- Undershoot Protection for Off-Isolation on A and B Ports Up To -2 V
- Bidirectional Data Flow, With Near-Zero Propagation Delay
- Low ON-State Resistance ($r_{\text {on }}$) Characteristics ($\mathrm{r}_{\mathrm{on}}=3 \Omega$ Typical)
- Low Input/Output Capacitance Minimizes Loading and Signal Distortion ($\mathrm{C}_{\text {io(OFF) }}=5 \mathrm{pF}$ Typical)
- Data and Control Inputs Provide Undershoot Clamp Diodes
- Low Power Consumption (ICC = $3 \mu \mathrm{~A}$ Max)
- V_{Cc} Operating Range From 4 V to 5.5 V
- Data I/Os Support 0 to $5-\mathrm{V}$ Signaling Levels (0.8-V, 1.2-V, $1.5-\mathrm{V}, 1.8-\mathrm{V}, 2.5-\mathrm{V}, 3.3-\mathrm{V}, 5-\mathrm{V}$)
- Control Inputs Can Be Driven by TTL or 5-V/3.3-V CMOS Outputs
- Ioff Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
- 2000-V Human-Body Model (A114-B, Class II)
- 1000-V Charged-Device Model (C101)
- Supports Both Digital and Analog Applications: USB Interface, Bus Isolation, Low-Distortion Signal Gating

D, DB, DGV, OR PW PACKAGE
(TOP VIEW)

NC - No internal connection

description/ordering information

The SN74CBT3125C is a high-speed TTL-compatible FET bus switch with low ON-state resistance ($r_{o n}$), allowing for minimal propagation delay. Active Undershoot-Protection Circuitry on the A and B ports of the SN74CBT3125C provides protection for undershoot up to -2 V by sensing an undershoot event and ensuring that the switch remains in the proper OFF state.
The SN74CBT3125C is organized as four 1 -bit bus switches with separate output-enable ($1 \overline{\mathrm{OE}}, 2 \overline{\mathrm{OE}}, 3 \overline{\mathrm{OE}}$, $4 \overline{\mathrm{OE}})$ inputs. It can be used as four 1 -bit bus switches or as one 4 -bit bus switch. When $\overline{\mathrm{OE}}$ is low, the associated 1 -bit bus switch is ON, and the A port is connected to the B port, allowing bidirectional data flow between ports. When $\overline{O E}$ is high, the associated 1 -bit bus switch is OFF, and the high-impedance state exists between the A and B ports.
This device is fully specified for partial-power-down applications using $l_{\text {off. }}$. The $l_{\text {off }}$ feature ensures that damaging current will not backflow through the device when it is powered down. The device has isolation during power off.

SN74CBT3125C

QUADRUPLE FET BUS SWITCH

5-V BUS SWITCH WITH -2-V UNDERSHOOT PROTECTION

description/ordering information (continued)

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

ORDERING INFORMATION

$\mathrm{T}_{\text {A }}$	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	QFN - RGY	Tape and reel	SN74CBT3125CRGYR	CU125C
	SOIC - D	Tube	SN74CBT3125CD	CBT3125C
		Tape and reel	SN74CBT3125CDR	
	SSOP - DB	Tube	SN74CBT3125CDB	CU125C
		Tape and reel	SN74CBT3125CDBR	
	SSOP (QSOP) - DBQ	Tape and reel	SN74CBT3125CDBQR	CU125C
	TSSOP - PW	Tube	SN74CBT3125CPW	CU125C
		Tape and reel	SN74CBT3125CPWR	
	TVSOP - DGV	Tape and reel	SN74CBT3125CDGVR	CU125C

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE
(each bus switch)

INPUT $\overline{\mathrm{OE}}$	INPUT/OUTPUT \mathbf{A}	FUNCTION
L	B	A port = B port
H	Z	Disconnect

logic diagram (positive logic)

Pin numbers shown are for the D, DB, DGV, PW, and RGY packages.

simplified schematic, each FET switch (SW)

$\dagger \mathrm{EN}$ is the internal enable signal applied to the switch.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

$$
\begin{aligned}
& \text { Supply voltage range, } \mathrm{V}_{\mathrm{CC}} \text {. }-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Control input voltage range, } \mathrm{V}_{\mathrm{IN}} \text { (see Notes } 1 \text { and 2) . }-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Switch I/O voltage range, } \mathrm{V}_{\mathrm{I} / \mathrm{O}} \text { (see Notes 1, 2, and 3) . }-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Control input clamp current, } \mathrm{I}_{\mathrm{IK}}\left(\mathrm{~V}_{\mathrm{IN}}<0\right) \text {. } 50 \mathrm{~mA} \\
& \text { I/O port clamp current, } \mathrm{I}_{\mathrm{I} / \mathrm{OK}}\left(\mathrm{~V}_{\mathrm{I} / \mathrm{O}}<0\right) \ldots \ldots . . . \text {. }-50 \mathrm{~mA} \\
& \text { ON-state switch current, } I_{/ / O} \text { (see Note 4) . } \pm 128 \mathrm{~mA} \\
& \text { Continuous current through } \mathrm{V}_{\mathrm{CC}} \text { or GND terminals . } \pm 100 \mathrm{~mA} \\
& \text { Package thermal impedance, } \theta_{J A} \text { (see Note 5): D package . 86² } \mathrm{C} / \mathrm{W} \\
& \text { (see Note 5): DB package . } 96^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { (see Note 5): DBQ package . } 90^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { (see Note 5): DGV package . } 127^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { (see Note 5): PW package . } 113^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { (see Note 6): RGY package . } 47^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { Storage temperature range, } T_{\text {stg }} \\
& -65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C} \\
& \ddagger \text { Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and } \\
& \text { functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not } \\
& \text { implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. } \\
& \text { NOTES: 1. All voltages are with respect to ground unless otherwise specified. } \\
& \text { 2. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed. } \\
& \text { 3. } \mathrm{V}_{\mathrm{I}} \text { and } \mathrm{V}_{\mathrm{O}} \text { are used to denote specific conditions for } \mathrm{V}_{\mathrm{I} / \mathrm{O}} \text {. } \\
& \text { 4. } I_{I} \text { and } \mathrm{I}_{\mathrm{O}} \text { are used to denote specific conditions for } \mathrm{I}_{/} / \mathrm{O} \text {. } \\
& \text { 5. The package thermal impedance is calculated in accordance with JESD 51-7. } \\
& \text { 6. The package thermal impedance is calculated in accordance with JESD 51-5. }
\end{aligned}
$$

recommended operating conditions (see Note 7)

		MIN	MAX
V_{CC}	UNIT		
$\mathrm{V}_{\text {IH }}$	High-level control input voltage	4	5.5
$\mathrm{~V}_{\mathrm{IL}}$	Low-level control input voltage	2	5.5
$\mathrm{~V}_{\mathrm{I} / \mathrm{O}}$	Data input/output voltage	0	V
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	0.8	V

NOTE 7: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYP \dagger	MAX	UNIT
$\mathrm{V}_{\text {IK }}$	Control inputs	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$				-1.8	V
VIKU	Data inputs	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\begin{aligned} & 0 \mathrm{~mA}>\mathrm{I}_{1} \geq-50 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \end{aligned}$	Switch OFF			-2	V
In	Control inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND				± 1	$\mu \mathrm{A}$
${ }^{\text {l }}$ OZ ${ }^{\ddagger}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0 \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=0, \end{aligned}$	Switch OFF, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND			± 10	$\mu \mathrm{A}$
${ }^{\text {off }}$		$\mathrm{V}_{\mathrm{CC}}=0$,	$\mathrm{V}_{\mathrm{O}}=0$ to 5.5 V ,	$\mathrm{V}_{\mathrm{I}}=0$			10	$\mu \mathrm{A}$
ICC		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\begin{aligned} & \mathrm{I}_{\mathrm{I} / \mathrm{O}}=0, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \end{aligned}$	Switch ON or OFF			3	$\mu \mathrm{A}$
$\Delta^{1} \mathrm{CC}{ }^{\text {§ }}$	Control inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	One input at 3.4 V ,	Other inputs at V_{CC} or GND			2.5	mA
$\mathrm{C}_{\text {in }}$	Control inputs	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$ or 0				3		pF
$\mathrm{Cio}_{\text {io(OFF) }}$		$\mathrm{V}_{\mathrm{I} / \mathrm{O}}=3 \mathrm{~V}$ or 0,	Switch OFF,	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND		5		pF
C_{io} (ON)		$\mathrm{V}_{\mathrm{I} / \mathrm{O}}=3 \mathrm{~V}$ or 0 ,	Switch ON,	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND		12.5		pF
$\mathrm{r}_{\text {¢ }}{ }^{\text {I }}$		$\begin{aligned} & \mathrm{VCC}=4 \mathrm{~V}, \\ & \text { TYP at } \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$,	$\mathrm{I}=-15 \mathrm{~mA}$		8	12	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$V_{l}=0$	$\mathrm{I}=64 \mathrm{~mA}$		3	6	
		$\mathrm{I}=30 \mathrm{~mA}$			3	6		
		$\mathrm{V}_{\mathrm{l}}=2.4 \mathrm{~V}$,	$\mathrm{I} \mathrm{O}=-15 \mathrm{~mA}$		5	10		

V_{IN} and I_{IN} refer to control inputs. $\mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{O}}, \mathrm{I}_{\mathrm{I}}$, and I_{O} refer to data pins.
\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ (unless otherwise noted), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For I/O ports, the parameter loz includes the input leakage current.
§ This is the increase in supply current for each input that is at the specified voltage level, rather than $V_{C C}$ or GND.
II Measured by the voltage drop between the A and B terminals at the indicated current through the switch. ON-state resistance is determined by the lower of the voltages of the two (A or B) terminals.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ \pm 0.5 \mathrm{~V} \end{gathered}$		UNIT
			MIN MAX	MIN	MAX	
$t_{\text {pd }}{ }^{\text {\# }}$	A or B	B or A	0.24		0.15	ns
ten	$\overline{\mathrm{OE}}$	A or B	4.4	1.5	4	ns
$\mathrm{t}_{\text {dis }}$	$\overline{\mathrm{OE}}$	A or B	4.4	1.5	4.4	ns

\# The propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).
undershoot characteristics (see Figures 1 and 2)

PARAMETER	TEST CONDITIONS			MIN	TYP†	MAX	UNIT
V OUTU	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	Switch OFF,	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	2	$\mathrm{V}_{\mathrm{OH}}-0.3$		V

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ (unless otherwise noted), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Figure 1. Device Test Setup

Figure 2. Transient Input Voltage $\left(\mathrm{V}_{\mathrm{I}}\right)$ and Output Voltage (VOUTU) Waveforms (Switch OFF)

PARAMETER MEASUREMENT INFORMATION

TEST	$\mathrm{V}_{\text {cc }}$	S1	R_{L}	V_{1}	C_{L}	V_{Δ}
${ }^{\text {tpd }}$ (s)	$\begin{gathered} 5 \mathrm{~V} \pm 0.5 \mathrm{~V} \\ 4 \mathrm{~V} \end{gathered}$	Open Open	$\begin{aligned} & 500 \Omega \\ & 500 \Omega \end{aligned}$	V_{CC} or GND $V_{C C}$ or GND	$\begin{aligned} & 50 \mathrm{pF} \\ & 50 \mathrm{pF} \end{aligned}$	
tPLZ/tPZL	$\begin{gathered} 5 \mathrm{~V} \pm 0.5 \mathrm{~V} \\ 4 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 7 \mathrm{~V} \\ & 7 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 500 \Omega \\ & 500 \Omega \end{aligned}$	$\begin{aligned} & \text { GND } \\ & \text { GND } \end{aligned}$	$\begin{aligned} & 50 \mathrm{pF} \\ & 50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 0.3 \mathrm{~V} \\ & 0.3 \mathrm{~V} \end{aligned}$
tPHz/tPZH	$\begin{gathered} 5 \mathrm{~V} \pm 0.5 \mathrm{~V} \\ 4 \mathrm{~V} \end{gathered}$	Open Open	$\begin{aligned} & 500 \Omega \\ & 500 \Omega \end{aligned}$	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 50 \mathrm{pF} \\ & 50 \mathrm{nF} \end{aligned}$	$\begin{aligned} & 0.3 \mathrm{~V} \\ & 0.3 \mathrm{~V} \end{aligned}$

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $\quad t P L Z$ and $t P H Z$ are the same as $t_{d i s}$.
F. tpZL and tPZH are the same as ten.
G. $t_{P L H}$ and $t_{P H L}$ are the same as $t_{p d(s) . ~ T h e ~ t p d ~ p r o p a g a t i o n ~ d e l a y ~ i s ~ t h e ~ c a l c u l a t e d ~ R C ~ t i m e ~ c o n s t a n t ~ o f ~ t h e ~ t y p i c a l ~ O N-s t a t e ~}^{\text {a }}$ resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).
H. All parameters and waveforms are not applicable to all devices.

Figure 3. Test Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
SN74CBT3125CD	ACTIVE	SOIC	D	14	50	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CBT3125C	Samples
SN74CBT3125CDBQR	ACTIVE	SSOP	DBQ	16	2500	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CU125C	Samples
SN74CBT3125CDBR	ACTIVE	SSOP	DB	14	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CU125C	Samples
SN74CBT3125CDE4	ACTIVE	SOIC	D	14	50	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CBT3125C	Samples
SN74CBT3125CDR	ACTIVE	SOIC	D	14	2500	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CBT3125C	Samples
SN74CBT3125CPW	ACTIVE	TSSOP	PW	14	90	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CU125C	Samples
SN74CBT3125CPWR	ACTIVE	TSSOP	PW	14	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CU125C	Samples
SN74CBT3125CPWRE4	ACTIVE	TSSOP	PW	14	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CU125C	Samples
SN74CBT3125CPWRG4	ACTIVE	TSSOP	PW	14	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CU125C	Samples
SN74CBT3125CRGYR	ACTIVE	VQFN	RGY	14	3000	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CU125C	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free"
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
SN74CBT3125CDBQR	SSOP	DBQ	16	2500	330.0	12.5	6.4	5.2	2.1	8.0	12.0	Q1
SN74CBT3125CDBR	SSOP	DB	14	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
SN74CBT3125CDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74CBT3125CPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74CBT3125CRGYR	VQFN	RGY	14	3000	330.0	12.4	3.75	3.75	1.15	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74CBT3125CDBQR	SSOP	DBQ	16	2500	340.5	338.1	20.6
SN74CBT3125CDBR	SSOP	DB	14	2000	356.0	356.0	35.0
SN74CBT3125CDR	SOIC	D	14	2500	340.5	336.1	32.0
SN74CBT3125CPWR	TSSOP	PW	14	2000	367.0	367.0	35.0
SN74CBT3125CRGYR	VQFN	RGY	14	3000	367.0	367.0	35.0

TUBE

- B - Alignment groove width
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	$\mathbf{L}(\mathbf{m m})$	$\mathbf{W}(\mathbf{m m})$	T ($\boldsymbol{\mu m}$)	B (mm)
SN74CBT3125CD	D	SOIC	14	50	507	8	3940	4.32
SN74CBT3125CDE4	D	SOIC	14	50	507	8	3940	4.32
SN74CBT3125CPW	PW	TSSOP	14	90	530	10.2	3600	3.5

D (R-PDSO-G14)
PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $0.006(0,15)$ each side.
(D) Body width does not include interlead flash. Interlead flash shall not exceed $0.017(0,43)$ each side.
E. Reference JEDEC MS-012 variation AB.

D (R-PDSO-G14)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
(D) Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
E. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 inch, per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MO-137, variation AB.

SOLDER MASK DETAILS

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE
BASED ON . 005 INCH [0.127 MM] THICK STENCIL
SCALE:8X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. QFN (Quad Flatpack No-Lead) package configuration.
D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated.
The Pin 1 identifiers are either a molded, marked, or metal feature.
G. Package complies to JEDEC MO-241 variation BA.
RGY (S-PVQFN-N14) PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).
For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions

NOTE: All linear dimensions are in millimeters

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

DIM PINS **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$	$\mathbf{3 0}$	$\mathbf{3 8}$
A MAX	6,50	6,50	7,50	8,50	10,50	10,50	12,90
A MIN	5,90	5,90	6,90	7,90	9,90	9,90	12,30

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital Bus Switch ICs category:
Click to view products by Texas Instruments manufacturer:

Other Similar products are found below :
MT8986AP1 PI3CH800LE PI3C32X384BE PI3VT3245-ALE PI5C3125QEX PI3VT3245-AQE PI3C3384QE PI3B3861QE PI3B3245QEX PI3B3245QE PI3CH400ZBEX 728981JG8 PI3CH401LE CBT3245ABQ-Q100X 74CBTLV3126PW-Q10J SN74CBTLV3126DRG4 TC7WBL3305CFK(5L,F 74CB3Q3125DBQRE4 TC7MBL3125CFT(EL) TC7WB66CFK,LF TC7WBL3305CFK,LF PI5C3861QE PI3VT3306LE 74CBTLV1G125GN,132 QS3244QG8 QS32XVH2245Q2G QS3126QG8 QS32XVH245Q2G8 QS3VH16211PAG8 SN74CBT16245CDGGR SN74CB3Q16811DGGR 74CBTLV3384PGG8 7WBD3306DTR2G 74CBTLV6800PGG 74CBTLV3126BQ-Q10X SN74CBT16210CDGGR PI3B3861QEX PI3C3125WE PI3C3126QEX PI3C3245QE PI5C3384QE QS3VH16861PAG 74CBTLV16245PAG QS3VH16861PAG8 QS32XVH384Q1G8 PI3B3126QE PI3B3125QE PI3C3861-AQEX PI3C3245QEX PI3C3245LEX

