Table 5. LP55231 LED Mapping Instructions

Inst.	$\begin{gathered} \text { Bit } \\ {[15]} \end{gathered}$	$\begin{gathered} \mathrm{Bit} \\ {[14]} \end{gathered}$	$\begin{gathered} \text { Bit } \\ {[13]} \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { [12] } \end{gathered}$	$\begin{gathered} \text { Bit } \\ {[11]} \end{gathered}$	$\begin{gathered} \text { Bit } \\ {[10]} \end{gathered}$	$\begin{aligned} & \text { Bit } \\ & \text { [9] } \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & \text { [8] } \end{aligned}$	Bit [7]	$\begin{aligned} & \text { Bit } \\ & {[6]} \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & {[5]} \end{aligned}$	Bit [4]	Bit [3]	Bit [2]	$\begin{aligned} & \hline \text { Bit } \\ & {[1]} \end{aligned}$	Bit [0]
mux_ld_start	1	0	0	1	1	1	1	0	0	SRAM address 0-95						
mux_map_start	1	0	0	1	1	1	0	0	0	SRAM address 0-95						
mux_ld_end	1	0	0	1	1	1	0	0	1	SRAM address 0-95						
mux_sel	1	0	0	1	1	1	0	1	0	LED select						
mux_clr	1	0	0	1	1	1	0	1	0	0	0	0	0	0	0	0
mux_map_next	1	0	0	1	1	1	0	1	1	0	0	0	0	0	0	0
mux_map_prev	1	0	0	1	1	1	0	1	1	1	0	0	0	0	0	0
mux_ld_next	1	0	0	1	1	1	0	1	1	0	0	0	0	0	0	1
mux_Id_prev	1	0	0	1	1	1	0	1	1	1	0	0	0	0	0	1
mux_ld_addr	1	0	0	1	1	1	1	1	0	SRAM address 0-95						
mux_map_addr	1	0	0	1	1	1	1	1	1	SRAM address 0-95						

Table 6. LP55231 Branch Instructions

Inst.	$\begin{gathered} \text { Bit } \\ {[15]} \end{gathered}$	$\begin{gathered} \text { Bit } \\ {[14]} \end{gathered}$	$\begin{gathered} \text { Bit } \\ {[13]} \end{gathered}$	$\begin{gathered} \text { Bit } \\ {[12]} \end{gathered}$	$\begin{gathered} \hline \text { Bit } \\ {[11]} \end{gathered}$	$\begin{gathered} \text { Bit } \\ {[10]} \end{gathered}$	$\begin{aligned} & \text { Bit } \\ & \text { [9] } \end{aligned}$	Bit [8]	Bit [7]	Bit [6]	Bit [5]	$\begin{aligned} & \text { Bit } \\ & {[4]} \end{aligned}$	Bit [3]	Bit [2]	Bit [1]	Bit [0]
rst	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
branch $^{(1)}$	1	0	1	loop count						step number						
branch $^{(2)}$	1	0	0	0	0	1	1	step number							loop count	
int	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0
end	1	1	0	int	reset	0	0	0	0	0	0	0	0	0	0	0
				wait for trigger						send a trigger						0
trigger	1	1	1	ext. trig	$\mathrm{X}^{(3)}$	$X^{(3)}$	E3	E2	E1	ext. trig	$\mathrm{X}^{(3)}$	$\mathrm{X}^{(3)}$	E3	E2	E1	
jne	1	0	0	0	1	0	0	Number of instructions to be skipped if the operation returns true					variable 1		variable 2	
jl	1	0	0	0	1	0	1	Number of instructions to be skipped if the operation returns true					variable 1		variable 2	
jge	1	0	0	0	1	1	0	Number of instructions to be skipped if the operation returns true					variable 1		variable2	
je	1	0	0	0	1	1	1	Number of instructions to be skipped if the operation returns true					variable 1		variable 2	

(1) This opcode is used with numerical operands.
(2) This opcode is used with variables.
(3) X means do not care.

Table 7. LP55231 Data Transfer And Arithmetic Instructions

Inst.	$\begin{gathered} \text { Bit } \\ {[15]} \end{gathered}$	$\begin{gathered} \text { Bit } \\ {[14]} \end{gathered}$	$\begin{gathered} \text { Bit } \\ {[13]} \end{gathered}$	$\begin{gathered} \text { Bit } \\ {[12]} \end{gathered}$	Bit Bit [11] $[10]$	$\begin{aligned} & \mathrm{Bit} \\ & \text { [9] } \end{aligned}$	Bit [8]	$\begin{aligned} & \text { Bit } \\ & \text { [7] } \end{aligned}$	Bit [6]	Bit [5]	$\begin{aligned} & \text { Bit } \\ & \text { [4] } \end{aligned}$	Bit [3]	Bit [2]	Bit [1]	Bit [0]
Id	1	0	0	1	target variable	0	0	8 -bit value							
$\operatorname{add}^{(1)}$	1	0	0	1	target variable	0	1	8 -bit value							
$\operatorname{add}^{(2)}$	1	0	0	1	target variable	1	1	0	0	0	0	variabl e 1	$\begin{gathered} \hline \text { variabl } \\ \text { e } \\ 2 \end{gathered}$		
sub ${ }^{(1)}$	1	0	0	1	target variable	1	0	8-bit value							
sub ${ }^{(2)}$	1	0	0	1	target variable	1	1	0	0	0	1	variabl e 1	$\begin{array}{\|c\|} \hline \text { variabl } \\ e \\ 2 \\ \hline \end{array}$		

(1) This opcode is used with numerical operands.
(2) This opcode is used with variables.

7.6.4 LED Driver Instructions

7.6.4.1 Ramp

This is the instruction useful for smoothly changing from one PWM value into another PWM value on the D1 to D9 outputs; in other words, generating ramps (with a negative or positive slope). The LP55231 allows programming very fast and very slow ramps.
Ramp instruction generates a PWM ramp, using the effective PWM value as a starting value. At each ramp step the output is incremented/decremented by one unit, unless the number of increments is 0 . Time span for one ramp step is defined with prescale -bit [14] and step time -bits [13:9]. Prescale $=0$ sets 0.49 ms cycle time and prescale $=1$ sets 15.6 ms cycle time; so the minimum time span for one step is 0.49 ms (prescale * step time span $=0.49 \mathrm{~ms} \times 1$) and the maximum time span is $15.6 \mathrm{~ms} \times 31=484 \mathrm{~ms} / \mathrm{step}$.
Number of increments value defines how many steps will be taken during one ramp instruction; increment maximum value is 255 d , which corresponds increment from zero value to the maximum value. If PWM reaches minimum/maximum value ($0 / 255$) during the ramp instruction, ramp instruction will be executed to the end regardless of saturation. This enables ramp instruction to be used as a combined ramp \& wait instruction. Note: Ramp instruction is wait instruction when the increment bits [7:0] are set to zero.
Programming ramps with variables is very similar to programming ramps with numerical operands. The only difference is that step time and number of increments are captured from variable registers, when the instruction execution is started. If the variables are updated after starting the instruction execution, it will have no effect on instruction execution. Again, at each ramp step the output is incremented/decremented by one unless increment is 0 . Time span for one step is defined with prescale and step time bits. Step time is defined with variable A, B, C or D . Variables A, B and C are set with Id-instruction. Variable D is a global variable and can be set by writing the VARIABLE register (address 3C). LED TEST ADC register (address 42) can be used as a source for the variable D, as well. Note: Variable A is the only local variable which can be read throughout the serial bus. Of course, the variable stored in 3 CH can be read (and written), too.

Setting register $06 \mathrm{H}, 07 \mathrm{H}$, or 08 H bit LOG_EN high/low sets logarithmic (1) or linear ramp (0). By using the logarithmic ramp setting the visual effect appears like a linear ramp, because the human eye behaves in a logarithmic way.

NAME	VALUE (d)	
prescale	0	Divides master clock $(32.7 \mathrm{kHz})$ by $16=2048 \mathrm{~Hz}->0.488 \mathrm{~ms}$ cycle time
	1	Divides master clock $(32.7 \mathrm{kHz})$ by $512=64 \mathrm{~Hz}->15.625 \mathrm{~ms}$ cycle time
sign	0	Increase PWM output
	1	Decrease PWM output
	$1-31$	One ramp increment done in (step time) x (prescale).

(1) Valid for numerical operands.

NAME	VALUE (d)	DESCRIPTION
\# of increments ${ }^{(1)}$	$0-255$	The number of increment/decrement cycles. Note: Value 0 takes the same time as increment by 1, but it is the wait instruction.
step time ${ }^{(2)}$	$0-3$	One ramp increment done in (step time) x (prescale). Step time is loaded with the value (5 LSB bits) of the variable defined below. $0=$ local variable A $1=$ local variable B $2=$ global variable C $3=$ register address 3CH variable D value, or register address 42H value. The value of the variable should be from 00001b to 11111b (1d to 31d) for correct operation.
\# of		
increments ${ }^{(2)}$	$0-3$	The number of increment/decrement cycles. Value is taken from variable defined below: $0=$ local variable A $1=$ local variable B $2=$ global variable C $3=$ register address 3CH variable D value, or register address 42H value.

(2) Valid for variables.

7.6.4.2 Ramp Instruction Application Example

Suppose that the LED dimming is controlled according to the linear scale and effective PWM value at the moment $t=0$ is $140 \mathrm{~d}(\sim 55 \%)$, as shown in the figure below, and we want to reach a PWM value of 148 d ($\sim 58 \%$) at the moment $\mathrm{t}=1.5 \mathrm{~s}$. The parameters for the RAMP instruction will be:

- Prescale $=1 \rightarrow 15.625 \mathrm{~ms}$ cycle time
- Step time $=12 \rightarrow$ step time span will be $12^{*} 15.625 \mathrm{~ms}=187.5 \mathrm{~ms}$
- Sign $=0 \rightarrow$ increase PWM output
- \# of increments $=8 \rightarrow$ take 8 steps

Figure 26. Example Of Ramp Instruction

7.6.4.3 Set_PWM

This instruction is used for setting the PWM value on the outputs D1 to D9 without any ramps. Set PWM output value from 0 to 255 with PWM value bits [7:0]. Instruction execution takes sixteen 32 kHz clock cycles ($=488 \mu \mathrm{~s}$).

NAME	VALUE (d)	DESCRIPTION
PWM value $(\text { (})^{(1)}$	$0-255$	PWM output duty cycle $0-100 \%$
		$0=$ local variable A
variable $\left(\right.$ (ii ${ }^{(1)}$	$0-3$	$1=$ local variable B $2=$ global variable C $3=$ register address 3CH variable D value, or register address 42H value.

[^1]
7.6.4.4 Wait

When a wait instruction is executed, the engine is set in wait status, and the PWM values on the outputs are frozen.

NAME	VALUE (d)	DESCRIPTION
prescale	0	Divide master clock $(32.7 \mathrm{kHz})$ by 16 which means 0.488 ms cycle time.
	1	Divide master clock $(32768 \mathrm{~Hz})$ by 512 which means 15.625 ms cycle time.
time	$1-31$	Total wait time will be $=$ (time) \times (prescale). Maximum 484 ms, minimum 0.488 ms.

7.6.5 LED Mapping Instructions

These instructions define the engine-to-LED mapping. The mapping information is stored in a table, which is stored in the SRAM (program memory of the LP55231). LP55231 has three program execution engines which can be mapped to 9 LED drivers. One engine can control one or multiple LED drivers. There are totally eleven instructions for the engine-to-LED-driver control: mux_ld_start, mux_map_start, mux_ld_end, mux_sel, mux_clr, mux_map_next, mux_map_prev, mux_ld_next, mux_ld_prev, mux_ld_addr and mux_map_addr.

7.6.5.1 MUX_LD_START; MUX_LD_END

Mux_ld_start and mux_Id_end define the mapping table location in the memory.

NAME	VALUE (d)	DESCRIPTION
SRAM address	$0-95$	Mapping table start/end address

7.6.5.2 MUX_MAP_START

Mux_map_start defines the mapping table start address in the memory, and the first row of the table will be activated (mapped) at the same time.

NAME	VALUE (d)	
SRAM address	$0-95$	Mapping table start address

7.6.5.3 MUX_SEL

With mux_sel instruction one, and only one, LED driver can be connected to a program execution engine. Connecting multiple LEDs to one engine is done with the mapping table. After the mapping has been released from an LED, PWM register value will still control the LED brightness.

NAME	VALUE (d)	
LED select	$0-16$	$0=$ no drivers selected
		1 = LED1 selected
		$2=$ LED2 selected
	\ldots	
		$9=$ LED9 selected

7.6.5.4 MUX_CLR

Mux_clr clears engine-to-driver mapping. After the mapping has been released from an LED, the PWM register value will still control the LED brightness.

7.6.5.5 MUX_MAP_NEXT

This instruction sets the next row active in the mapping table each time it is called. For example, if the 2nd row is active at this moment, after mux_map_next instruction call the 3rd row will be active. If the mapping table end address is reached, activation will roll to the mapping table start address next time when the mux_map_next instruction is called. Engine will not push a new PWM value to the LED driver output before set_pwm or ramp instruction is executed. If the mapping has been released from an LED, the value in the PWM register will still control the LED brightness.

7.6.5.6 MUX_LD_NEXT

Similar than the mux_map_next instruction, but only the index pointer will be set to point to the next row; that is, no mapping will be set, and the engine-to-LED-driver connection will not be updated.

7.6.5.7 MUX_MAP_PREV

This instruction sets the previous row active in the mapping table each time it is called. For example, if the 3rd row is active at this moment, after mux_map_prev instruction call the 2nd row will be active. If the mapping table start address is reached, activation will roll to the mapping table end address next time the mux_map_prev instruction is called. Engine will not push a new PWM value to the LED driver output before set_pwm or ramp instruction is executed. If the mapping has been released from an LED, the value in the PWM register will still control the LED brightness.

7.6.5.8 MUX_LD_PREV

Similar than the mux_map_prev instruction, but only the index pointer will be set to point to the previous row; that is, no mapping will be set, and the engine-to-LED-driver connection will not be updated.

7.6.5.9 MUX_MAP_ADDR

Mux_map_addr sets the index pointer to point the mapping table row defined by bits [6:0] and sets the row active. Engine will not push a new PWM value to the LED driver output before set_pwm or ramp instruction is executed. If the mapping has been released from an LED, the value in the PWM register will still control the LED brightness.

NAME	VALUE (d)	DESCRIPTION
SRAM address	$0-95$	Any SRAM address containing mapping data.

7.6.5.10 MUX_LD_ADDR

Mux_ld_addr sets the index pointer to point the mapping table row defined by bits [6:0], but the row will not be set active.

NAME	VALUE (d)	DESCRIPTION
SRAM address	$0-95$	Any SRAM address containing mapping data.

7.6.6 Branch Instructions

7.6.6.1 BRANCH

Branch instruction is mainly indented for repeating a portion of the program code several times. Branch instruction loads step number value to program counter. Loop count parameter defines how many times the instructions inside the loop are repeated. The LP55231 supports nested looping, that is, loop inside loop. The number of nested loops is not limited. Instruction takes sixteen 32 kHz clock cycles.

NAME	ACCEPTED VALUE (d)	DESCRIPTION
loop count (i)	0-63	The number of loops to be done. "0" means an infinite loop.
step number	0-95	The step number to be loaded to program counter.
loop count (ii)	0-3	Selects the variable for loop count value. Loop count is loaded with the value of the variable defined below.
		0 = local variable A
		1 = local variable B
		2 = global variable C
		3 = register address 3 CH variable D value, or register address 42 H value

7.6.6.2 INT

Send interrupt to processor by pulling the INT pin down and setting corresponding status bit high. Interrupt can be cleared by reading interrupt bits in STATUS/INTERRUPT register at address 3A.

NAME	VALUE	DESCRIPTION
int	0	No interrupt will be sent. PWM register values will remain intact.
		1
	0	Reset program counter value to "0" and send interrupt to processor by pulling the INT pin down and setting corresponding status bit high to notify that program has ended. PWM register values will remain intact. Interrupt can be cleared by reading interrupt bits in STATUS/INTERRUPT register at address 3A.
		Reset program counter value to "0" and hold. PWM register values will remain intact.

7.6.6.3 RST

Rst instruction resets Program Counter register (address $37 \mathrm{H}, 38 \mathrm{H}$, or 39 H) and continues executing the program from the program start address defined in $4 \mathrm{C}-4 \mathrm{E}$. Instruction takes sixteen 32 kHz clock cycles. Note that default value for all program memory registers is 0000 H , which is the rst instruction.

7.6.6.4 END

End program execution. Instruction takes sixteen 32 kHz clock cycles.

7.6.6.5 TRIGGER

Wait or send triggers can be used to, for example, synchronize operation between the program execution engines. Send trigger instruction takes sixteen $32-\mathrm{kHz}$ clock cycles and wait for trigger takes at least sixteen 32kHz clock cycles. The receiving engine stores the triggers which have been sent. Received triggers are cleared by wait for trigger instruction. Wait for trigger instruction is executed until all the defined triggers have been received. (Note: several triggers can be defined in the same instruction.)
External trigger input signal must stay low for at least two $32-\mathrm{kHz}$ clock cycles to be executed. Trigger output signal is three $32-\mathrm{kHz}$ clock cycles long. External trigger signal is active low, for example, when trigger is sent/received the pin is pulled to GND. Send external trigger is masked; that is, the device which has sent the trigger will not recognize it. If send and wait external trigger are used on the same instruction, the send external trigger is executed first, then the wait external trigger.

NAME	VALUE (d)	DESCRIPTION
wait for trigger	$0-31$	Wait for trigger from the engine(s). Several triggers can be defined in the same instruction. Bit [7] engages engine 1, bit [8] engine 2, bit [9] engine 3 and bit [12] is for external trigger I/O. Bits [10] and [11] are not in use.
send a trigger	$0-31$	Send a trigger to the engine(s). Several triggers can be defined in the same instruction. Bit [1] engages engine 1, bit [2] engine 2, bit [3] engine 3 and bit [6] is for external trigger I/O. Bits [4] and [5] are not in use.

The LP55231 instruction set includes the following conditional jump instructions: jne (jump if not equal); jge (jump if greater or equal); jl (jump if less); je (jump if equal). If the condition is true, a certain number of instructions will be skipped (that is, the program jumps forward to a location relative to the present location). If condition is false, the next instruction will be executed.

NAME	VALUE (d)	DESCRIPTION
number of instructions to be skipped if the operation returns true.	$0-31$	The number of instructions to be skipped when the statement is true. Note: value 0 means redundant code.
		Defines the variable to be used in the test: $0=$ local variable A $1=$ local variable B variable 1
	$0-3$	
variable 2 global variable C		
$3=$ register address 3CH variable, or register address 42H value.		

7.6.7 Arithmetic Instructions

7.6.7.1 LD

This instruction is used to assign a value into a variable; the previous value in that variable is overwritten. Each of the engines have two local variables, called A and B. The variable C is a global variable.

NAME	VALUE (d)	DESCRIPTION
target variable	$0-2$	$0=$ variable A
$1=$ variable B		
$2=$ variable C		

7.6.7.2 ADD

Operator either adds 8 -bit value to the current value of the target variable, or adds the value of the variable 1 (A , B, C or D) to the value of the variable $2(\mathrm{~A}, \mathrm{~B}, \mathrm{C}$ or D$)$ and stores the result in the register of variable A, B or C . Variables overflow from 255 to 0.

NAME	VALUE (d)	DESCRIPTION
8-bit value (i)	0-255	The value to be added.
target variable	0-2	$\begin{aligned} & 0=\text { variable } A \\ & 1=\text { variable } B \\ & 2=\text { variable } C \end{aligned}$
variable 1 (ii)	0-3	$\begin{array}{ll} 0=\text { local variable } A \\ 1 & =\text { local variable } B \\ 2 \text { = global variable } C \\ 3 & =\text { register address } 3 \mathrm{CH} \text { variable, or register address } 42 \mathrm{H} \text { value. } \end{array}$
variable 2 (ii)	0-3	$\begin{aligned} & 0 \text { = local variable } A \\ & 1 \text { = local variable } B \\ & 2 \text { = global variable } C \\ & 3 \text { = register address } 3 \mathrm{CH} \text { variable, or register address } 42 \mathrm{H} \text { value. } \end{aligned}$

7.6.7.3 SUB

SUB Operator either subtracts 8 -bit value from the current value of the target variable, or subtracts the value of the variable $2(\mathrm{~A}, \mathrm{~B}, \mathrm{C}$ or D$)$ from the value of the variable $1(\mathrm{~A}, \mathrm{~B}, \mathrm{C}$ or D$)$ and stores the result in the register of target variable (A, B or C). Variables overflow from 0 to 255.

LP55231

ZHCSD18A -MARCH 2013-REVISED OCTOBER 2014
www.ti.com.cn

NAME	VALUE (d)	DESCRIPTION
8-bit value (i)	0-255	The value to be added.
target variable	0-2	$\begin{aligned} & 0=\text { variable } A \\ & 1=\text { variable } B \\ & 2=\text { variable } C \end{aligned}$
variable 1 (ii)	0-3	$\begin{aligned} & 0=\text { local variable } A \\ & 1 \text { = local variable } B \\ & 2 \text { = global variable } C \\ & 3 \text { = register address } 3 \mathrm{CH} \text { variable, or register address } 42 \mathrm{H} \text { value. } \end{aligned}$
variable 2 (ii)	0-3	$\begin{array}{\|l} \hline 0 \text { = local variable } A \\ 1 \text { = local variable } B \\ 2 \text { = global variable } C \\ 3 \text { = register address } 3 \mathrm{CH} \text { variable, or register address } 42 \mathrm{H} \text { value. } \end{array}$

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the Tl component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LP55231 enables up to four parallel devices together, which can drive up to 12 RGB LEDs or 36 single LEDs. This diagram shows the connections for two LP55231 devices for six RGB LEDs. Note that D7, D8, and D9 outputs are used for the red LEDs. The SCL and SDA lines should each have a pullup resistor placed somewhere on the line (R3 and R4; The pullup resistors are normally located on the bus master.). In typical applications, values of 1.8 k to 4.7 k are used, depending on the bus capacitance, I/O voltage, and the desired communication speed. INT and TRIG are open-drain pins, so they need pullup resistors. Typical values for R1 and R2 are from 120 k to 180 k for two devices.

8.2 Typical Applications

8.2.1 Using Two LP55231 in the Same Application

Figure 27. LP55231 Application

Typical Applications (continued)

8.2.1.1 Design Requirements

DESIGN PARAMETER	EXAMPLE VALUE
Input Voltage Range	2.7 V to 5.5 V
LED $\mathrm{V}_{\mathrm{F}}(\mathrm{max})$	3.6 V
LED Current	25.5 mA max
Input Capacitor	$\mathrm{C}_{\text {IN1 }}=\mathrm{C}_{\mathrm{IN} 2}=1 \mu \mathrm{~F}$
Output Capacitor	$\mathrm{C}_{\mathrm{OUT} 1}=\mathrm{C}_{\mathrm{OUT} 2}=1 \mu \mathrm{~F}$
Charge Pump Fly Capacitors	$\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}_{3}=\mathrm{C}_{4}=0.47 \mu \mathrm{~F}$
Charge pump mode	1.5 X or Automatic

8.2.1.2 Detailed Design Procedure

The LP55231 requires 4 external capacitors for proper operation. Surface-mount multi-layer ceramic capacitors are recommended. Tantalum and aluminium capacitors are not recommended because of their high ESR. For the flying capacitors (C 1 and C 2) multi-layer ceramic capacitors should always be used. These capacitors are small, inexpensive and have very low equivalent series resistance (ESR < 20 m typ.). Ceramic capacitors with X7R or X5R temperature characteristic are preferred for use with the LP55231. These capacitors have tight capacitance tolerance (as good as $\pm 10 \%$) and hold their value over temperature (X7R: $\pm 15 \%$ over $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; X5R: $\pm 15 \%$ over $-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$). Capacitors with Y5V or Z5U temperature characteristic are generally not recommended for use with the LP55231. Capacitors with these temperature characteristics typically have wide capacitance tolerance ($80 \%,-20 \%$) and vary significantly over temperature (Y5V: $22 \%,-82 \%$ over $-30^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ range; $\mathrm{Z5U}: 22 \%,-56 \%$ over $10^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ range). Under some conditions, a nominal $1-\mu \mathrm{F} \mathrm{Y5V}$ or $\mathrm{Z5U}$ capacitor could have a capacitance of only $0.1 \mu \mathrm{~F}$. Such detrimental deviation is likely to cause Y5V and Z5U capacitors to fail to meet the minimum capacitance requirements of the LP55231.

For proper operation it is necessary to have at least $0.24 \mu \mathrm{~F}$ of effective capacitance for each of the flying capacitors under all operating conditions. The output capacitor $\mathrm{C}_{\text {OUt }}$ directly affects the magnitude of the output ripple voltage. In general, the higher the value of $\mathrm{C}_{\text {OUT }}$, the lower the output ripples magnitude. For proper operation it is recommended to have at least $0.50 \mu \mathrm{~F}$ of effective capacitance for $\mathrm{C}_{\mathbb{I}}$ and $\mathrm{C}_{\text {OUt }}$ under all operating conditions. The voltage rating of all four capacitors should be $6.3 \mathrm{~V} ; 10 \mathrm{~V}$ is recommended.
Table 8 lists suitable external components from some leading ceramic capacitor manufacturers. It is strongly recommended that the LP55231 circuit be thoroughly evaluated early in the design-in process with the massproduction capacitors of choice. This will help ensure that any variability in capacitance does not negatively impact circuit performance.

Table 8. Suitable External Components

MODEL	TYPE	VENDOR	VOLTAGE RATING (V)	PACKAGE SIZE
$1 \mu \mathrm{~F}$ for $\mathrm{C}_{\text {OUt }}$ and C_{IN}				
C1005X5R1A105K	Ceramic X5R	TDK	10	0402
LMK105BJ105KV-F	Ceramic X5R	Taiyo Yuden	10	0402
ECJ0EB1A105M	Ceramic X5R	Panasonic	10	0402
ECJUVBPA105M	Ceramic X5R , array of two	Panasonic	10	0504
$0.47 \mu \mathrm{~F}$ for C_{1} and C_{2}				
C1005X5R1A474K	Ceramic X5R	TDK	10V	0402
LMK105BJ474KV-F	Ceramic X5R	Taiyo Yuden	10 V	0402
ECJ0EB0J474K	Ceramic X5R	Panasonic	6.3	0402
LEDs		User defined. Note that D7, D8, and D9 outputs are powered from VDD when specifying the LEDs.		

8.2.1.3 Application Curves

Figure 28. Line Transient and Charge Pump Automatic Gain Change

Figure 29. Line Transient and Charge Pump Automatic Gain Change

8.2.2 Driving Haptic Feedback with LP55231

Figure 30 depicts an example schematic for LP55231 driving a vibra motor. A vibra motor can be used for haptic feedback with touch screens and also for normal vibra operation (call indication etc.). Battery-powered D8 and D9 outputs are used for controlling the H-Driver (Microchip TC442x-series or equivalent), which drives the vibra motor. (The remaining outputs D1 to D7 can be used for LED driving, of course.) With H-Driver the rotation direction of the vibra motor can be changed. For vibra operation user can load several programs to the LP55231 program memory in order to get interesting vibration effects, with changing frequency, "ramps", etc.

Figure 30. LP55231 Haptic Feedback Application

If the application processor has controls for a vibra motor they can be connected to H -Driver INA and INB as shown in Figure 30. In this case the vibra can be controlled directly with application processor and also with LP55231. If application processor control is not needed, then the $100-\mathrm{k} \Omega$ resistors should be connected to GND.
A simple waveform for H -driver control is shown in Figure 31. At first the motor rotates in CW direction for 30 ms , following a rotation of 30 ms in CCW direction. The sequence is started when the TRIG signal is pulled down (active low signal). the TRIG signal is received from the touch screen controller. After the sequence is executed, the LP55231 will wait for another TRIG signal to start the sequence again. TRIG signal timing is not critical; it does not have to be pulled down for the whole sequence duration like in the example. For call indication, etc. purposes the program can be changed; for example, rotation times can be adjusted to get desired haptic reaction. Direct control of D8 and D9 output is also possible through the control registers, if programming is not desired.

Figure 31. Control Waveform

8.2.2.1 Design Requirements

DESIGN PARAMETER	EXAMPLE VALUE
Input Voltage Range	2.7 V to 5.5 V
LED $\mathrm{V}_{\mathrm{F}}(\max)$	3.6 V
LED Current	25.5 mA max
Input Capacitor	$\mathrm{C}_{\mathbb{I N} 1}=1 \mu \mathrm{~F}$
Output Capacitor	$\mathrm{C}_{\mathrm{OUT}}=1 \mu \mathrm{~F}$
Charge Pump Fly Capacitors	$\mathrm{C}_{1}=\mathrm{C}_{2}=0.47 \mu \mathrm{~F}$
Charge pump mode	1.5 X or Automatic

8.2.2.2 Detailed Design Procedure

External component selection follows the earlier example (see Detailed Design Procedure above). H-Bridge should be selected to have high enough current capability for the vibra motor and control interface suitable for LP55231 LED outputs.

8.2.2.3 Application Curves

See Application Curves above.
www.ti.com.cn

9 Power Supply Recommendations

The device is designed to operate from an input voltage supply range between 2.7 V and 5.5 V . In a typical application this is from single Li-ion battery cell. This input supply should be well regulated and able to withstand maximum input current and maintain stable voltage without voltage drop even at load transition condition (startup or rapid brightness change). The resistance of the input supply rail should be low enough that the input current transient does not cause drop below a 2.7-V level in the LP55231 supply voltage.

10 Layout

10.1 Layout Guidelines

Capacitors should be placed as close to LP55231 as possible to minimize the current loops. Example of LP55231 PCB layout and component placement is seen in Figure 32.

10.2 Layout Example

Figure 32. Layout Example for LP55231

LP55231

11 器件和文档支持

11.1 器件支持

11．1．1 第三方产品免责声明
TI 发布的与第三方产品或服务有关的信息，不能构成与此类产品或服务或保修的适用性有关的认可，不能构成此类产品或服务单独或与任何 TI 产品或服务一起的表示或认可。

11.2 商标

All trademarks are the property of their respective owners．
11.3 静电放电警告

这些装置包含有限的内置 ESD 保护。 存储或装卸时，应将导线一起截短或将装置放置于导电泡棉中，以防止 MOS 门极遭受静电损

11.4 术语表

SLYZO22－TI 术语表。
这份术语表列出并解释术语，首字母缩略词和定义。

12 机械封装和可订购信息

以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本，请查阅左侧的导航栏。

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
LP55231SQE/NOPB	ACTIVE	WQFN	RTW	24	250	RoHS \& Green	SN	Level-1-260C-UNLIM	-30 to 85	LP55231	Samples
LP55231SQX/NOPB	ACTIVE	WQFN	RTW	24	4500	RoHS \& Green	SN	Level-1-260C-UNLIM	-30 to 85	LP55231	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as " Pb -Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000 \mathrm{ppm}$ threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TeXAS

TAPE AND REEL INFORMATION

Device	Package Type	Package Drawing	Pins	SPQ		Reel Width W1 (mm)	$\begin{gathered} \mathrm{A} 0 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{BO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{KO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{P} 1 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$	Pin1 Quadrant
LP55231SQE/NOPB	WQFN	RTW	24	250	178.0	12.4	4.3	4.3	1.3	8.0	12.0	Q1
LP55231SQX/NOPB	WQFN	RTW	24	4500	330.0	12.4	4.3	4.3	1.3	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LP55231SQE/NOPB	WQFN	RTW	24	250	208.0	191.0	35.0
LP55231SQX/NOPB	WQFN	RTW	24	4500	367.0	367.0	35.0

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

NOTES: (continued)
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL

78\% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE

NOTES: (continued)
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

TI＂按原样＂提供技术和可靠性数据（包括数据表），设计资源（包括参考设计），应用或其他设计建议，网络工具，安全信息和其他资源不保证没有瑕疵且不做出任何明示或暗示的担保，包括但不限于对适销性，某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任：（1）针对您的应用选择合适的 TI 产品，（2）设计，验证并测试您的应用，（3）确保您的应用满足相应标准以及任何其他功能安全，信息安全，监管或其他要求。
这些资源如有变更，恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔，损害，成本，损失和债务，TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti．com 上其他适用条款／TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址：Texas Instruments，Post Office Box 655303，Dallas，Texas 75265
Copyright © 2022 ，德州仪器（TI）公司

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Lighting Drivers category:
Click to view products by Texas Instruments manufacturer:
Other Similar products are found below :
LV5235V-MPB-H AP5726WUG-7 IS31BL3228B-UTLS2-TR IS31BL3506B-TTLS2-TR AP5725FDCG-7 AP5726FDCG-7 SLG7NT4082V SLG7NT4082VTR PCA9955BTWQ900J AP5725WUG-7 STP4CMPQTR BD1604MVV-E2 MAX16840ATB+ CAT4004BHU2-GT3 TLE4242EJ IS31LT3172-GRLS4-TR MP23701GQEU-P IS32LT3174-GRLA3-TR ZXLD1374QESTTC NCV78825DQ0R2G TLD5097EPXUMA1 MP4425AGQB-P MP3367GR-P MPQ3369GR-P MPQ7220GF-AEC1-P MP3362GJ-Z KTD2058EUAC-TR MP4078GS-P DIO5662ST6 IS31BL3508A-TTLS2-TR DIO5661TST6 KTD2064AEUAC-TR NJW4617DL3-TE1 BD2802GU-E2 BD6583MUV-E2 NCV7693DB0R2G KTD2059EUAC-TR KTD2060EUAC-TR KTZ8866EKAA-TR LV52207NXA-VH NCL30076AADR2G NCL30486B2DR2G NCL30488B4DR2G NCV78763MW4AR2G BD18353EFV-ME2 A6217KLJTR-T IS32LT3957A-ZLA3-TR LT3761EMSE\#TRPBF TLD2132-1EP TLD2331-3EP

[^0]: (1) Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics

[^1]: (1) (i) Valid for numerical operands. (ii) Valid for variables.

