

Sample &

Buv

SCES644D - MARCH 2006 - REVISED DECEMBER 2015

Support &

Community

20

SN74AUP1G74 Low-Power Single Positive-Edge-Triggered D-Type Flip-Flop With Clear and Preset

Technical

Documents

1 Features

- Available in the Texas Instruments NanoStar™ Package
- Low Static-Power Consumption: $I_{CC} = 0.9 \ \mu A \ Maximum$
- Low Dynamic-Power Consumption: C_{pd} = 5.5 pF Typical at 3.3 V
- Low Input Capacitance: C_i = 1.5 pF Typical
- Low Noise Overshoot and Undershoot < 10% of V_{CC}
- Ioff Supports Partial-Power-Down Mode Operation
- Schmitt-Trigger Action Allows Slow Input Transition and Better Switching Noise Immunity at the Input
 - $(V_{hys} = 250 \text{ mV Typical at 3.3 V})$
- Wide Operating V_{CC} Range of 0.8 V to 3.6 V
- Optimized for 3.3-V Operation
- 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- t_{pd} = 5 ns Maximum at 3.3 V
- Suitable for Point-to-Point Applications
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

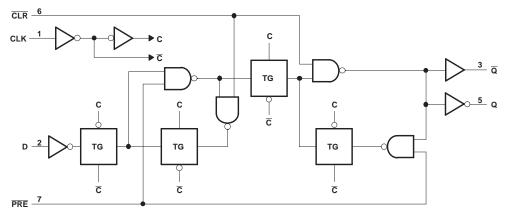
2 Applications

Tools &

Software

- Servers
- LED Displays
- Network Switches
- Telecom Infrastructure
- Motor Drivers
- I/O Expanders

3 Description


The AUP family is TI's premier solution to the industry's low-power needs in battery-powered portable applications. This family ensures a very low static- and dynamic-power consumption across the entire V_{CC} range of 0.8 V to 3.6 V, resulting in increased battery life. This product also maintains excellent signal integrity (see the very low undershoot and overshoot characteristics shown in Figure 6).

Device information ⁽¹⁾						
PART NUMBER	PACKAGE	BODY SIZE (NOM)				
SN74AUP1G74YFP	DSBGA (8)	1.56 mm × 0.76 mm				
SN74AUP1G74YZP	DSBGA (8)	1.86 mm × 0.89 mm				
SN74AUP1G74DCU	VSSOP (8)	2.30 mm × 2.00 mm				
SN74AUP1G74DQE	X2SON (8)	1.40 mm × 1.00 mm				
SN74AUP1G74RSE	UQFN (8)	1.50 mm × 1.50 mm				

Device Information⁽¹⁾

(1) For all available packages, see the orderable addendum at the end of the data sheet.

AUP – The Lowest-Power Family

1

2

3

4

5

6

7

6.1

6.2

6.3

6.4

7.2 Enable and Disable Times 14 Detailed Decerinties

Table of Contents

0.4	- ·	
0.1	Overview	15
8.2	Functional Block Diagram	15
8.3	Feature Description	15
8.4	Device Functional Modes	15
App	lication and Implementation	16
9.1		
9.2		
Lay	out	17
11.1	Layout Guidelines	17
11.2	Layout Example	17
Dev	ice and Documentation Support	18
12.1		
12.2	Community Resources	18
12.3	Trademarks	18
12.4	Electrostatic Discharge Caution	18
12.5	Glossary	18
Mec	hanical, Packaging, and Orderable	
Info	rmation	18
	8.3 8.4 App 9.1 9.2 Pow Lay 11.1 11.2 Dev 12.1 12.2 12.3 12.4 12.5 Mec	 8.2 Functional Block Diagram

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision C (March 2010) to Revision D

7.1 Propagation Delays, Setup and Hold Times, and Pulse Width)..... 13

Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device

www.ti.com

Page

Features 1

Applications 1

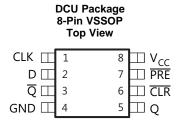
Description 1

Revision History..... 2

Pin Configuration and Functions 3

Specifications...... 4 Absolute Maximum Ratings 4

ESD Ratings 4


Recommended Operating Conditions 4

Thermal Information 5

6.5 Electrical Characteristics, T_A = 25°C 5 6.6 Electrical Characteristics, $T_A = -40^{\circ}C$ to $+85^{\circ}C$ 6 6.7 Timing Requirements 7 6.9 Switching Characteristics, C₁ = 10 pF 9 6.10 Switching Characteristics, C_L = 15 pF 10 6.11 Switching Characteristics, C_L = 30 pF 11 6.12 Operating Characteristics..... 12 6.13 Typical Characteristics 12 Parameter Measurement Information 13

5 Pin Configuration and Functions

RSE Package
8-Pin UQFN
Top View

		$V_{\rm CC}$		
PRE	1	8 L _	Г	CLK
CLR	23			D
Q	3]		Г — : L <u>5</u>	Q
		GND		•

DQE Package 8-Pin X2SON **Top View** V_{CC} CLK 🛄 8 PRE .7. D 2 CLR Q 6

-3-

GND

YFP or YZP Package 8-Pin DSBGA **Top View**

5 Q

		_
CLK	, , , , , , , , , , , , , , , , , , ,	• CC
D	(13) 27 (13)	
Q	(cj) 3 6 (cj)	CLR
GND	向 4 5 回	Q

Pin Functions⁽¹⁾

		PIN				
NAME	VSSOP, X2SON	UQFN	DSBGA	I/O	DESCRIPTION	
CLK	1	7	A1	I	Rising edge triggered clock signal input	
CLR	6	2	C2	I	Clear, Active low	
D	2	6	B1	I	Data input	
GND	4	4	D1	_	Ground	
PRE	7	1	B2	I	Preset, Active low	
Q	5	3	D2	0	Output	
Q	3	5	C1	0	Inverted output	
V _{CC}	8	8	A2	_	Power supply	

(1) See Mechanical, Packaging, and Orderable Information for dimensions.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		-0.5	4.6	V
VI	Input voltage ⁽²⁾		-0.5	4.6	V
Vo	Voltage applied to any output in the high-imped	ance or power-off state ⁽²⁾	-0.5	4.6	V
Vo	Output voltage in the high or low state ⁽²⁾		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
I _O	Continuous output current			±20	mA
	Continuous current through V_{CC} or GND			±50	mA
TJ	Junction temperature			150	*
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

6.2 ESD Ratings

			VALUE	UNIT	
M	Electrostatic	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V	
V _(ESD)	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	v	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		0.8	3.6	V
	High-level input voltage	$V_{CC} = 0.8 V$	V _{CC}		
V		V _{CC} = 1.1 V to 1.95 V	$0.7 \times V_{CC}$		V
VIH		V_{CC} = 2.3 V to 2.7 V	1.6		v
		$V_{CC} = 3 V \text{ to } 3.6 V$	2		
VIL	Low-level input voltage	$V_{CC} = 0.8 V$		0	
		$V_{CC} = 1.1 \text{ V to } 1.95 \text{ V}$		$0.3 \times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V		0.7	v
		$V_{CC} = 3 V \text{ to } 3.6 V$	V_{CC} = 3 V to 3.6 V		0.9
VI	Input voltage		0	3.6	V
Vo	Output voltage		0	V _{CC}	V
		V _{CC} = 0.8 V		-20	μA
		$V_{CC} = 1.1 V$		-1.1	
	Ligh lovel output ourrest	$V_{CC} = 1.4 V$		-1.7	
I _{OH}	High-level output current	V _{CC} = 1.65		-1.9	mA
		V _{CC} = 2.3 V		-3.1	
		V _{CC} = 3 V		-4	

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

4 Submit Documentation Feedback	
---------------------------------	--

Recommended Operating Conditions⁽¹⁾ (continued)

			MIN M	AX UNIT
I _{OL}	Low-level output current	V _{CC} = 0.8 V		20 µA
		V _{CC} = 1.1 V		1.1
		$V_{CC} = 1.4 V$		1.7
		V _{CC} = 1.65 V		1.9 mA
		V _{CC} = 2.3 V		3.1
		$V_{CC} = 3 V$		4
Δt/Δv	Input transition rise or fall rate	V_{CC} = 0.8 V to 3.6 V		00 ns/V
T _A	Operating free-air temperature		-40	85 °C

6.4 Thermal Information

		SN74AU	JP1G74		
THERMAL METRIC ⁽¹⁾	DCU (VSSOP)	DQE (X2SON)	RSE (UQFN)	YFP/YZP (DSBGA)	UNIT
	8 PINS	8 PINS	8 PINS	8 PINS	
R _{0JA} Junction-to-ambient thermal resistance	227	261	253	102	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics, T_A = 25°C

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT	
	I _{OH} = -20 μA	0.8 V to 3.6 V	V _{CC} – 0.1				
	$I_{OH} = -1.1 \text{ mA}$	1.1 V	$0.7 \times V_{CC}$				
	$I_{OH} = -1.7 \text{ mA}$	1.4 V	1.11				
V	I _{OH} = -1.9 mA	1.65 V	1.32			V	
V _{OH}	$I_{OH} = -2.3 \text{ mA}$	2.3 V	2.05			v	
	$I_{OH} = -3.1 \text{ mA}$	2.3 V	1.9				
	I _{OH} = -2.7 mA	2.)/	2.72				
	$I_{OH} = -4 \text{ mA}$	3 V	2.6				
	I _{OL} = 20 μA	0.8 V to 3.6 V			0.1		
	I _{OL} = 1.1 mA	1.1 V		(0.3 × V _{CC}		
	I _{OL} = 1.7 mA	1.4 V			0.31		
	I _{OL} = 1.9 mA	1.65 V			0.31	V	
V _{OL}	I _{OL} = 2.3 mA	0.01/			0.31	V	
	I _{OL} = 3.1 mA	2.3 V			0.44		
	I _{OL} = 2.7 mA	2.14			0.31		
	I _{OL} = 4 mA	3 V			0.44		
II A or B input	$V_1 = GND$ to 3.6 V	0 V to 3.6 V			0.1	μA	
l _{off}	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V}$	0 V			0.2	μA	
Δl _{off}	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V}$	0 V to 0.2 V			0.2	μA	
I _{CC}	$V_I = GND \text{ or } (V_{CC} \text{ to } 3.6 \text{ V}),$ $I_O = 0$	0.8 V to 3.6 V			0.5	μA	
ΔI _{CC}	$V_{I} = V_{CC} - 0.6 V^{(1)}, I_{O} = 0$	3.3 V			40	μA	
		0 V		1.5		- F	
C _i	$V_{I} = V_{CC}$ or GND	3.6 V		pF			
Co	V _O = GND	0 V		3		pF	

(1) One input at V_{CC} – 0.6 V, other input at V_{CC} or GND

SCES644D - MARCH 2006 - REVISED DECEMBER 2015

www.ti.com

STRUMENTS

EXAS

6.6 Electrical Characteristics, $T_A = -40^{\circ}C$ to +85°C

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT	
	I _{OH} = -20 μA	0.8 V to 3.6 V	V _{CC} - 0.1				
	I _{OH} = -1.1 mA	1.1 V	0.7 × V _{CC}				
	I _{OH} = -1.7 mA	1.4 V	1.03				
	I _{OH} = -1.9 mA	1.65 V	1.3			.,	
V _{OH}	I _{OH} = -2.3 mA	0.01/	1.97			V	
	I _{OH} = -3.1 mA	2.3 V	1.85				
	I _{OH} = -2.7 mA	0.1/	2.67				
	$I_{OH} = -4 \text{ mA}$	— 3 V	2.55				
	I _{OL} = 20 μA	0.8 V to 3.6 V			0.1		
	I _{OL} = 1.1 mA	1.1 V			$0.3 \times V_{CC}$		
	I _{OL} = 1.7 mA	1.4 V			0.37		
	I _{OL} = 1.9 mA	1.65 V			0.35	V	
V _{OL}	I _{OL} = 2.3 mA	0.01/			0.33	V	
	I _{OL} = 3.1 mA	2.3 V			0.45		
	I _{OL} = 2.7 mA				0.33		
	$I_{OL} = 4 \text{ mA}$	3 V			0.45		
II A or B input	$V_1 = GND$ to 3.6 V	0 V to 3.6 V			0.5	μA	
off	V_{I} or $V_{O} = 0$ V to 3.6 V	0 V			0.6	μA	
ΔI _{off}	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V}$	0 V to 0.2 V			0.6	μA	
I _{cc}	$V_1 = GND \text{ or } (V_{CC} \text{ to } 3.6 \text{ V}),$ $I_0 = 0$	0.8 V to 3.6 V			0.9	μA	
ΔI _{CC}	$V_{I} = V_{CC} - 0.6 V^{(1)}, I_{O} = 0$	3.3 V			50	μA	
		0 V					
C _i	$V_{I} = V_{CC}$ or GND	3.6 V				pF	
C _o	$V_{O} = GND$	0 V				pF	

(1) One input at V_{CC} – 0.6 V, other input at V_{CC} or GND

Copyright © 2006–2015, Texas Instruments Incorporated

6.7 Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

			V _{cc}	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
			0.8 V		21		
			1.2 V ± 0.1 V			40	
			1.5 V ± 0.1 V			50	N 41 1
clock	Clock frequency		1.8 V ± 0.15 V			60	MHz
			2.5 V ± 0.2 V			90	
			3.3 V ± 0.3 V			90	
			0.8 V		3.5		
			1.2 V ± 0.1 V	2			
		CLK high or low	1.5 V ± 0.1 V	2			
		CLK high or low	1.8 V ± 0.15 V	2			
			2.5 V ± 0.2 V	2			
	Dulas duration		3.3 V ± 0.3 V	2			
N	Pulse duration		0.8 V		4.5		ns
			1.2 V ± 0.1 V	2			
		PRE or CLR low	1.5 V ± 0.1 V	2			
		PRE or CLR low	1.8 V ± 0.15 V	2			
			2.5 V ± 0.2 V	2			
			3.3 V ± 0.3 V	2			
			0.8 V		3		
			1.2 V ± 0.1 V	1.3			
			1.5 V ± 0.1 V	1			
		Data high	1.8 V ± 0.15 V	1			
			2.5 V ± 0.2 V	0.5			
			3.3 V ± 0.3 V	0.5			ns
			0.8 V		1		
			1.2 V ± 0.1 V	1.2			
			1.5 V ± 0.1 V	1			
su	Setup time before CLK↑	Data low	1.8 V ± 0.15 V	1			
			2.5 V ± 0.2 V	1			
			3.3 V ± 0.3 V	1			
			0.8 V		1		
			1.2 V ± 0.1 V	0.5			
			1.5 V ± 0.1 V	0.5			
		PRE or CLR inactive	1.8 V ± 0.15 V	0.5			
			2.5 V ± 0.2 V	0.5			
			3.3 V ± 0.3 V	0.5			
		1	0.8 V		0		
			1.2 V ± 0.1 V	0			
			1.5 V ± 0.1 V	0			
n	Hold time, data after CLK↑		1.8 V ± 0.15 V	0			ns
			2.5 V ± 0.2 V	0			
			3.3 V ± 0.3 V	0			

(1) Minimum and maximum values are for $T_A = -40^{\circ}C$ to +85°C (2) Typicals are for $T_A = 25^{\circ}C$

SN74AUP1G74

SCES644D - MARCH 2006 - REVISED DECEMBER 2015

www.ti.com

STRUMENTS

EXAS

6.8 Switching Characteristics, $C_L = 5 \text{ pF}$

over recommended operating free-air temperature range, $C_L = 5 \text{ pF}$ (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{cc}	TA	MIN	ТҮР	MAX	UNIT
			0.8 V	T _A = 25°C		60		
			121/ . 0.11/	T _A = 25°C		80		
			1.2 V ± 0.1 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	60			
				T _A = 25°C		125		
			1.5 V ± 0.1 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	90			
nax		_		T _A = 25°C		150		MH:
			1.8 V ± 0.15 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	120			
		_		T _A = 25°C		180		
			2.5 V ± 0.2 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	160			
		-		T _A = 25°C		190		
			3.3 V ± 0.3 V	$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	180			
			0.8 V	T _A = 25°C		31		
				$T_A = 25^{\circ}C$	2	10	20	
			1.2 V ± 0.1 V	$T_{A} = -40^{\circ}C \text{ to } 85^{\circ}C$	2.7		20.4	
				$T_A = 25^{\circ}C$	2.7	6	12	
			1.5 V ± 0.1 V	$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	1.9	Ŭ	12.4	
	Q		$T_A = 25^{\circ}C$	2	5	9		
		G	1.8 V ± 0.15 V	$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	1.4	0	9.5	
		-		$T_A = -40 \text{ C to 83 C}$ $T_A = 25^{\circ}\text{C}$	2	3	9.5 6	
			2.5 V ± 0.2 V	$T_{A} = 25 \text{ C}$ $T_{A} = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	1.1	5	6.2	
		_			2	3	4	
			3.3 V ± 0.3 V	$T_{A} = 25^{\circ}C$		3		
	CLK		0.0.1/	$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	1	00	4.7	
			0.8 V	$T_A = 25^{\circ}C$		28		
			1.2 V ± 0.1 V	$T_A = 25^{\circ}C$	2	9	19	
				$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	2.4		19	
			1.5 V ± 0.1 V	T _A = 25°C	2	6	11	
			1.0 V 2 0.1 V	$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	1.6		11.8	
d		Q	1.8 V ± 0.15 V	$T_A = 25^{\circ}C$	2	5	9	ns
				$T_A = -40^{\circ}C$ to $85^{\circ}C$	1.3		9	
			2.5 V ± 0.2 V	$T_A = 25^{\circ}C$	2	3	6	
		_		$T_A = -40^{\circ}C$ to $85^{\circ}C$	1.1		6	
			3.3 V ± 0.3 V	$T_A = 25^{\circ}C$	2	3	4	
			0.0 7 2 0.0 7	$T_A = -40^{\circ}C$ to $85^{\circ}C$	1		4.6	
			0.8 V	$T_A = 25^{\circ}C$		26		
			1.2 V ± 0.1 V	$T_A = 25^{\circ}C$	2	9	20	
			1.2 V ± 0.1 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	2		20	
			4 5 \/ . 0 4 \/	$T_A = 25^{\circ}C$	2	6	12	
			1.5 V ± 0.1 V	$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	1.5		13	
	PRE or CLR	Q or Q	4.0.1/ 0.45.1/	T _A = 25°C	2	5	9	
			1.8 V ± 0.15 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	1.3		10	
				T _A = 25°C	2	3	6	
			2.5 V ± 0.2 V	$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	1		7	
				$T_A = 25^{\circ}C$	2	3	5	
			3.3 V ± 0.3 V	$T_{A} = -40^{\circ}C \text{ to } 85^{\circ}C$	1	-	5	

6.9 Switching Characteristics, $C_L = 10 \text{ pF}$

over recommended operating free-air temperature range, $C_L = 10 \text{ pF}$ (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{cc}	T _A	MIN	ТҮР	МАХ	UNIT
			0.8 V	T _A = 25°C		46		
			4.0.1/	T _A = 25°C		65		
			1.2 V ± 0.1 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	50			
			4514.0414	T _A = 25°C		95		
			1.5 V ± 0.1 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	55			
nax		-		T _A = 25°C		110		MHz
			1.8 V ± 0.15 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	60			
		-		T _A = 25°C		170		
			2.5 V ± 0.2 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	130			
				T _A = 25°C		180		
			3.3 V ± 0.3 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	160			
			0.8 V	T _A = 25°C		33		
		-		$T_A = 25^{\circ}C$	2	10	22	
			1.2 V ± 0.1 V	$T_{\rm A} = -40^{\circ}{\rm C to 85^{\circ}{\rm C}}$	3.4		21.8	
		-		$T_A = 25^{\circ}C$	2	7	13	
			1.5 V ± 0.1 V	$T_{\rm A} = -40^{\circ}{\rm C} \text{ to } 85^{\circ}{\rm C}$	2.4		13.5	
		Q		$T_A = 25^{\circ}C$	2	6	10.0	
		Ğ	1.8 V ± 0.15 V	$T_{A} = -40^{\circ}C \text{ to } 85^{\circ}C$	1.9	0	10.4	
		-		$T_A = -40^{\circ} \text{C} 10^{\circ} \text{O} 3^{\circ} \text{C}$ $T_A = 25^{\circ} \text{C}$	2	4	6	
			$2.5 \text{ V} \pm 0.2 \text{ V}$	$T_{A} = -40^{\circ}C \text{ to } 85^{\circ}C$		4	7	
		-			1.5	2	5	
			3.3 V ± 0.3 V	$T_A = 25^{\circ}C$	2	3		
	CLK		0.0.1/	$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	1.2	20	5.3	
			0.8 V	$T_A = 25^{\circ}C$		30		
			1.2 V ± 0.1 V	$T_A = 25^{\circ}C$	2	10	20	
			$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	3		20.3		
			1.5 V ± 0.1 V	$T_A = 25^{\circ}C$	2	7	12	
				$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	2.2		12.8	
d		Q	1.8 V ± 0.15 V	T _A = 25°C	2	5	9	ns
		-		$T_A = -40^{\circ}C$ to $85^{\circ}C$	1.8		9.9	
			2.5 V ± 0.2 V	$T_A = 25^{\circ}C$	2	4	6	
				$T_A = -40^{\circ}C$ to $85^{\circ}C$	1.3		6.7	
			3.3 V ± 0.3 V	$T_A = 25^{\circ}C$	2	3	5	
			0.0 7 2 0.0 7	$T_A = -40^{\circ}C$ to $85^{\circ}C$	1.1		5.2	
		_	0.8 V	T _A = 25°C		29		
			1.2 V ± 0.1 V	$T_A = 25^{\circ}C$	2	10	21	
			1.2 V ± 0.1 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	2		21.4	
			4 5 \/ . 0 4 \/	$T_A = 25^{\circ}C$	2	7	13	
			1.5 V ± 0.1 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	2		13.8	
	PRE or CLR	Q or Q		$T_A = 25^{\circ}C$	2	5	10	
			1.8 V ± 0.15 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	2		10.8	
				$T_A = 25^{\circ}C$	2	4	7	
			2.5 V ± 0.2 V	$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	1.5		7.4	
		3.3 V ± 0.3 V			-			
				$T_A = 25^{\circ}C$	2	3	5	

SN74AUP1G74

SCES644D - MARCH 2006 - REVISED DECEMBER 2015

www.ti.com

STRUMENTS

EXAS

6.10 Switching Characteristics, $C_L = 15 \text{ pF}$

over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{cc}	T _A	MIN	ТҮР	МАХ	UNIT
			0.8 V	$T_A = 25^{\circ}C$		41		
			1.2.1/ . 0.1.1/	$T_A = 25^{\circ}C$		75		
			1.2 V ± 0.1 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	50			
				T _A = 25°C		95		
			1.5 V ± 0.1 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	55			
max		-		T _A = 25°C		100		MH:
			1.8 V ± 0.15 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	60			
				T _A = 25°C		150		
			2.5 V ± 0.2 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	130			
		-		T _A = 25°C		200		
			3.3 V ± 0.3 V	$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	160			
			0.8 V	$T_A = 25^{\circ}C$		35		
		-		$T_A = 25^{\circ}C$	2	12	23.1	
			1.2 V ± 0.1 V	$T_{A} = -40^{\circ}C \text{ to } 85^{\circ}C$	4.1		23.2	
		-		$T_A = 25^{\circ}C$	2	8	14.1	
			1.5 V ± 0.1 V	$T_{A} = -40^{\circ}C \text{ to } 85^{\circ}C$	2.9	0	14.6	
		Q		$T_A = -40 \text{ C to 83 C}$ $T_A = 25^{\circ}\text{C}$	2.9	6	14.0	
		Q	1.8 V ± 0.15 V			0		
	-		$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	2.4	4	11.3		
		2.5 V ± 0.2 V	$T_A = 25^{\circ}C$	2	4	7		
		-		$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	1.9		7.6	-
			3.3 V ± 0.3 V	$T_A = 25^{\circ}C$	2	4	5.4	
	CLK			$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	1.6		5.9	
		0.8 V 1.2 V ± 0.1 V	0.8 V	$T_A = 25^{\circ}C$		32		
			1.2 V ± 0.1 V	$T_A = 25^{\circ}C$	2	11	21.8	
			$T_A = -40^{\circ}C$ to $85^{\circ}C$	3.7		21.8		
			1.5 V ± 0.1 V	$T_A = 25^{\circ}C$	2	7	13.5	
		-	1.0 V ± 0.1 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	2.6		14	
d		Q	1 8 V ± 0 15 V	$T_A = 25^{\circ}C$	2	6	10.4	ns
			1.8 V ± 0.15 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	2.2		10.9	
			2511.0211	$T_A = 25^{\circ}C$	2	4	7.1	
			2.5 V ± 0.2 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	1.7		7.5	
				T _A = 25°C	2	3	5.4	
			3.3 V ± 0.3 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	1.4		5.8	
			0.8 V	T _A = 25°C		31		
		-		T _A = 25°C	2	11	23	
			1.2 V ± 0.1 V	$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	2		22.9	
		-		$T_A = 25^{\circ}C$	2	7	14	
			1.5 V ± 0.1 V	$T_{A} = -40^{\circ}C \text{ to } 85^{\circ}C$	2	•	14.9	
	PRE or CLR	Q or Q		$T_A = 25^{\circ}C$	2	6	11	
			1.8 V ± 0.15 V	$T_{A} = -40^{\circ}C \text{ to } 85^{\circ}C$	2	U	11.7	
				$T_A = -40^{\circ} \text{C} 10^{\circ} \text{O} \text{C}$ $T_A = 25^{\circ} \text{C}$	2	4	7	
			$2.5 \text{ V} \pm 0.2 \text{ V}$			4		
				$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	2	4	8.1	
			3.3 V ± 0.3 V	$T_A = 25^{\circ}C$	2	4	6	
				$T_A = -40^{\circ}C$ to $85^{\circ}C$	1.5		6.4	

6.11 Switching Characteristics, C_L = 30 pF

over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ (unless otherwise noted) (see Figure 3 and Figure 4)

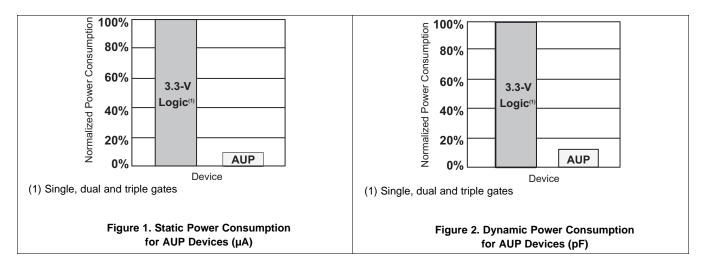
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{cc}	T _A	MIN	ТҮР	MAX	UNIT
			0.8 V	T _A = 25°C		21		
				T _A = 25°C		50		
			1.2 V ± 0.1 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	40			
				T _A = 25°C		60		
			1.5 V ± 0.1 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	50			
max		-		T _A = 25°C		75		MH:
			1.8 V ± 0.15 V	$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	70			
		-		T _A = 25°C		100		
			2.5 V ± 0.2 V	$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	90			
		-		T _A = 25°C		100		
			3.3 V ± 0.3 V	$T_{A} = -40^{\circ}C \text{ to } 85^{\circ}C$	90			
			0.8 V	$T_A = 25^{\circ}C$		32		
		-	0.0 V	$T_A = 25^{\circ}C$	3	14	27	
			1.2 V ± 0.1 V	$T_{A} = -40^{\circ}C \text{ to } 85^{\circ}C$	5.9	14	27	
		-		$T_A = -40 \text{ C to 85 C}$ $T_A = 25^{\circ}\text{C}$	3.9	10	17	
			1.5 V ± 0.1 V			10		
	0		$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	4.4	0	17.2		
		Q	1.8 V ± 0.15 V	$T_A = 25^{\circ}C$	3	8	13	
	-		$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	3.6		13.4		
		2.5 V ± 0.2 V	T _A = 25°C	3	6	9		
		-		$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	3		9.2	
			3.3 V ± 0.3 V	T _A = 25°C	3	5	7	
	CLK			$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	2.6		7.2	
	02.11		0.8 V	$T_A = 25^{\circ}C$		40		
			1.2 V ± 0.1 V	$T_A = 25^{\circ}C$	3	13	26	
				$T_A = -40^{\circ}C$ to $85^{\circ}C$	5.5		25.9	
			151/ . 0.11/	$T_A = 25^{\circ}C$	3	9	16	
			1.5 V ± 0.1 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	4.1		16.8	
od		Q		T _A = 25°C	3	7	13	ns
			1.8 V ± 0.15 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	3.5		13.2	
				T _A = 25°C	3	5	9	
			2.5 V ± 0.2 V	$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	2.7		9.2	
		-		T _A = 25°C	3	5	7	
			3.3 V ± 0.3 V	$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	2.4		7.2	
			0.8 V	$T_A = 25^{\circ}C$		38		
		-		$T_A = 25^{\circ}C$	3	13	26	
			1.2 V ± 0.1 V	$T_{\rm A} = -40^{\circ}{\rm C} \text{ to } 85^{\circ}{\rm C}$	3	10	27	
		-		$T_A = 25^{\circ}C$		9		
			1.5 V ± 0.1 V		3	3	17 17.4	
		0 0		$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	3	0		
	PRE or CLR	Q or Q	1.8 V ± 0.15 V	$T_{A} = 25^{\circ}C$	3	8	13	
				$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	3	-	14	
			2.5 V ± 0.2 V	$T_A = 25^{\circ}C$	3	6	9	
			2.5 V ± 0.2 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	3		10	
			3.3 V ± 0.3 V	T _A = 25°C	3	5	7	
				$T_A = -40^{\circ}C$ to $85^{\circ}C$	2.5		8	

SN74AUP1G74

SCES644D-MARCH 2006-REVISED DECEMBER 2015

www.ti.com

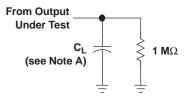
STRUMENTS

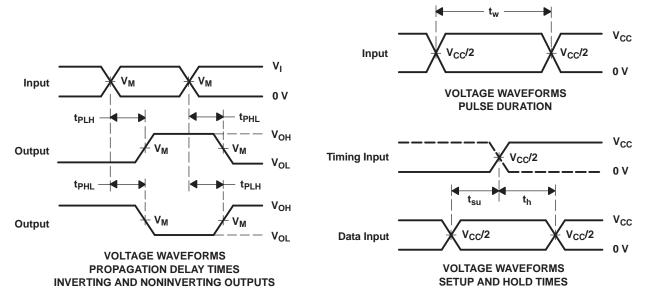

XAS

6.12 Operating Characteristics

 $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	V _{cc}	TYP	UNIT
		0.8 V	5.5		
		1.2 V ± 0.1 V	5.5		
~	C _{pd} Power dissipation capacitance	f = 10 MHz	1.5 V ± 0.1 V	5.5	pF
C _{pd}			1.8 V ± 0.15 V	5.5	
			2.5 V ± 0.2 V	5.5	
			3.3 V ± 0.3 V	5.5	


6.13 Typical Characteristics


7 Parameter Measurement Information

7.1 Propagation Delays, Setup and Hold Times, and Pulse Width)

LOAD CIRCUIT

	V _{CC} = 0.8 V	V _{CC} = 1.2 V ± 0.1 V	V _{CC} = 1.5 V ± 0.1 V	V _{CC} = 1.8 V ± 0.15 V	V_{CC} = 2.5 V \pm 0.2 V	$\begin{array}{c} V_{CC} = 3.3 \; V \\ \pm \; 0.3 \; V \end{array}$
CL	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF
V _M	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2
VI	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}

NOTES: A. C_L includes probe and jig capacitance.

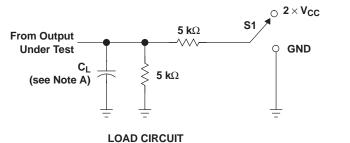
B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r/t_f = 3 ns.

C. The outputs are measured one at a time, with one transition per measurement.

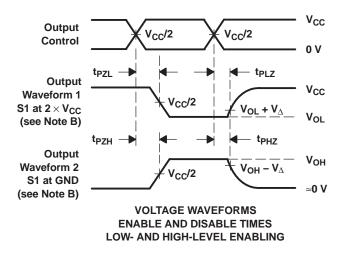
D. t_{PLH} and t_{PHL} are the same as t_{pd} .

E. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms


SN74AUP1G74

SCES644D-MARCH 2006-REVISED DECEMBER 2015


www.ti.com

7.2 Enable and Disable Times

TEST	S1	
t _{PLZ} /t _{PZL}	$2 \times V_{CC}$	
t _{PHZ} /t _{PZH}	GND	

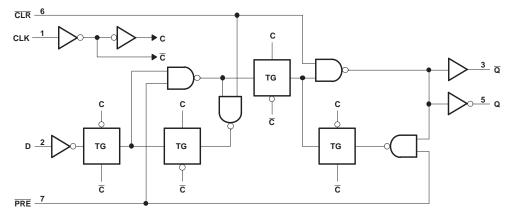
	V _{CC} = 0.8 V	V _{CC} = 1.2 V ± 0.1 V	V _{CC} = 1.5 V ± 0.1 V	V _{CC} = 1.8 V ± 0.15 V	V_{CC} = 2.5 V \pm 0.2 V	V _{CC} = 3.3 V ± 0.3 V
CL	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF
VM	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2
VI	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}
V_{Δ}	0.1 V	0.1 V	0.1 V	0.15 V	0.15 V	0.3 V

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r/t_f = 3 ns.
 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. All parameters and waveforms are not applicable to all devices.

Figure 4. Load Circuit and Voltage Waveforms

8 Detailed Description

8.1 Overview


This single positive-edge-triggered D-type flip-flop is designed for 0.8-V to 3.6-V V_{CC} operation.

A low level at the preset (PRE) or clear (CLR) input sets or resets the outputs, regardless of the levels of the other inputs. When PRE and CLR are inactive (high), data at the data (D) input meeting the setup time requirements is transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not related directly to the rise time of the clock pulse. Following the hold-time interval, data at the D input can be changed without affecting the levels at the outputs. When both the CLR and PRE inputs are set low, the CLR input will override the PRE input.

NanoStar package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

8.2 Functional Block Diagram

Pin numbers shown are for the DCU and DQE packages

8.3 Feature Description

This device is available in the Texas Instrument's NanoStar package. It has low static-power consumption of 0.9 uA maximum. It has low noise with overshoot and undershoot at less than ten percent of V_{CC} . It supports partial-power-down mode operation, which is specified by I_{off} . The Schmitt-trigger inputs allow for slow or noisy input signals. The device has a wide operating voltage range of 0.8 V to 3.6 V, and is optimized for 3.3 V. It has low propagation delay of 5 ns maximum at 3.3 V.

8.4 Device Functional Modes

Table 1 lists the functional modes of the SN74AUP1G74.

	INP	UTS		OUTPUTS		
PRE	CLR	CLK	D	Q	Q	
L	Н	Х	Х	Н	L	
Х	L	Х	Х	L	Н	
н	Н	1	Н	Н	L	
н	Н	↑	L	L	Н	
Н	Н	L	Х	Q ₀	\overline{Q}_0	

Table 1. Function Table

SN74AUP1G74

SCES644D - MARCH 2006-REVISED DECEMBER 2015

TEXAS INSTRUMENTS

www.ti.com

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SN74AUP1G74 can be used to control a power button input. Tying \overline{Q} to D will switch the output between high and low each time that a high signal is sent to CLK from the push button.

A low level at the preset (PRE) or clear (CLR) input sets or resets the outputs, regardless of the levels of the other inputs. When PRE and CLR are inactive (high), data at the data (D) input meeting the setup time requirements is transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not related directly to the rise time of the clock pulse. Following the hold-time interval, data at the D input can be changed without affecting the levels at the outputs.

The resistor and capacitor at the $\overline{\text{CLR}}$ pin are optional. If they are not used, the $\overline{\text{CLR}}$ pin must be connected directly to V_{CC} to be inactive.

9.2 Typical Power Button Circuit

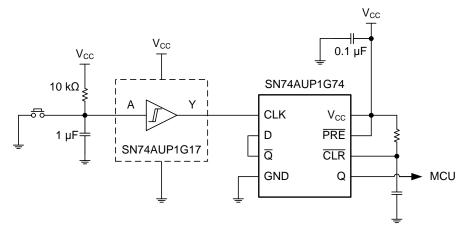
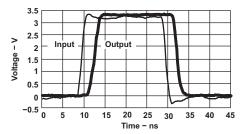


Figure 5. Device Power Button Circuit

9.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Take care to avoid bus contention because it can drive currents that would exceed maximum limits. Outputs can be combined to produce higher drive but the high drive will also create faster edges into light loads so routing and load conditions must be considered to prevent ringing.


9.2.2 Detailed Design Procedure

- 1. Recommended Input Conditions:
 - For rise time and fall time specifications, see ($\Delta t/\Delta V$) in *Recommended Operating Conditions*.
 - For specified high and low levels, see (V_{IH} and V_{IL}) in Recommended Operating Conditions.
 - Inputs are overvoltage tolerant allowing them to go as high as 4.6 V at any valid V_{CC}.
- 2. Recommend Output Conditions:
 - Series resistors on the output may be used if the user desires to slow the output edge signal or limit the output current.

Typical Power Button Circuit (continued)

AUP1G08 data at $C_L = 15 \text{ pF}$

Figure 6. Switching Characteristics at 25 MHz

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in *Recommended Operating Conditions*.

Each V_{CC} pin must have a good bypass capacitor to prevent power disturbance. For devices with a single supply, TI recommends a 0.1- μ F capacitor, and if there are multiple V_{CC} pins, then TI recommends a 0.01- μ F or 0.022- μ F capacitor for each power pin. It is ok to parallel multiple bypass caps to reject different frequencies of noise. 0.1- μ F and 1- μ F capacitors are commonly used in parallel. The bypass capacitor must be installed as close to the power pin as possible for best results.

11 Layout

11.1 Layout Guidelines

When using multiple bit logic devices inputs must not ever float. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified below are the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} whichever make more sense or is more convenient.

11.2 Layout Example

Figure 7. Layout Diagram

TEXAS INSTRUMENTS

www.ti.com

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation, see the following: Implications of Slow or Floating CMOS Inputs, SCBA004

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

NanoStar, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
SN74AUP1G74DCUR	ACTIVE	VSSOP	DCU	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	H74R	Samples
SN74AUP1G74DCURG4	ACTIVE	VSSOP	DCU	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	H74R	Samples
SN74AUP1G74DQER	ACTIVE	X2SON	DQE	8	5000	RoHS & Green	NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	HS	Samples
SN74AUP1G74RSER	ACTIVE	UQFN	RSE	8	5000	RoHS & Green	NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	HS	Samples
SN74AUP1G74YFPR	ACTIVE	DSBGA	YFP	8	3000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 85	HSN	Samples
SN74AUP1G74YZPR	ACTIVE	DSBGA	YZP	8	3000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 85	HSN	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

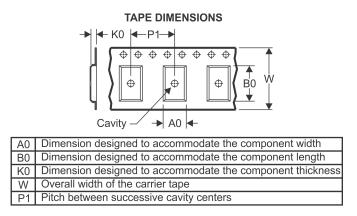
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

10-Dec-2020

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

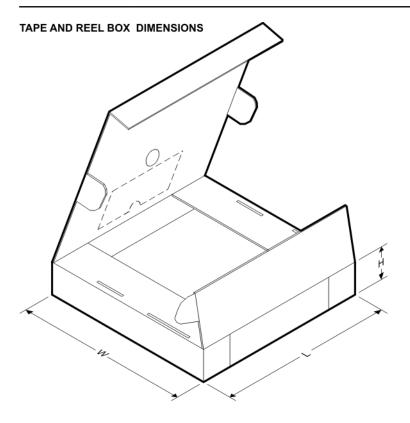

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AUP1G74DCUR	VSSOP	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
SN74AUP1G74DQER	X2SON	DQE	8	5000	180.0	8.4	1.2	1.6	0.55	4.0	8.0	Q1
SN74AUP1G74RSER	UQFN	RSE	8	5000	180.0	8.4	1.7	1.7	0.7	4.0	8.0	Q2
SN74AUP1G74YFPR	DSBGA	YFP	8	3000	178.0	9.2	0.9	1.75	0.6	4.0	8.0	Q1
SN74AUP1G74YZPR	DSBGA	YZP	8	3000	178.0	9.2	1.02	2.02	0.63	4.0	8.0	Q1

TEXAS INSTRUMENTS

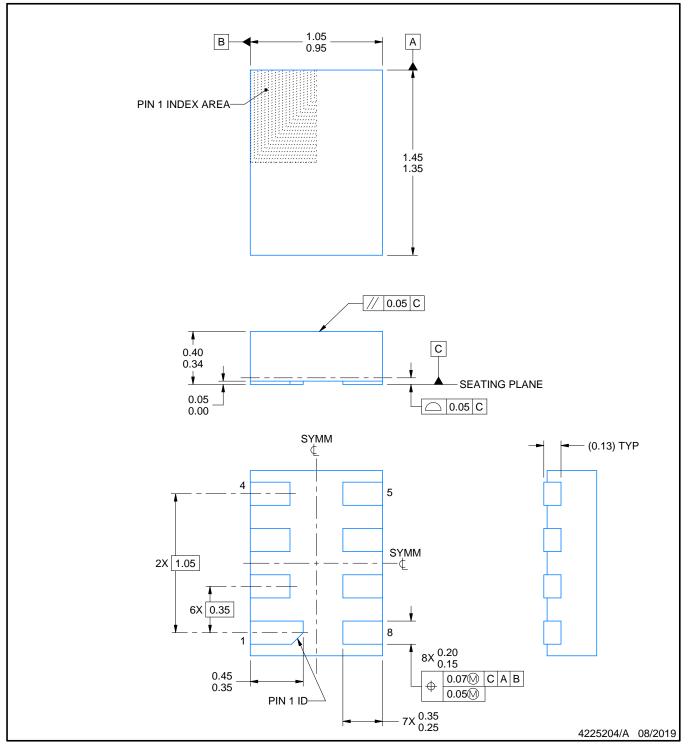
www.ti.com

PACKAGE MATERIALS INFORMATION

18-Jan-2020

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AUP1G74DCUR	VSSOP	DCU	8	3000	202.0	201.0	28.0
SN74AUP1G74DQER	X2SON	DQE	8	5000	202.0	201.0	28.0
SN74AUP1G74RSER	UQFN	RSE	8	5000	202.0	201.0	28.0
SN74AUP1G74YFPR	DSBGA	YFP	8	3000	220.0	220.0	35.0
SN74AUP1G74YZPR	DSBGA	YZP	8	3000	220.0	220.0	35.0


DQE0008A

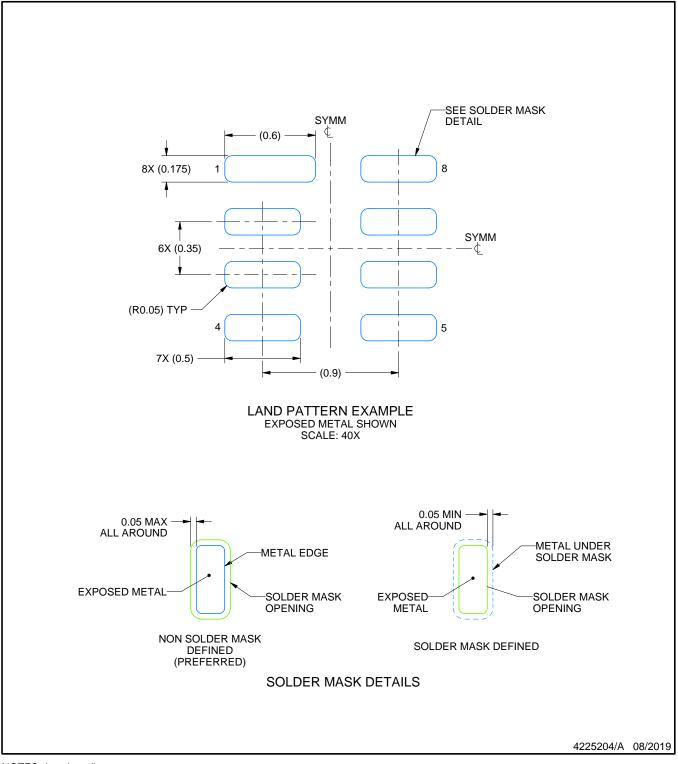
PACKAGE OUTLINE

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This package complies to JEDEC MO-287 variation X2EAF.



DQE0008A

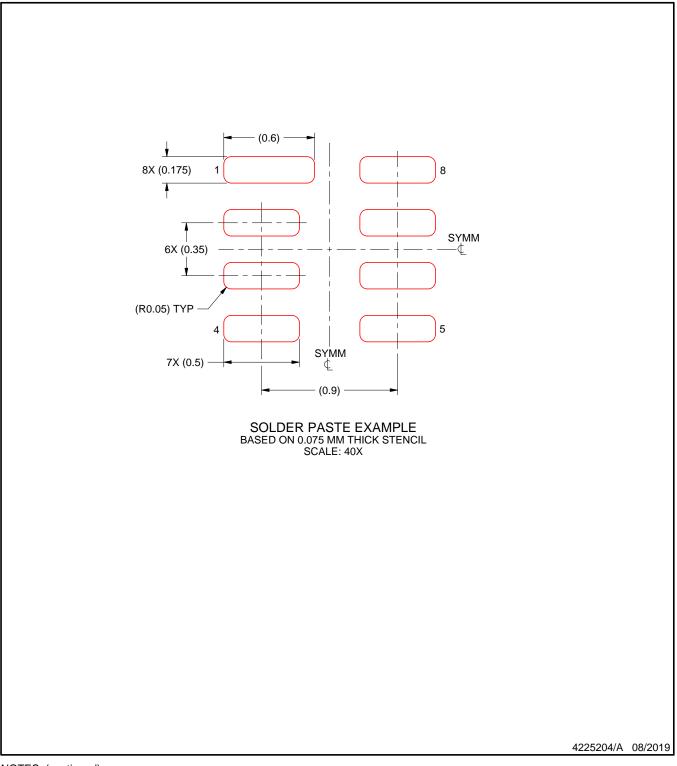
EXAMPLE BOARD LAYOUT

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).



DQE0008A

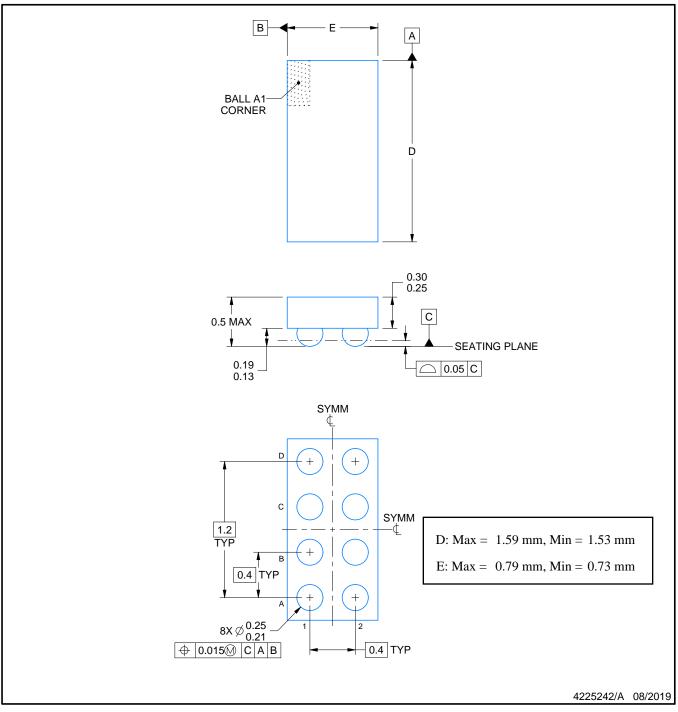
EXAMPLE STENCIL DESIGN

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


YFP0008

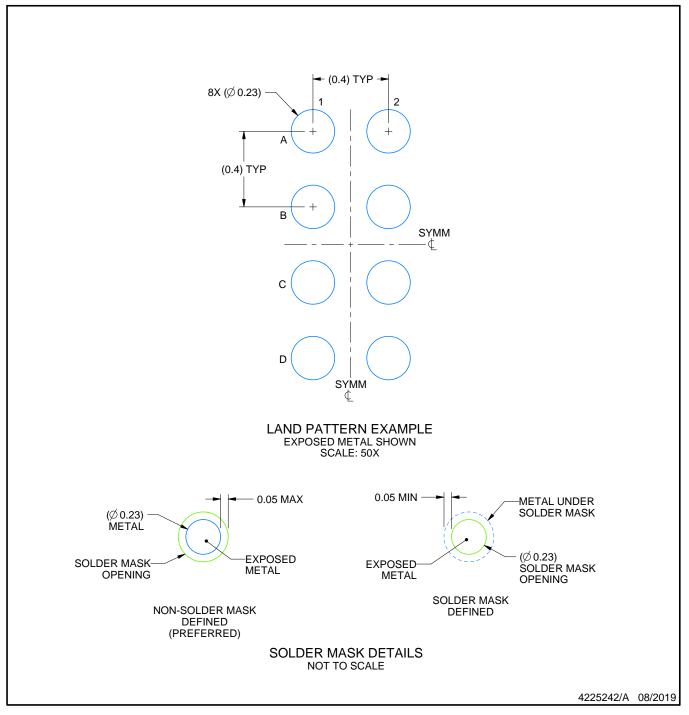
PACKAGE OUTLINE

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.



YFP0008

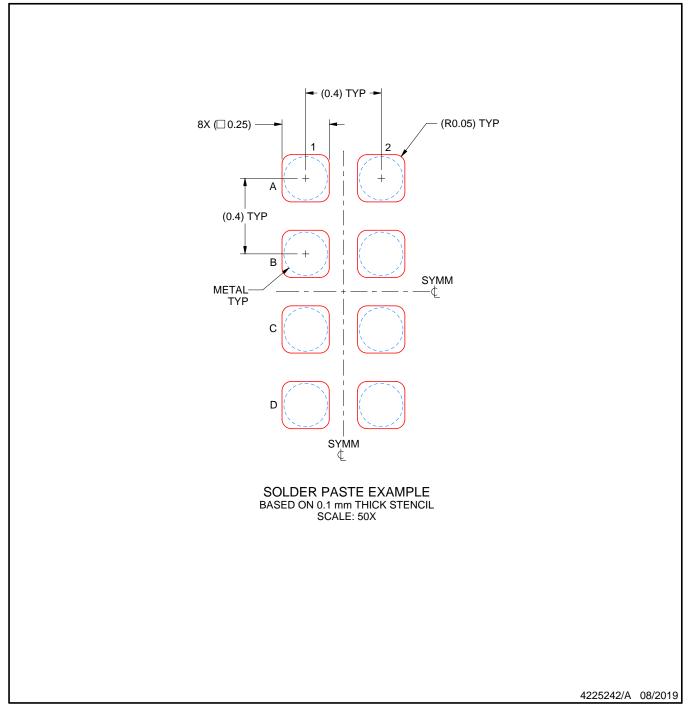
EXAMPLE BOARD LAYOUT

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

 Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).



YFP0008

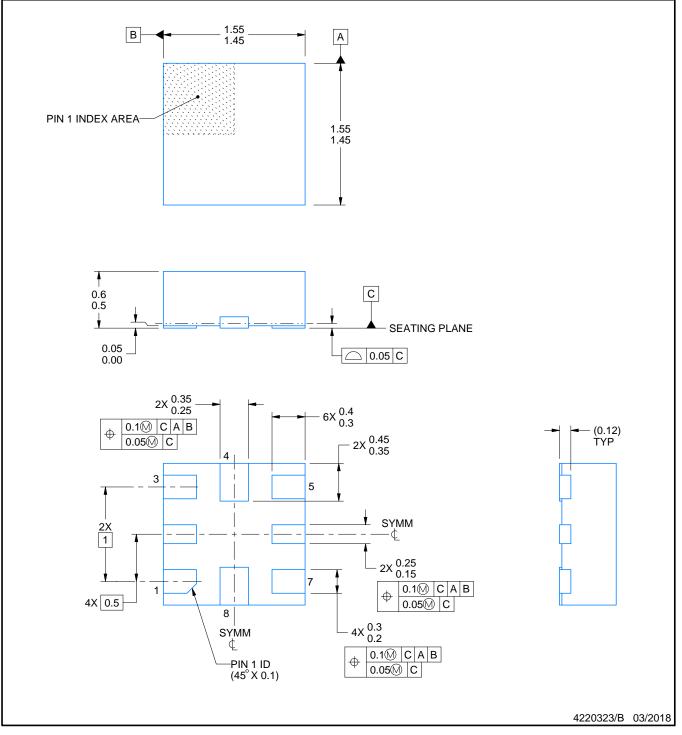
EXAMPLE STENCIL DESIGN

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.


RSE0008A

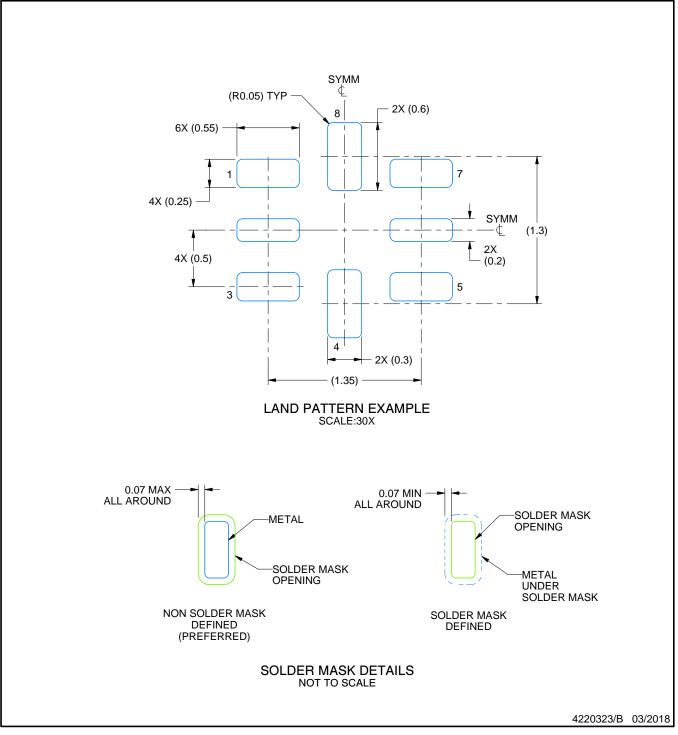
PACKAGE OUTLINE

UQFN - 0.6 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.



RSE0008A

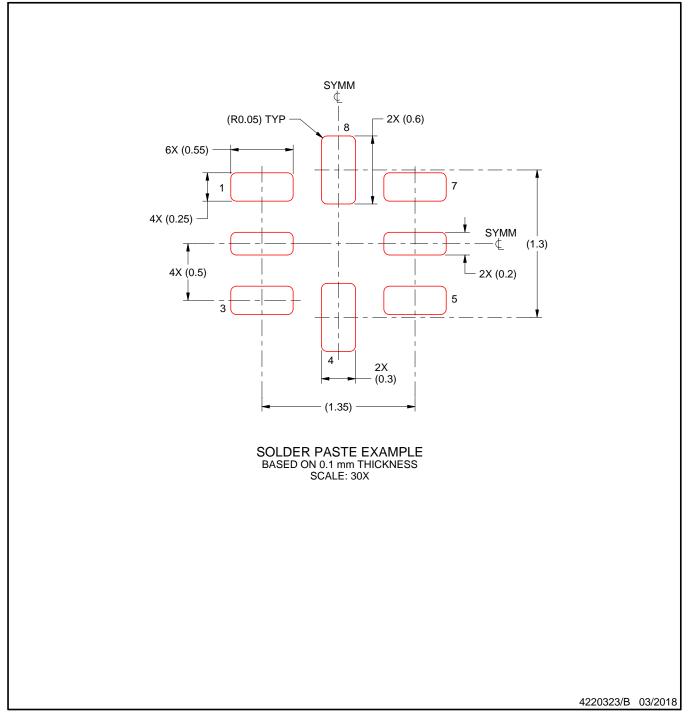
EXAMPLE BOARD LAYOUT

UQFN - 0.6 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).



RSE0008A

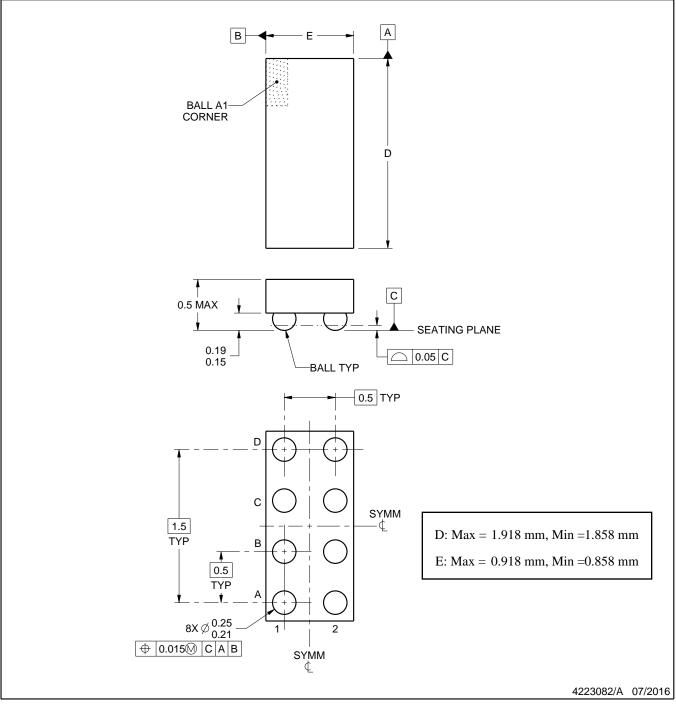
EXAMPLE STENCIL DESIGN

UQFN - 0.6 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


YZP0008

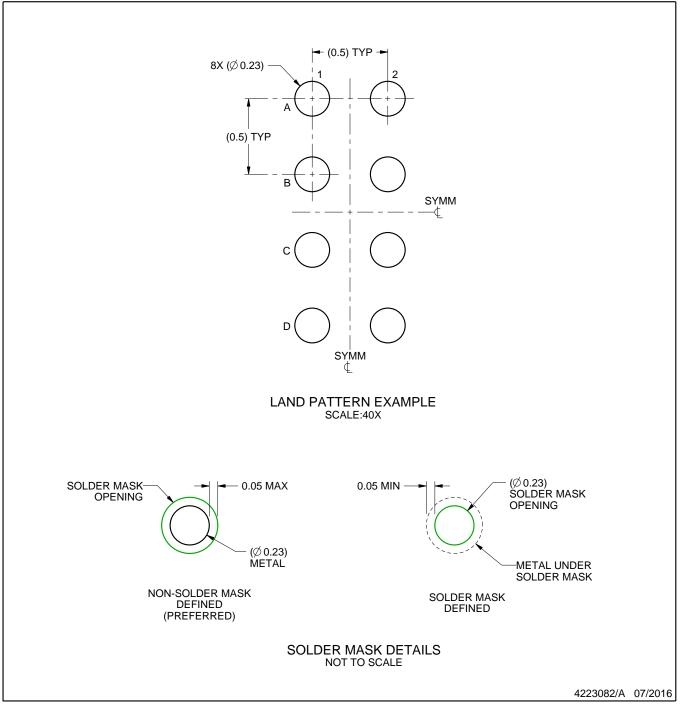
PACKAGE OUTLINE

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.



YZP0008

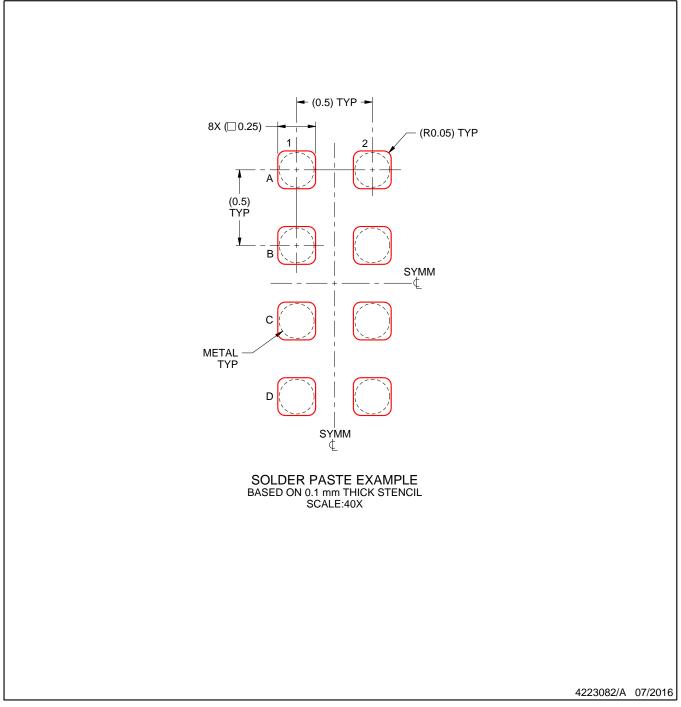
EXAMPLE BOARD LAYOUT

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).



YZP0008

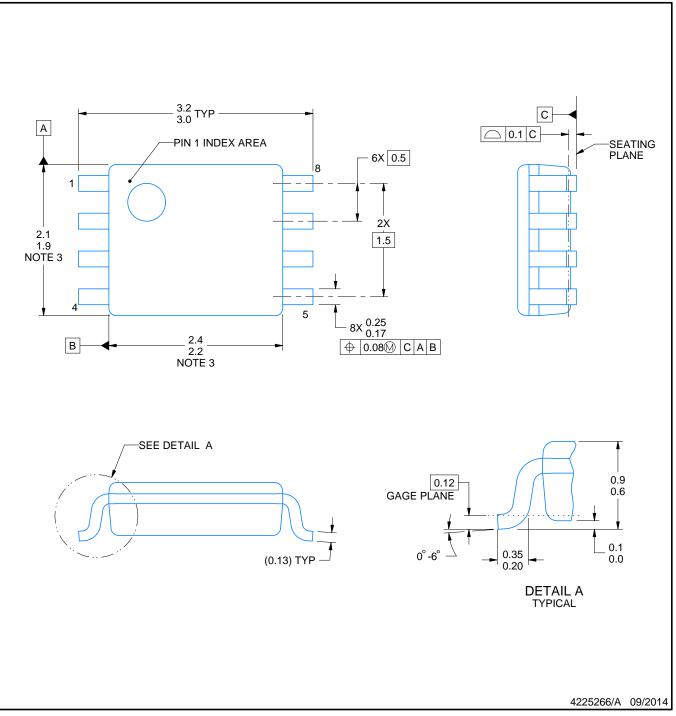
EXAMPLE STENCIL DESIGN

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.


DCU0008A

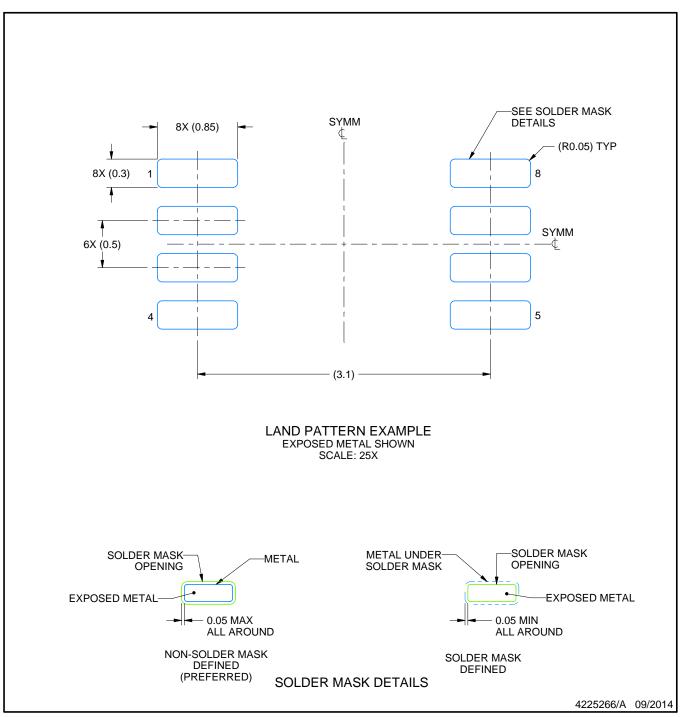
PACKAGE OUTLINE

VSSOP - 0.9 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side. 4. Reference JEDEC registration MO-187 variation CA.



DCU0008A

EXAMPLE BOARD LAYOUT

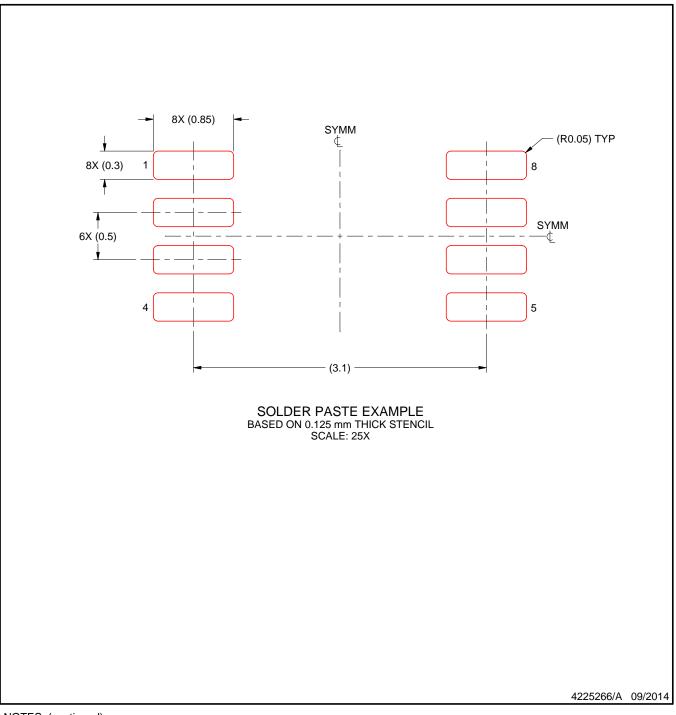
VSSOP - 0.9 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DCU0008A

EXAMPLE STENCIL DESIGN

VSSOP - 0.9 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

8. Board assembly site may have different recommendations for stencil design.

^{7.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Flip-Flops category:

Click to view products by Texas Instruments manufacturer:

Other Similar products are found below :

NLV74HC74ADTR2G 74F574SC TC7W74FUTE12LF NLV14013BDR2G NLV74HC74ADR2G MC10EP131MNG MC74AC74DTR2 74VHC574FT(BJ) HT4093ARZ SN74HC374ANSR CD4528BE CD4027BE RS74HC74XQ RS74HC74XP RS574XTSS20 CD40106BM-JSM 74HCT273PW-Q100J SN74ABT273PWRE4 CLVC2G74QDCURG4Q1 CD4067TA24.TB CD4013SA.TR AIP74HCT14TA14.TB HSN74LVC1G14DBVR CD4013BPWRG AiP74LVC74TA14.TB CD4013BDRG CD4528SA16.TR AIP74HC273SA.TB SN74HCS74QDYYRQ1 CD4013TA14.TB SN74LS107N SN74LS374DWR SN74LVC2G14DC(LX) MC74HC73ADG MC74HC73ADR2G 74LCX16374MTDX 74LVT74D,118 74VHCT9273FT(BJ) MM74HC374WM MM74HC74AMX 74ALVCH162374PAG 74LVC1G175GS,132 74LVX74MTCX TC7WZ74FK,LJ(CT MM74HCT273WM SN74LVC74AD SN74HC273DWR M74HC374RM13TR M74HC175B1R M74HC174RM13TR