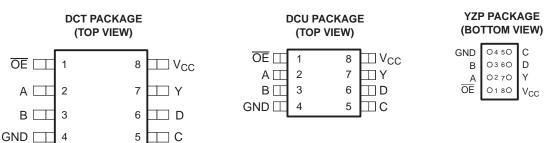


FEATURES

- Available in the Texas Instruments NanoFree[™] Package
- Low Static-Power Consumption $(I_{CC} = 0.9 \ \mu A \ Max)$
- Low Dynamic-Power Consumption $(C_{pd} = 5 \text{ pF Typ at } 3.3 \text{ V})$
- Low Input Capacitance (C₁ = 1.5 pF)
- Low Noise Overshoot and Undershoot <10% of V_{CC}
- Input-Disable Feature Allows Floating Input Conditions
- I_{off} Supports Partial-Power-Down Mode Operation
- **Includes Schmitt-Trigger Inputs**


- Wide Operating V_{CC} Range of 0.8 V to 3.6 V **Optimized for 3.3-V Operation**
- 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- t_{pd} = 7.4 ns Max at 3.3 V •
- Suitable for Point-to-Point Applications
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

С

חו

Υ

V_{CC}

See mechanical drawings for dimensions.

DESCRIPTION/ORDERING INFORMATION

The AUP family is TI's premier solution to the industry's low-power needs in battery-powered portable applications. This family ensures a very low static- and dynamic-power consumption across the entire V_{CC} range of 0.8 V to 3.6 V, resulting in an increased battery life. This product also maintains excellent signal integrity (see Figures 1 and 2).

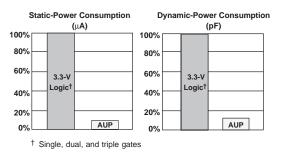


Figure 1. AUP - The Lowest-Power Family

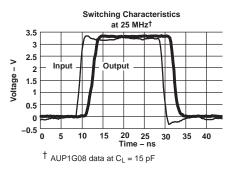


Figure 2. Excellent Signal Integrity

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. NanoFree is a trademark of Texas Instruments.

*ه*ک

SCES594C-JULY 2004-REVISED DECEMBER 2007

DESCRIPTION/ORDERING INFORMATION

The SN74AUP1G99 features configurable multiple functions with a 3-state output. This device has the input-disable feature, which allows floating input signals. The inputs and output are disabled when the output-enable (\overline{OE}) input is high. When \overline{OE} is low, the output state is determined by 16 patterns of 4-bit input. The user can choose the logic functions, such as MUX, AND, OR, NAND, NOR, XOR, XNOR, inverter, and buffer. All inputs can be connected to V_{CC} or GND.

This device functions as an independent gate with Schmitt-trigger inputs, which allows for slow input transition and better switching noise immunity at the input.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

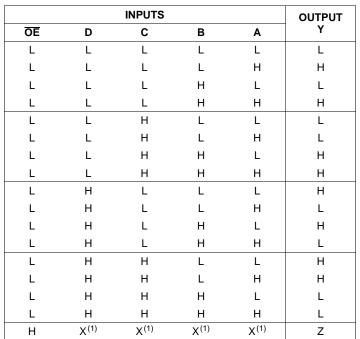
NanoStar[™] and NanoFree[™] package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

T _A	PACKAGE ⁽¹⁾⁽²⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING ⁽³⁾
−40°C to 85°C	NanoFree™ – WCSP (DSBGA) 0.23-mm Large Bump – YZP (Pb-free)	Tape and reel	SN74AUP1G99YZPR	HY_
	SSOP – DCT	Tape and reel	SN74AUP1G99DCTR	H99
	VSSOP – DCU	Tape and reel	SN74AUP1G99DCUR	H99_

ORDERING INFORMATION

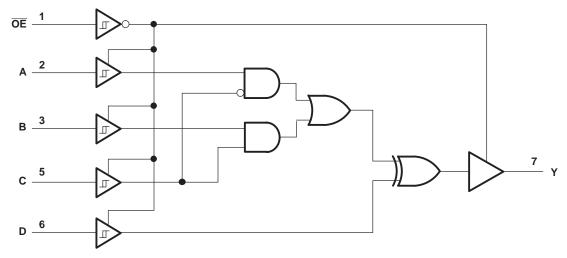
(1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.


(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

(3) DCT: The actual top-side marking has three additional characters that designate the year, month, and assembly/test site. DCU: The actual top-side marking has one additional character that designates the assembly/test site. YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site. Pin 1 identifier indicates solder-bump composition (1 = SnPb, • = Pb-free).

2

Copyright © 2004–2007, Texas Instruments Incorporated


SCES594C-JULY 2004-REVISED DECEMBER 2007

FUNCTION TABLE

(1) Floating inputs allowed.

LOGIC DIAGRAM (POSITIVE LOGIC)

Ĵ.

INS

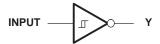
Texas

www.ti.com

TRUMENTS

SCES594C-JULY 2004-REVISED DECEMBER 2007

FUNCTION SELECTION TABLE


PRIMARY FUNCTION	COMPLEMENTARY FUNCTION	PAGE
3-state buffer		4
3-state inverter		4
3-state 2-to-1 data selector MUX		5
3-state 2-to-1 data selector MUX, inverted out		5
3-state 2-input AND	3-state 2-input NOR, both inputs inverted	5
3-state 2-input AND, 1 input inverted	3-state 2-input NOR, 1 input inverted	5
3-state 2-input AND, both inputs inverted	3-state 2-input NOR	5
3-state 2-input NAND	3-state 2-input OR, both inputs inverted	6
3-state 2-input NAND, 1 input inverted	3-state 2-input OR, 1 input inverted	6
3-state 2-input NAND, both inputs inverted	3-state 2-input OR	6
3-state 2-input XOR		6
3-state 2-input XNOR	3-state 2-input XOR, 1 input inverted	7

3-STATE BUFFER FUNCTIONS AVAILABLE

FUNCTION	OE	Α	В	С	D		
		Input	Х	L	L		
3-state buffer	L	Х	Input	Н	L		
		L	Н	Input	L		
		Н	L	Input	н		
		Н	Х	L	Input		
	-	Х	L	Н	Input		
		L	L	Х	Input		

3-STATE INVERTER FUNCTIONS AVAILABLE

FUNCTION	ŌĒ	Α	В	С	D
		Input	Х	L	Н
		Х	Input	Н	Н
		L	н	Input	Н
3-state inverter	L	Н	L	Input	L
		Н	Х	L	Input
		Х	н	Н	Input
		Н	н	Х	Input

4

Copyright © 2004–2007, Texas Instruments Incorporated

NO. OF INPUTS

2

2

SN74AUP1G99 LOW-POWER ULTRA-CONFIGURABLE MULTIPLE-FUNCTION GATE WITH 3-STATE OUTPUTS

Ъ

Ā/B

Input 1

Input 2

SCES594C-JULY 2004-REVISED DECEMBER 2007

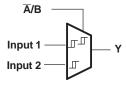
в

Input 1

Input 2

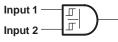
С

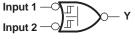
Input 2


Input 1

D

L


L


3-STATE MUX FUNCTIONS AVAILABLE

	-				
FUNCTION	OE	Α	В	С	D
3-state 2-to-1, data selector MUX		Input 1	Input 2	Input 1 or Input 2	L
3-state 2-to-1, data selector MUX		Input 2	Input 1	Input 2 or Input 1	L
3-state 2-to-1, data selector MUX, inverted out	L	Input 1	Input 2	Input 1 or Input 2	Н
3-state 2-to-1, data selector MUX, inverted out		Input 2	Input 1	Input 2 or Input 1	Н

3-STATE AND/NOR FUNCTIONS AVAILABLE

Input 2	
AND/NAND FUNCTION	OR/NOR FUNCTION

3-state AND

3-state AND

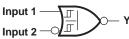
nput 1 — O	≞୲∕∕∨
nput 2 — 🗸	

OE

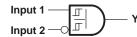
L

Α

L


L

nput 2 —	
JNCTION	OR/I


AND	3-state NOR, both	inputs inverted
Input 1 —O	<u></u> т	Input 1
Input 2		Input 2

3-state NOR, both inputs inverted

γ

NO. OF INPUTS	AND/NAND FUNCTION	OR/NOR FUNCTION	OE	Α	В	С	D
2	3-state AND, with A inverted	3-state NOR, with B inverted		Input 2	L	Input 1	L
2	3-state AND, with A inverted	3-state NOR, with B inverted		Н	Input 1	Input 2	Н

NO. OF INPUTS	AND/NAND FUNCTION	OR/NOR FUNCTION	OE	Α	В	С	D
2	3-state AND, with B inverted	3-state NOR, with A inverted		Input 1	L	Input 2	L
2	3-state AND, with B inverted	3-state NOR, with A inverted		Н	Input 2	Input 1	Н

NO. OF INPUTS	AND/NAND FUNCTION	OR/NOR FUNCTION	ŌĒ	Α	В	С	D
2	3-state AND, both inverted inputs	3-state NOR		Input 1	Н	Input 2	Н
2	3-state AND, both inverted inputs	3-state NOR	L	Input 2	Н	Input 1	Н

SCES594C-JULY 2004-REVISED DECEMBER 2007

3-STATE NAND/OR FUNCTIONS AVAILABLE

Υ

I	nput 1	
I	Input 2	

NO. OF INPUTS	AND/NAND FUNCTION	OR/NOR FUNCTION	ŌĒ	Α	В	С	D
2	3-state NAND	3-state OR, with both inputs inverted	1	L	Input 1	Input 2	Н
2	3-state NAND	3-state OR, with both inputs inverted	L	L	Input 2	Input 1	Н

— Y

NO. OF INPUTS	AND/NAND FUNCTION	ND FUNCTION OR/NOR FUNCTION		Α	В	С	D
2	3-state NAND, with A inverted	3-state OR, with B inverted		Input 2	L	Input 1	Н
2	3-state NAND, with A inverted	3-state OR, with B inverted	L	Н	Input 1	Input 2	L

NO. OF INPUTS	AND/NAND FUNCTION	AND/NAND FUNCTION OR/NOR FUNCTION		Α	В	С	D
2	3-state NAND, with B inverted	3-state OR, with A inverted		Input 1	L	Input 2	Н
2	3-state NAND, with B inverted	3-state OR, with A inverted		Н	Input 2	Input 1	L

NO. OF INPUTS	AND/NAND FUNCTION	OR/NOR FUNCTION	OE	Α	В	С	D
2	3-state NAND, with both inputs inverted	3-state OR	1	Input 1	Н	Input 2	L
2	3-state NAND, with both inputs inverted	3-state OR	L	Input 2	Н	Input 1	L

3-STATE XOR/XNOR FUNCTIONS AVAILABLE

FUNCTION	OE	Α	В	С	D	
			Input 1	Х	L	Input 2
		Input 2	Х	L	Input 1	
	L	Х	Input 1	Н	Input 2	
3-state XOR		Х	Input 2	Н	Input 1	
		L	Н	Input 1	Input 2	
		L	Н	Input 2	Input 1	

Submit Documentation Feedback

SCES594C-JULY 2004-REVISED DECEMBER 2007

Input 1 Π Υ Input 2 FUNCTION OE в С D Α 3-state XOR, with A inverted L Н L Input 1 Input 2 Input 1 П Υ П Input 2 FUNCTION OE С D Α в Input 2 3-state XOR, with B inverted н L L Input 1

3-STATE XOR/XNOR FUNCTIONS AVAILABLE (continued)

FUNCTION	ŌĒ	Α	В	С	D
3-state XNOR	L -	Н	L	Input 1	Input 2
3-state XNOR		Н	L	Input 2	Input 1

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	4.6	V
VI	Input voltage range ⁽²⁾		-0.5	4.6	V
Vo	Voltage range applied to any output in the high-in	npedance or power-off state ⁽²⁾	-0.5	4.6	V
Vo	Output voltage range in the high or low state ⁽²⁾		-0.5	/ _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
I _O	Continuous output current			±20	mA
	Continuous current through V _{CC} or GND			±50	mA
		DCT package		220	
θ_{JA}	Package thermal impedance ⁽³⁾	DCU package		227	°C/W
		YZP package		102	
T _{stg}	Storage temperature range	-65	150	°C	

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT	
V _{CC}	Supply voltage		0.8	3.6	V	
VI	Input voltage		0	3.6	V	
V		Active state	0	V _{CC}	V	
Vo	Output voltage	3-state	0	3.6	v	
		$V_{CC} = 0.8 V$		-20	μΑ	
		V _{CC} = 1.1 V		-1.1		
I _{OH}	Lich loud output ourrent	V _{CC} = 1.4 V		-1.7		
	High-level output current	V _{CC} = 1.65 V		-1.9	mA	
		V_{CC} = 2.3 V		-3.1		
		$V_{CC} = 3 V$		-4		
		V _{CC} = 0.8 V		20	μΑ	
		V _{CC} = 1.1 V		1.1		
	Low lovel output ourrent	$V_{CC} = 1.4 V$		1.7		
I _{OL}	Low-level output current	V _{CC} = 1.65 V		1.9	mA	
		V_{CC} = 2.3 V		3.1		
		V _{CC} = 3 V		4		
Δt/Δv	Input transition rise or fall rate	$V_{CC} = 0.8 V \text{ to } 3.6 V$		200	ns/V	
T _A	Operating free-air temperature		-40	85	°C	

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

8

Copyright © 2004–2007, Texas Instruments Incorporated

SCES594C-JULY 2004-REVISED DECEMBER 2007

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	v _{cc}	т,	₄ = 25°C	T _A = −40° to 85°C		
			MIN	TYP MAX	MIN	MAX	
		0.8 V	0.3	0.6	0.3	0.6	
. ,		1.1 V	0.53	0.9	0.53	0.9	1
V _{T+} Positive-going		1.4 V	0.74	1.11	0.74	1.11	v
input threshold		1.65 V	0.91	1.29	0.91	1.29	V
voltage		2.3 V	1.37	1.77	1.37	1.77	
		3 V	1.88	2.29	1.88	2.29	
		0.8 V	0.1	0.6	0.1	0.6	
N7		1.1 V	0.26	0.65	0.26	0.65	
V _{T-} Negative-going		1.4 V	0.39	0.75	0.39	0.75	v
input threshold		1.65 V	0.47	0.84	0.47	0.84	v
voltage		2.3 V	0.69	1.04	0.69	1.04	
		3 V	0.88	1.24	0.88	1.24	
		0.8 V	0.07	0.5	0.07	0.5	
		1.1 V	0.08	0.46	0.08	0.46	
ΔV _T		1.4 V	0.18	0.56	0.18	0.56	
Hysteresis (V _{T+} – V _{T–})		1.65 V	0.27	0.66	0.27	0.66	V
		2.3 V	0.53	0.92	0.53	0.92	
		3 V	0.79	1.31	0.79	1.31	
	I _{OH} = -20 μA	0.8 V to 3.6 V	V _{CC} – 0.1		V _{CC} – 0.1		
	$I_{OH} = -1.1 \text{ mA}$	1.1 V	$0.75 \times V_{CC}$		$0.7 imes V_{CC}$		
	I _{OH} = -1.7 mA	1.4 V	1.11		1.03		
	I _{OH} = -1.9 mA	1.65 V	1.32		1.3		v
V _{OH}	I _{OH} = -2.3 mA	2.3 V	2.05		1.97		v
	I _{OH} = -3.1 mA	2.3 V	1.9		1.85		
	I _{OH} = -2.7 mA	3 V	2.72		2.67		
	$I_{OH} = -4 \text{ mA}$	3 V	2.6		2.55		
	I _{OL} = 20 μA	0.8 V to 3.6 V		0.1		0.1	
	I _{OL} = 1.1 mA	1.1 V		$0.3 \times V_{\text{CC}}$	0	$.3 \times V_{CC}$	
	I _{OL} = 1.7 mA	1.4 V		0.31		0.37	
N/	I _{OL} = 1.9 mA	1.65 V		0.31		0.35	v
V _{OL}	I _{OL} = 2.3 mA	2.3 V		0.31		0.33	v
	I _{OL} = 3.1 mA	2.3 V		0.44		0.45	
	I _{OL} = 2.7 mA	3 V		0.31		0.33	
	I _{OL} = 4 mA	51		0.44		0.45	
II All inputs	$V_1 = GND$ to 3.6 V	0 V to 3.6 V		0.1		0.5	μA
off	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V}$	0 V		0.2		0.6	μA
∆l _{off}	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V}$	0 V to 0.2 V		0.2		0.6	μA
I _{OZ}	$V_{O} = V_{CC}$ or GND	3.6 V		0.1		0.5	μA
lcc	$\frac{V_{I} = \text{GND or } (V_{CC} \text{ to } 3.6 \text{ V}),}{\text{OE} = \text{GND, } I_{O} = 0}$	0.8 V to 3.6 V		0.5		0.9	μA

SCES594C-JULY 2004-REVISED DECEMBER 2007

Electrical Characteristics (continued)

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	V _{cc}	т,	T _A = 25°C			C	UNIT
				MIN	TYP	MAX	MIN	MAX	
	Data inputs	$V_{I} = V_{CC} - 0.6 V^{(1)}_{,(1)} I_{O} = 0$	3.3 V			40		50	μA
ΔI_{CC}				110			120		
	All inputs	$V_I = GND$ to 3.6 V, $\overline{OE} = V_{CC}^{(2)}$	0.8 V to 3.6 V		0				nA
<u> </u>			0 V		1.5				~ Г
CI		$V_{I} = V_{CC}$ or GND	3.6 V		1.5				pF
Co		$V_{O} = V_{CC}$ or GND	3.6 V		3				pF

Switching Characteristics

over recommended operating free-air temperature range, C_L = 5 pF (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER	FROM	TO (OUTPUT)	V _{cc}	T,	λ = 25°C		T _A = to 85		UNIT
	(INPUT)	(001201)		MIN	TYP	MAX	MIN	MAX	
			0.8 V		32				
			1.2 V ± 0.1 V	0.5	9.9	20.1	0.5	26.6	1
	A, B, C, or D	Y	1.5 V ± 0.1 V	1.4	6.6	11.9	0.5	16.8	
t _{pd}			1.8 V ± 0.15 V	1.8	5.3	8.9	1	13	ns
			2.5 V ± 0.2 V	2.1	3.9	5.8	1.3	8.9	
			3.3 V ± 0.3 V	1.9	3.3	4.8	1.2	7.4	-
	ŌE	Y	0.8 V		35				
			1.2 V ± 0.1 V	0.6	11.1	21.7	0.5	25.2	ns
			1.5 V ± 0.1 V	2.3	7.4	12.6	1.4	16.4	
t _{en}			1.8 V ± 0.15 V	2	5.7	9.4	1.1	12.8	
			2.5 V ± 0.2 V	2.1	4.1	6.2	1.2	8.5	
			3.3 V ± 0.3 V	1.9	3.4	5	1.1	6.7	
			0.8 V		9.8				
			1.2 V ± 0.1 V	1.4	4.5	7.7	1.5	8.2	
		V	1.5 V ± 0.1 V	1.7	3.2	4.8	1.7	6	
t _{dis}	ŌĒ	Y	1.8 V ± 0.15 V	1.5	3	4.7	1.3	6.1	ns
			2.5 V ± 0.2 V	0.9	1.9	3	0.7	4.2	
			3.3 V ± 0.3 V	0.8	2.5	4.4	0.7	4.5	

SCES594C-JULY 2004-REVISED DECEMBER 2007

Switching Characteristics

over recommended operating free-air temperature range, $C_L = 10 \text{ pF}$ (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER		TO (OUTPUT)	v _{cc}	т,	λ = 25°C		T _A = to 85	UNIT		
	(INPUT)	(001901)		MIN	TYP	MAX	MIN	MAX		
			0.8 V		36					
			1.2 V ± 0.1 V	0.4	10.7	21.1	0.7	29.8		
		Y	1.5 V ± 0.1 V	2	7.2	12.6	1.1	18.5		
t _{pd}	A, B, C, or D	ř	1.8 V ± 0.15 V	2.3	5.8	9.5	1.5	14.5	ns	
			2.5 V ± 0.2 V	2.5	4.4	6.3	1.7	10.5		
			3.3 V ± 0.3 V	2.3	3.7	5.2	1.5	8.4		
	ŌE		0.8 V		0				ns	
		Y	1.2 V ± 0.1 V	1.4	12.1	22.8	0.8	29.3		
			1.5 V ± 0.1 V	2.8	8	13.3	2	18.7		
t _{en}			1.8 V ± 0.15 V	2.5	6.2	10	1.6	14.8		
			2.5 V ± 0.2 V	2.5	4.5	6.7	1.6	9.9		
			3.3 V ± 0.3 V	2.3	3.8	5.4	1.5	8.2		
			0.8 V		0					
			1.2 V ± 0.1 V	2	5.6	9.3	2	10		
		V	1.5 V ± 0.1 V	2.5	4.1	5.8	2.4	7.6	1	
t _{dis}	ŌĒ	Y	1.8 V ± 0.15 V	2.9	4.2	5.7	2.7	7.9	.5	
			2.5 V ± 0.2 V	1.1	2.7	4.4	1.1	5.5		
			3.3 V ± 0.3 V	1.9	3.5	5.2	1.9	5.8		

SCES594C-JULY 2004-REVISED DECEMBER 2007

Switching Characteristics

over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 3 and Figure 4)

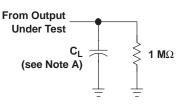
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{cc}	т,	λ = 25°C		T _A = −40°C to 85°C		UNIT	
	(INFOT)	(001901)		MIN	TYP	MAX	MIN	MAX		
			0.8 V		38					
			1.2 V ± 0.1 V	0.9	11.4	22	0.5	30.8		
		Y	1.5 V ± 0.1 V	2.5	7.8	13.2	1.6	19.2	20	
t _{pd}	A, B, C, or D	ř	1.8 V ± 0.15 V	2.7	6.3	10	1.9	15.1	ns	
			2.5 V ± 0.2 V	2.8	4.7	6.6	2	10.8		
			3.3 V ± 0.3 V	2.6	4	5.5	1.8	8.8		
	OE		0.8 V		44					
		Y	1.2 V ± 0.1 V	1.8	13	24.2	1.3	30.6		
			1.5 V ± 0.1 V	3.2	8.6	14.1	2.4	19.5		
t _{en}			1.8 V ± 0.15 V	2.9	6.7	10.6	2	15.4		
			2.5 V ± 0.2 V	2.8	4.9	7	1.9	10.3	10.3 8.6	
			3.3 V ± 0.3 V	2.6	4.1	5.7	1.8	8.6		
			0.8 V		13					
			1.2 V ± 0.1 V	2.7	6.3	9.9	2.8	10.7		
t _{dis}	OE	V	1.5 ± 0.1 V	3.2	4.6	6.1	3.1	8		
	UE	Y	1.8 V ± 0.15 V	3.2	4.8	6.6	3	8.8	ns	
			2.5 V ± 0.2 V	2.2	3.4	4.7	2	6		
			3.3 V ± 0.3 V	2.4	4.4	6.5	2.3	7.2		

SCES594C-JULY 2004-REVISED DECEMBER 2007

Switching Characteristics

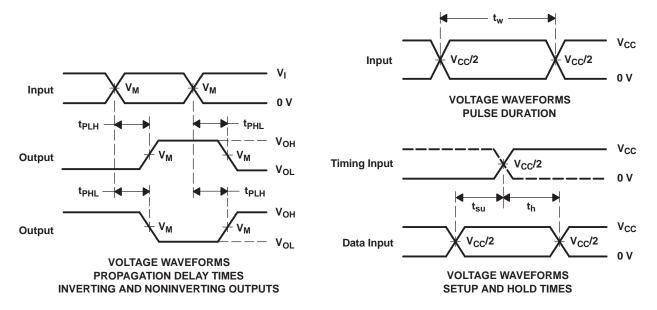
over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER	FROM	TO	V _{cc}	T,	T _A - 25°C			T _A = −40°C to 85°C				
	(INPUT)	(OUTPUT)		MIN	TYP	MAX	MIN	MAX				
						0.8 V		48				
			1.2 V ± 0.1 V	3.1	14	24.9	2.6	36.1				
		Y	1.5 V ± 0.1 V	4.2	9.6	15.1	3.3	23.1	20			
t _{pd}	A, B, C, or D	ř	1.8 V ± 0.15 V	4.1	7.9	11.7	3.3	18	ns			
			2.5 V ± 0.2 V	4.1	5.9	7.9	3.1	12.7				
			3.3 V ± 0.3 V	3.7	5.1	6.7	2.8	10.4				
	ŌE	Y	0.8 V		50				ns			
			1.2 V ± 0.1 V	4.4	16	27.6	3.9	36.8				
			1.5 V ± 0.1 V	5.3	10.7	16.2	4.3	23.6				
t _{en}			1.8 V ± 0.15 V	4.6	8.5	12.4	3.6	18.6				
			2.5 V ± 0.2 V	4.2	6.3	8.5	3.2	12.6				
			3.3 V ± 0.3 V	3.8	5.4	7.1	2.9	10.2	10.2			
			0.8 V		19							
			1.2 V ± 0.1 V	6	10.1	14.2	6	14.6				
		V	1.5 V ± 0.1 V	5.1	7.4	10.6	5	10.1				
t _{dis}	ŌĒ	Y	1.8 V ± 0.15 V	5.5	8.6	11.6	5.5	12.1	ns			
				2.5 V ± 0.2 V	3.3	5.9	8.3	3.3	8.9			
			3.3 V ± 0.3 V	6	8.7	10.9	5.9	11.8				


Operating Characteristics

 $T_A = 25^{\circ}C$

	PARAMETER		TEST CONDITIONS	V _{cc}	TYP	UNIT
				0.8 V	4	
		Outputs enabled		1.2 ± 0.1 V	4	
				1.5 ± 0.1 V	4	
				1.8 V ± 0.15 V	4	
			2.5 V ± 0.2 V	5		
C	Dower dissinction conscitones		f = 10 MHz	3.3 V ± 0.3 V	5	~ F
C _{pd}	Power dissipation capacitance			0.8 V	0	pF
				1.2 ± 0.1 V	0	
		Outputs disabled		1.5 ± 0.1 V	0	
				1.8 V ± 0.15 V	0	
				2.5 V ± 0.2 V	0	
				3.3 V ± 0.3 V	0	



PARAMETER MEASUREMENT INFORMATION (Propagation Delays, Setup and Hold Times, and Pulse Width)

$V_{CC} = 1.2 V$ $V_{CC} = 1.5 V$ V_{CC} = 1.8 V $V_{CC} = 2.5 V$ V_{CC} = 3.3 V $V_{CC} = 0.8 V$ $\pm\,0.1$ V $\pm\,0.1$ V ± 0.15 V ± 0.2 V ± 0.3 V \mathbf{C}_{L} 5, 10, 15, 30 pF VM V_{CC}/2 V_{CC}/2 V_{CC}/2 V_{CC}/2 V_{CC}/2 V_{CC}/2 V_{CC} ٧ı V_{CC} V_{CC} V_{CC} v_{cc} v_{cc}

LOAD CIRCUIT

NOTES: A. C_L includes probe and jig capacitance.

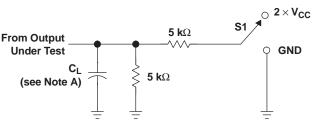
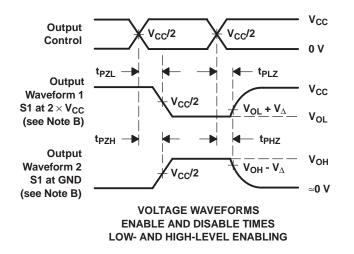

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , for propagation delays t_{f}/t_{f} = 3 ns, for setup and hold times and pulse width t_{f}/t_{f} = 1.2 ns.
- C. The outputs are measured one at a time, with one transition per measurement.
- D. t_{PLH} and t_{PHL} are the same as t_{pd} .
- E. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms

SCES594C-JULY 2004-REVISED DECEMBER 2007


PARAMETER MEASUREMENT INFORMATION (Enable and Disable Times)

TEST	S1
t _{PLZ} /t _{PZL} t _{PHZ} /t _{PZH}	$2 \times V_{CC}$ GND

LOAD CIRCUIT

	V _{CC} = 0.8 V	V _{CC} = 1.2 V ± 0.1 V	V _{CC} = 1.5 V ± 0.1 V	V _{CC} = 1.8 V ± 0.15 V	V_{CC} = 2.5 V \pm 0.2 V	V _{CC} = 3.3 V ± 0.3 V
CL	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF
V _M	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2
V _I	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}
V _Δ	0.1 V	0.1 V	0.1 V	0.15 V	0.15 V	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r/t_f = 3 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. All parameters and waveforms are not applicable to all devices.

Figure 4. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	•		Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN74AUP1G99DCTR	ACTIVE	SM8	DCT	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	H99 (R, Z)	Samples
SN74AUP1G99DCTT	ACTIVE	SM8	DCT	8	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	H99 (R, Z)	Samples
SN74AUP1G99DCUR	ACTIVE	VSSOP	DCU	8	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	(H99Q, H99R)	Samples
SN74AUP1G99DCUT	ACTIVE	VSSOP	DCU	8	250	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	(H99Q, H99R)	Samples
SN74AUP1G99YZPR	ACTIVE	DSBGA	YZP	8	3000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 85	HYN	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

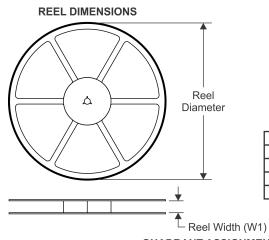
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

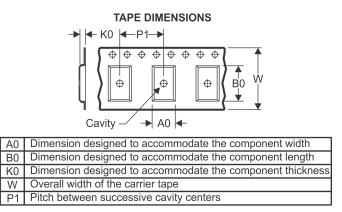
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

www.ti.com

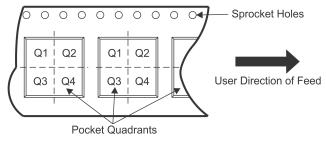
10-Dec-2020

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

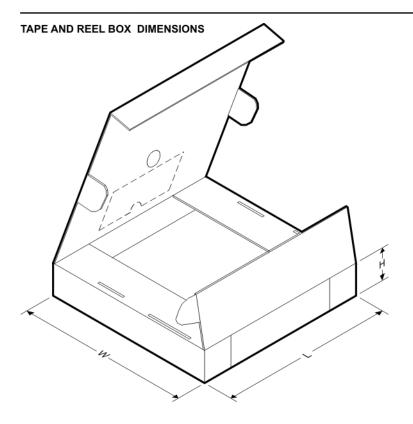

PACKAGE MATERIALS INFORMATION

Texas Instruments


www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

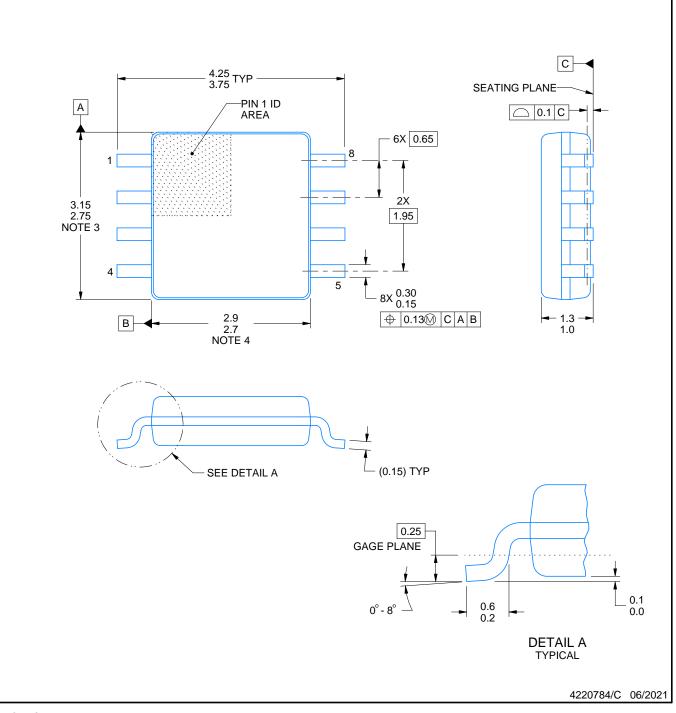

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AUP1G99DCTR	SM8	DCT	8	3000	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
SN74AUP1G99DCTR	SM8	DCT	8	3000	177.8	12.4	3.45	4.4	1.45	4.0	12.0	Q3
SN74AUP1G99DCTT	SM8	DCT	8	250	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
SN74AUP1G99DCTT	SM8	DCT	8	250	177.8	12.4	3.45	4.4	1.45	4.0	12.0	Q3
SN74AUP1G99DCUR	VSSOP	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
SN74AUP1G99DCUR	VSSOP	DCU	8	3000	178.0	9.5	2.25	3.35	1.05	4.0	8.0	Q3
SN74AUP1G99DCUT	VSSOP	DCU	8	250	178.0	9.5	2.25	3.35	1.05	4.0	8.0	Q3
SN74AUP1G99YZPR	DSBGA	YZP	8	3000	178.0	9.2	1.02	2.02	0.63	4.0	8.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

27-May-2021

*All dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AUP1G99DCTR	SM8	DCT	8	3000	182.0	182.0	20.0
SN74AUP1G99DCTR	SM8	DCT	8	3000	183.0	183.0	20.0
SN74AUP1G99DCTT	SM8	DCT	8	250	182.0	182.0	20.0
SN74AUP1G99DCTT	SM8	DCT	8	250	183.0	183.0	20.0
SN74AUP1G99DCUR	VSSOP	DCU	8	3000	202.0	201.0	28.0
SN74AUP1G99DCUR	VSSOP	DCU	8	3000	202.0	201.0	28.0
SN74AUP1G99DCUT	VSSOP	DCU	8	250	202.0	201.0	28.0
SN74AUP1G99YZPR	DSBGA	YZP	8	3000	220.0	220.0	35.0


DCT0008A

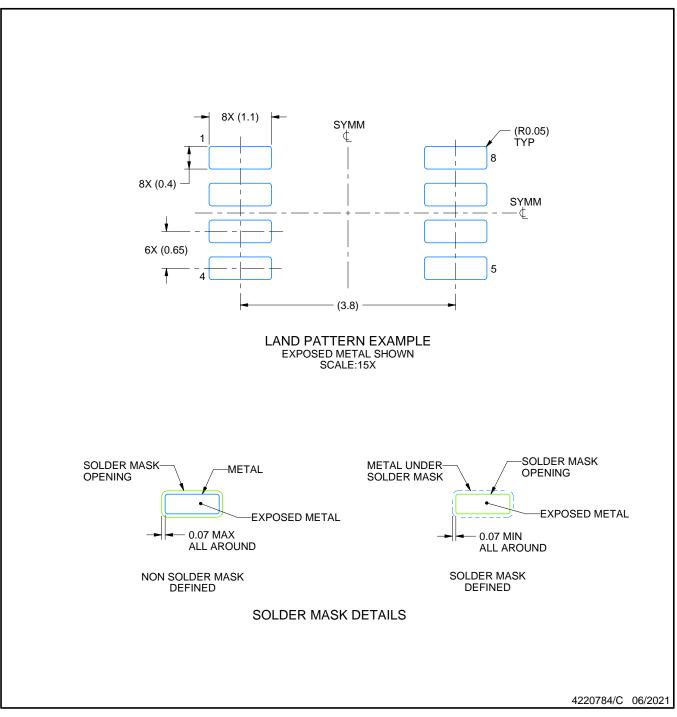
PACKAGE OUTLINE

SSOP - 1.3 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.



DCT0008A

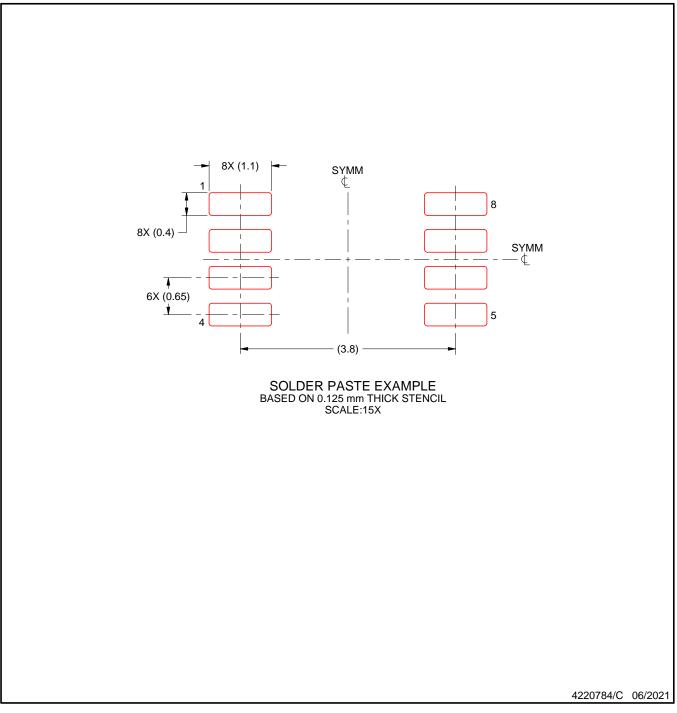
EXAMPLE BOARD LAYOUT

SSOP - 1.3 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

Publication IPC-7351 may have alternate designs.
Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DCT0008A

EXAMPLE STENCIL DESIGN

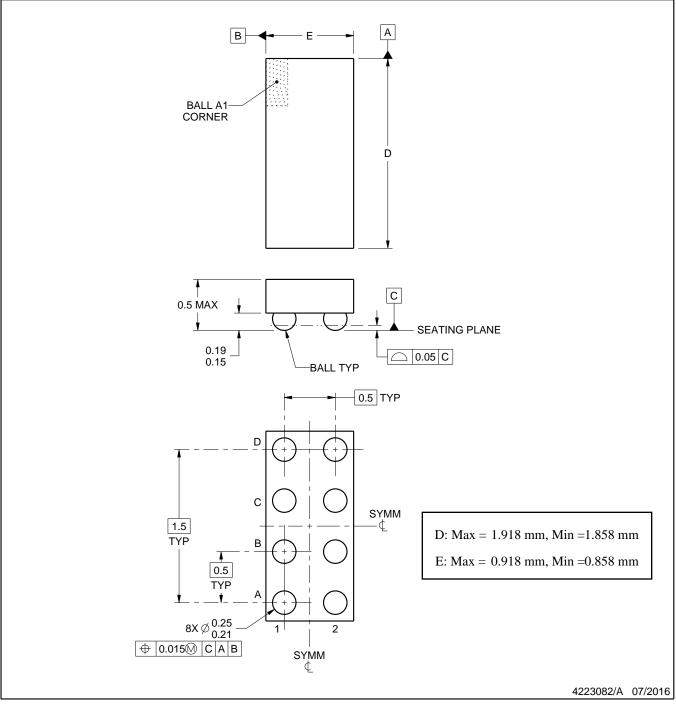
SSOP - 1.3 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

8. Board assembly site may have different recommendations for stencil design.

^{7.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


YZP0008

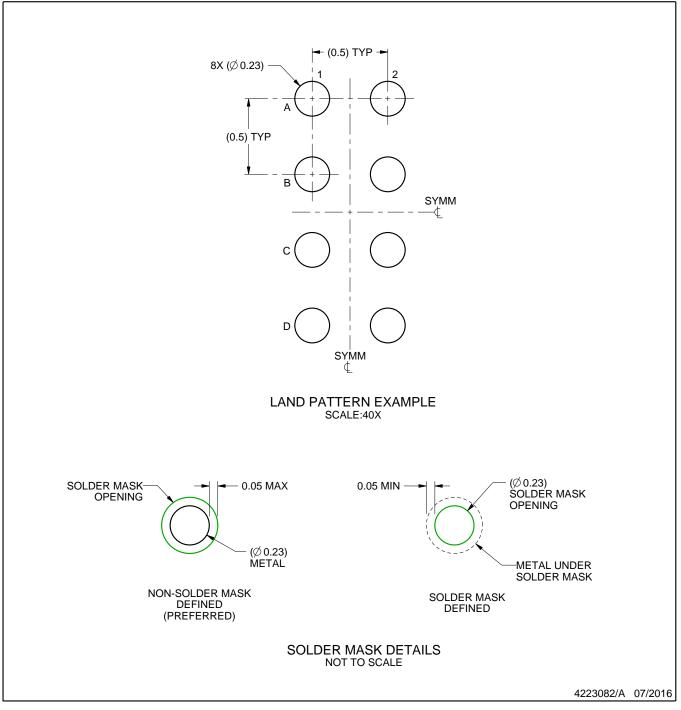
PACKAGE OUTLINE

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.



YZP0008

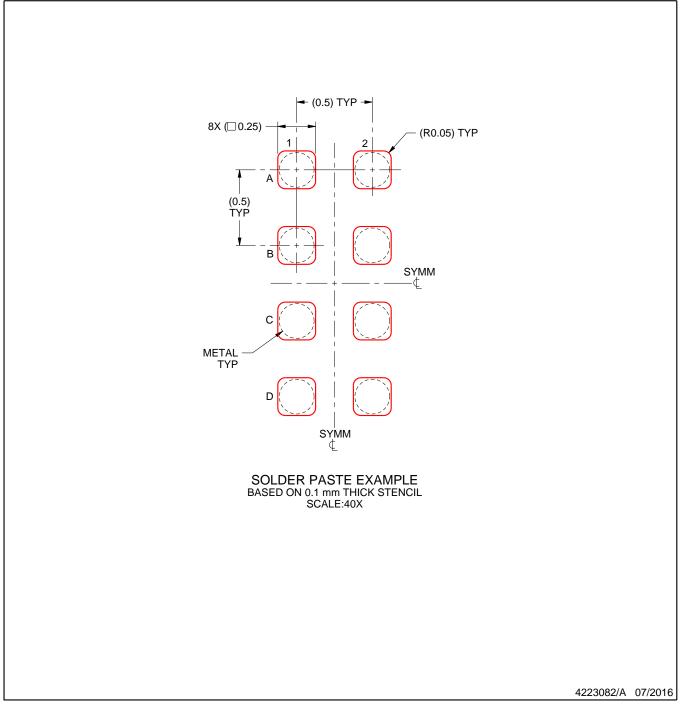
EXAMPLE BOARD LAYOUT

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).



YZP0008

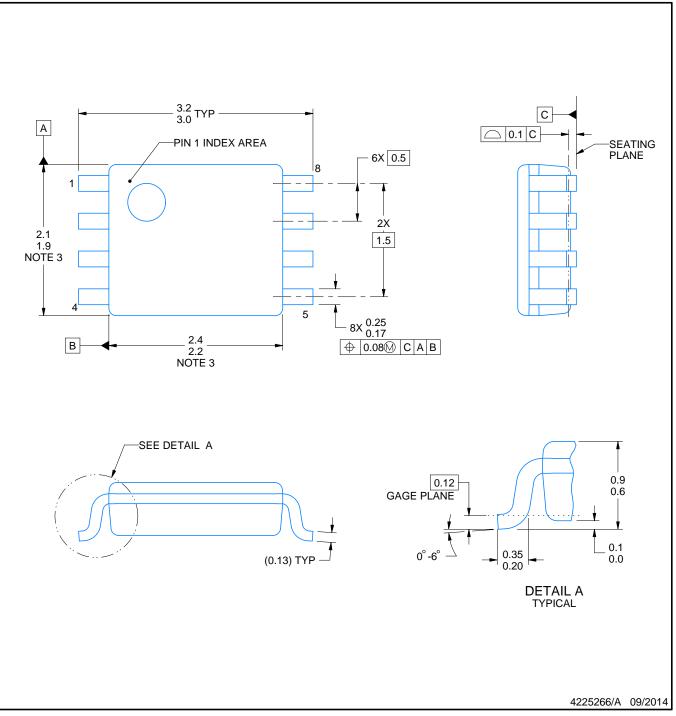
EXAMPLE STENCIL DESIGN

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.


DCU0008A

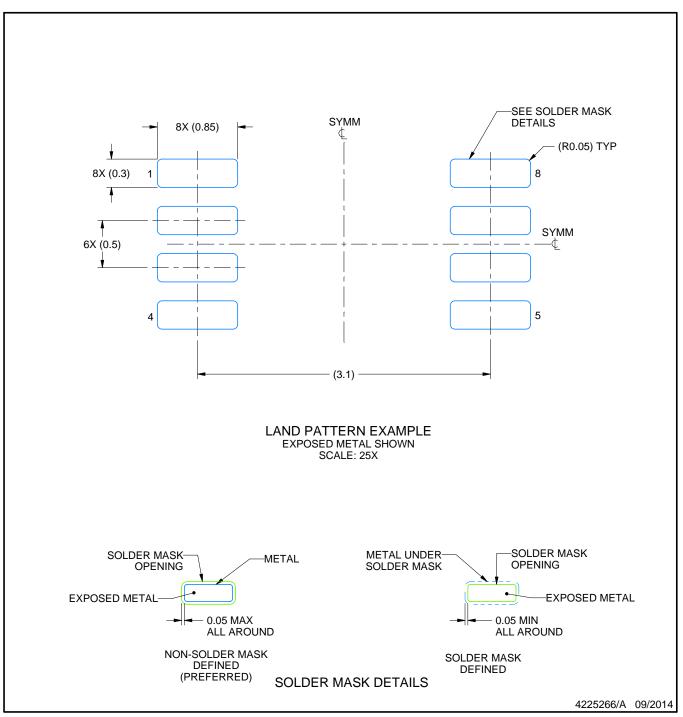
PACKAGE OUTLINE

VSSOP - 0.9 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side. 4. Reference JEDEC registration MO-187 variation CA.



DCU0008A

EXAMPLE BOARD LAYOUT

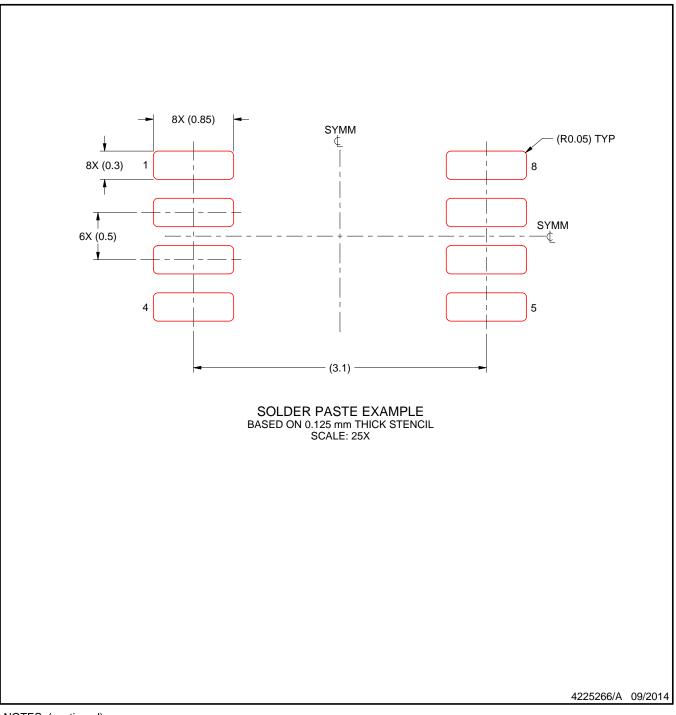
VSSOP - 0.9 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DCU0008A

EXAMPLE STENCIL DESIGN

VSSOP - 0.9 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

8. Board assembly site may have different recommendations for stencil design.

^{7.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by Texas Instruments manufacturer:

Other Similar products are found below :

NL17SG32DFT2G CD4068BE NL17SG86DFT2G NLX1G11AMUTCG NLX1G97MUTCG 74LS38 74LVC1G08Z-7 CD4025BE NLV17SZ00DFT2G NLV17SZ126DFT2G NLV27WZ17DFT2G NLV74HC02ADR2G 74HC32S14-13 74LS133 74LVC1G32Z-7 74LVC1G86Z-7 NLV74HC14ADR2G NLV74HC20ADR2G NLVVHC1G09DFT1G NLX2G86MUTCG 74LVC2G32RA3-7 74LVC2G00HD4-7 NL17SG02P5T5G 74LVC2G86HK3-7 NLVVHC1G14DFT2G NLX1G99DMUTWG NLVVHC1G00DFT2G NLV7SZ57DFT2G NLV74VHC04DTR2G NLV27WZ00USG NLU1G86CMUTCG NLU1G08CMUTCG NL17SZ32P5T5G NL17SZ00P5T5G NL17SH02P5T5G 74AUP2G00RA3-7 NLVVHC1GT00DFT2G NLV74HC02ADTR2G NLX1G332CMUTCG NLVHCT132ADTR2G NL17SG86P5T5G NL17SZ05P5T5G NLV74VHC00DTR2G NLVVHC1G02DFT1G NLV74HC86ADR2G 74LVC2G86RA3-7 NL17SZ38DBVT1G NLV18SZ00DFT2G NLVVHC1G07DFT1G NLVVHC1G02DFT2G