SN74AHC32Q-Q1 QUADRUPLE 2-INPUT POSITIVE-OR GATE

SGDS019A - FEBRUARY 2002 - REVISED APRIL 2008

Qualified for Automotive Applications

- EPIC™ (Enhanced-Performance Implanted CMOS) Process
- Operating Range 2-V to 5.5-V V_{CC}
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)

D OR PW PACKAGE (TOP VIEW) 1A [14 VCC 1B 🛛 2 13 4B 1Y 🛮 3 12 4A 2A Π_4 11 ¶ 4Y 2B 🛮 5 10 3B 2Y 🛮 6 9 🛮 3A 8 🛮 3Y GND 17

description

The SN74AHC32Q is a quadruple 2-input positive-OR gate. This device performs the Boolean function $Y = \overline{\overline{A} \bullet \overline{B}}$ or Y = A + B in positive logic.

ORDERING INFORMATION†

TA	PACK	AGE [‡]	ORDERABLE PART NUMBER	TOP-SIDE MARKING
4000 to 40500	SOIC - D	Tape and reel	SN74AHC32QDRQ1	AHC32Q
-40°C to 125°C	TSSOP - PW	Tape and reel	SN74AHC32QPWRQ1	HA32Q

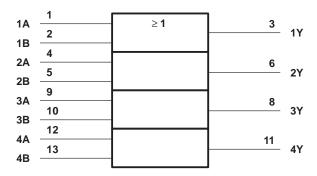
[†] For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at http://www.ti.com.

FUNCTION TABLE (each gate)

INP	UTS	OUTPUT
Α	В	Υ
Н	Х	Н
Χ	Н	Н
L	L	L

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments.



[‡] Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging.

SN74AHC32Q-Q1 QUADRUPLE 2-INPUT POSITIVE-OR GATE

SGDS019A - FEBRUARY 2002 - REVISED APRIL 2008

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage range, V_{CC} $-0.5 \text{ V to 7}^{\circ}$ Input voltage range, V_{I} (see Note 1) $-0.5 \text{ V to 7}^{\circ}$ Output voltage range, V_{O} (see Note 1) $-0.5 \text{ V to V}_{CC} + 0.5 \text{ V to V}_{CC} + 0$	V A A A N
PW package	

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. The package thermal impedance is calculated in accordance with JESD 51-7.

SGDS019A - FEBRUARY 2002 - REVISED APRIL 2008

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
Vcc	Supply voltage		2	5.5	V
	V _{CC} = 2 V		1.5		
ViH	High-level input voltage	V _{CC} = 3 V	2.1		V
		V _{CC} = 5.5 V	3.85		
		V _{CC} = 2 V		0.5	
VIL	Low-level input voltage	V _C C = 3 V		0.9	V
		V _{CC} = 5.5 V		1.65	
٧ _I	Input voltage		0	5.5	V
VO	Output voltage		0	VCC	V
		V _{CC} = 2 V		-50	μΑ
loh	High-level output current	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		-4	A
		$V_{CC} = 5 V \pm 0.5 V$		-8	mA
		V _{CC} = 2 V		50	μΑ
loL	Low-level output current	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		4	A
		$V_{CC} = 5 V \pm 0.5 V$	3		mA
44/4	lands transition via a refell vata	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		100	A/
Δt/Δv	Input transition rise or fall rate	$V_{CC} = 5 V \pm 0.5 V$		20	ns/V
TA	Operating free-air temperature		-40	125	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETER	TEST SOMBITIONS	.,	T,	ղ = 25°C	;		MAN	LINUT
PARAMETER	TEST CONDITIONS	vcc	MIN	TYP	MAX	MIN	MAX	UNIT
		2 V	1.9	2		1.9		
	I _{OH} = -50 μA	3 V	2.9	3		2.9		
VOH		4.5 V	4.4	4.5		4.4		V
	I _{OH} = -4 mA	3 V	2.58			2.48		
	$I_{OH} = -8 \text{ mA}$	4.5 V	3.94			3.8		
		2 V			0.1		0.1	V
	I _{OL} = 50 μA	3 V			0.1		0.1	
V _{OL}		4.5 V			0.1		0.1	
	I _{OL} = 4 mA	3 V			0.36		0.5	
	IOL = 8 mA	4.5 V			0.36		0.5	
II	V _I = 5.5 V or GND	0 V to 5.5 V			±0.1		±1	μΑ
Icc	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			2		20	μΑ
Ci	$V_I = V_{CC}$ or GND	5 V		2	10		·	pF

SN74AHC32Q-Q1 QUADRUPLE 2-INPUT POSITIVE-OR GATE

SGDS019A - FEBRUARY 2002 - REVISED APRIL 2008

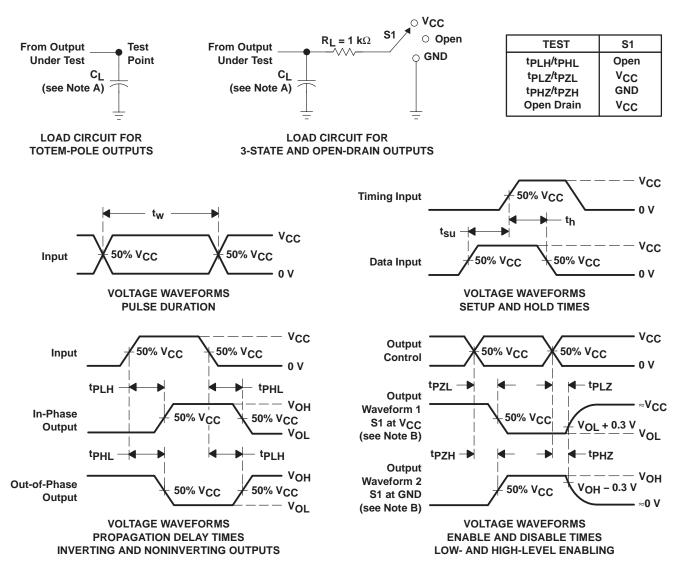
switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	LOAD	T _A = 25°C				BEAV	
	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	UNIT
^t PLH	A or B	Y	C _L = 15 pF		5.5	7.9	1	9.5	ns
^t PHL					5.5	7.9	1	9.5	
^t PLH	A or B	Y	C _L = 50 pF		8	11.4	1	13	ns
^t PHL	AUID				8	11.4	1	13	

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	LOAD	T,	λ = 25°C	;	NAIN!	MAY	
	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	UNIT
^t PLH	A or B	Υ	C _L = 15 pF		3.8	5.5	1	6.5	
^t PHL					3.8	5.5	1	6.5	ns
t _{PLH}	A or D	Y	C _L = 50 pF		5.3	7.5	1	8.5	
^t PHL	A or B				5.3	7.5	1	8.5	ns

noise characteristics, $V_{CC} = 5 \text{ V}$, $C_L = 50 \text{ pF}$, $T_A = 25^{\circ}\text{C}$ (see Note 4)


	PARAMETER	MIN	TYP	MAX	UNIT
VOL(P)	Quiet output, maximum dynamic VOL		0.3	0.8	V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}		-0.3	-0.8	V
VOH(V)	Quiet output, minimum dynamic VOH		4.7		V
V _{IH(D)}	High-level dynamic input voltage	3.5			V
V _{IL(D)}	Low-level dynamic input voltage			1.5	V

NOTE 4: Characteristics are for surface-mount packages only.

operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST C	ONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	No load,	f = 1 MHz	14	pF

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_Q = 50 \Omega$, $t_f \leq 3$ ns, $t_f \leq 3$ ns.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

www.ti.com 15-Dec-2022

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74AHC32QDRG4Q1	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHC32Q	
SN/4AHC32QDRG4Q1	ACTIVE	SOIC	D	14	2500	Rons & Green	NIPDAU	Level-1-260C-UNLIM	-40 10 125	AHC32Q	Samples
SN74AHC32QDRQ1	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHC32Q	C1
											Samples
SN74AHC32QPWRG4Q1	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HA32Q	Samples
											Samples
SN74AHC32QPWRQ1	ACTIVE	TSSOP	PW	14	2000	RoHS &	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HA32Q	Samples
						Non-Green					Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

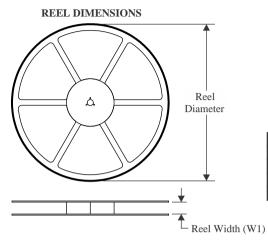
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

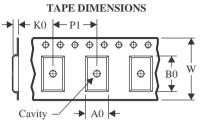
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

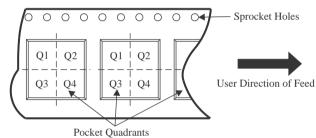
www.ti.com 15-Dec-2022


continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

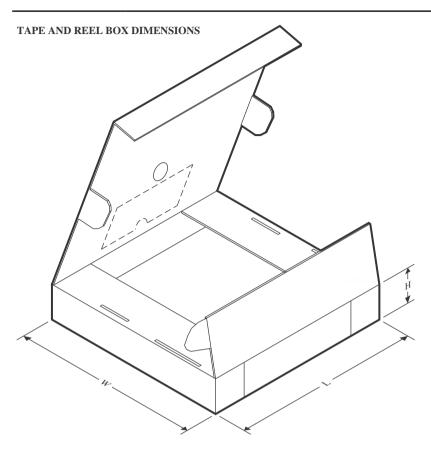
PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

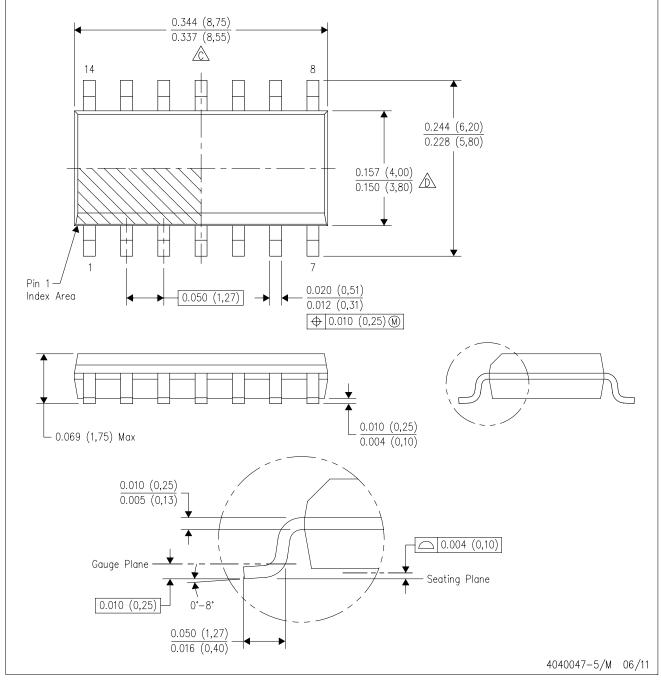


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AHC32QPWRG4Q1	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74AHC32QPWRQ1	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022

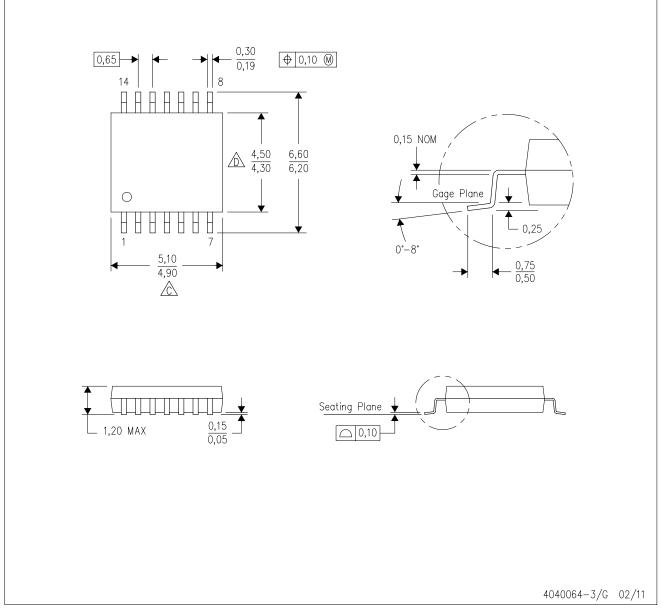


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AHC32QPWRG4Q1	TSSOP	PW	14	2000	367.0	367.0	35.0
SN74AHC32QPWRQ1	TSSOP	PW	14	2000	356.0	356.0	35.0

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
 - Sody length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by Texas Instruments manufacturer:

Other Similar products are found below:

NLV17SZ00DFT2G CD4068BE NL17SG86DFT2G NLX1G11AMUTCG NLX1G97MUTCG 74LS38 74LVC1G08Z-7 CD4025BE NLV17SZ00DFT2G NLV17SZ126DFT2G NLV27WZ17DFT2G NLV74HC02ADR2G 74HC32S14-13 74LS133 74LVC1G32Z-7 74LVC1G86Z-7 NLV74HC14ADR2G NLV74HC20ADR2G NLVVHC1G09DFT1G NLX2G86MUTCG 74LVC2G32RA3-7 74LVC2G00HD4-7 NL17SG02P5T5G 74LVC2G86HK3-7 NLVVHC1G14DFT2G NLX1G99DMUTWG NLVVHC1G00DFT2G NLV7SZ57DFT2G NLV74VHC04DTR2G NLV27WZ00USG NLU1G86CMUTCG NLU1G08CMUTCG NL17SZ32P5T5G NL17SZ00P5T5G NL17SH02P5T5G 74AUP2G00RA3-7 NLVVHC1GT00DFT2G NLV74HC02ADTR2G NLX1G332CMUTCG NLVHCT132ADTR2G NL17SG86P5T5G NL17SZ05P5T5G NLV74VHC00DTR2G NLVVHC1G02DFT1G NLV74HC86ADR2G 74LVC2G86RA3-7 NL17SZ38DBVT1G NLV18SZ00DFT2G NLVVHC1G07DFT1G NLVVHC1G02DFT1G NLV74HC86ADR2G