

SN74HCS165-Q1

ZHCSNG7D - AUGUST 2020 - REVISED DECEMBER 2021

SN74HCS165-Q1 汽车类 8 位并行负载移位寄存器

1 特性

- 符合面向汽车应用的 AEC-Q100 标准:
 - 器件温度等级 1:
 - 40°C 至 +125°C,T_A
 - 器件 HBM ESD 分类等级 2
 - 器件 CDM ESD 分类等级 C6
- 采用具有可湿性侧面的 QFN (WBQB) 封装
- 宽工作电压范围: 2V 至 6V
- 施密特触发输入可耐受慢速或高噪声输入信号
- 低功耗
 - I_{CC} 典型值为 100nA
 - 输入泄漏电流典型值为 ±100nA
- 电压为 6V 时,输出驱动为 ±7.8mA

2 应用

• 增加微控制器上的输入数

3 说明

SN74HCS165-Q1 是一款具有施密特触发输入的并行 或串行输入/串行输出8位移位寄存器。

	器件信息	
器件型号	封装 ⁽¹⁾	封装尺寸(标称值)
SN74HCS165PW-Q1	TSSOP (16)	5.00mm × 4.40mm
SN74HCS165D-Q1	SOIC (16)	9.90mm x 3.90mm
SN74HCS165BQB-Q1	WQFN (16)	3.60mm x 2.60mm
SN74HCS165DYY-Q1	SOT-23-THN (16)	4.20mm × 2.00mm
SN74HCS165WBQB-Q1	WQFN (16)	3.60mm x 2.60mm

(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。

	Low Power	Noise Rejection	Supports Slow Inputs
Input Voltage Waveforms	abetion Input Voltage	tinden Time	time Time
Standard CMOS Input Response Waveforms	Supply Current Input Voltage	Output Output Lime	Output Voltage
Schmitt-trigger CMOS Input Response Waveforms	Nutrent Nutren	Output Current Voltage	Output Current Voltage

施密特触发输入的优势

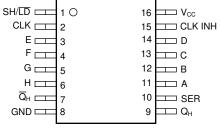
Table of Contents

1	特性1
2	应用1
3	说明1
	Revision History
5	Pin Configuration and Functions
6	Specifications
	6.1 Absolute Maximum Ratings4
	6.2 ESD Ratings 4
	6.3 Recommended Operating Conditions4
	6.4 Thermal Information5
	6.5 Electrical Characteristics5
	6.6 Timing Characteristics6
	6.7 Switching Characteristics
	6.8 Operating Characteristics7
	6.9 Typical Characteristics
7	Parameter Measurement Information
8	Detailed Description10
	8.1 Overview10
	8.2 Functional Block Diagram10

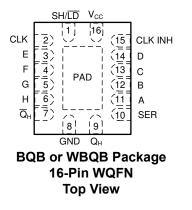
8.3 Feature Description	10
8.4 Device Functional Modes	
9 Application and Implementation	
9.1 Application Information	
9.2 Typical Application	
10 Power Supply Recommendations	
11 Layout	16
11.1 Layout Guidelines	16
11.2 Layout Example	
12 Device and Documentation Support	17
12.1 Documentation Support	17
12.2 接收文档更新通知	
12.3 支持资源	17
12.4 Trademarks	
12.5 Electrostatic Discharge Caution	
12.6 术语表	
13 Mechanical, Packaging, and Orderable	
Information	18

4 Revision History 注:以前版本的页码可能与当前版本的页码不同

С	hanges from Revision C (June 2021) to Revision D (December 2021)	Page
•	向 <i>器件信息</i> 表添加了 WBQB 封装信息	1
•	Added WBQB Package pinout diagram and information to Pin Configuration and Functions	3
•	Added WBQB package to Thermal Information table	5
•	Added wettable flanks to Feature Description	10
С	hanges from Revision B (March 2021) to Revision C (June 2021)	Page


•	将 DYY 封装从"产品预发和	乍"更改为	"量产数据"	·	l

Changes from Revision A (February 2021) to Revision B (March 2021)	Page
 Added DYY Package pinout diagram and information to <i>Pin Configuration and Func</i> Added DYY Package to <i>Thermal Information</i> table 	
Changes from Revision * (August 2020) to Revision A (February 2021)	Page


	······································	3-
•	向 <i>器件信息</i> 表添加了 BQB 封装信息	1
	Added BQB package information to Pin Configuration and Functions	
	Added BQB package information to the Thermal Information table	

5 Pin Configuration and Functions

D, PW, or DYY Package 16-Pin SOIC, TSSOP, or SOT Top View

表 5-1. Pin Functions

PI	N		
SOIC, TSSOP, or WQFN NO.	NAME	I/O ⁽¹⁾	DESCRIPTION
1	SH/LD	I	Enable shifting when input is high, load data when input is low
2	CLK	I	Clock, rising edge triggered
3	E	I	Parallel input E
4	F	I	Parallel input F
5	G	I	Parallel input G
6	Н	I	Parallel input H
7	Q _H	0	Inverted serial output
8	GND — Ground		
9	Q _H	0	Serial output
10 SER I Seria		I	Serial input
11	A	I	Parallel input A
12	В	I	Parallel input B
13	С	I	Parallel input C
14	D	I	Parallel input D
15	CLK INH	I	Clock inhibit input
16	V _{CC}	_	Positive supply
Therma	l Pad ⁽²⁾	_	The thermal pad can be connect to GND or left floating. Do not connect to any other signal or supply.

(1) Signal Types: I = Input, O = Output, I/O = Input or Output.

(2) Only applies to the BQB and WBQB package.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		- 0.5	7	V
I _{IK}	Input clamp current ⁽²⁾	$V_{\rm I}$ < - 0.5 V or $V_{\rm I}$ > $V_{\rm CC}$ + 0.5 V		±20	mA
I _{ок}	Output clamp current ⁽²⁾	$V_{\rm I} < -0.5$ V or $V_{\rm I} > V_{\rm CC} + 0.5$ V		±20	mA
I _O	Continuous output current	$V_{O} = 0$ to V_{CC}		±35	mA
	Continuous current through V _{CC}	or GND		±70	mA
TJ	Junction temperature ⁽³⁾			150	°C
T _{stg}	Storage temperature		- 65	150	°C

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) Guaranteed by design.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human body model (HBM), per AEC Q100-002 ⁽¹⁾ HBM ESD Classification Level 2	±4000	V
V _(ESD)		Charged device model (CDM), per AEC Q100-011 CDM ESD Classification Level C6	±1500	v

(1) AEC Q100-002 indicate that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	2	5	6	V
VI	Input voltage	0		V _{CC}	V
Vo	Output voltage	0		V _{CC}	V
T _A	Ambient temperature	- 40		125	°C

6.4 Thermal Information

			;	SN74HCS165-Q ²	1		
	THERMAL METRIC ⁽¹⁾	PW (TSSOP)	D (SOIC)	BQB (WQFN)	DYY (SOT)	WBQB (WQFN)	UNIT
		16 PINS	16 PINS	16 PINS	16 PINS	16 PINS	
R _{0 JA}	Junction-to-ambient thermal resistance	141.2	122.2	108.4	186.2	97.3	°C/W
R _θ JC(top)	Junction-to-case (top) thermal resistance	78.8	80.9	77.3	109.1	93.8	°C/W
R _{θ JB}	Junction-to-board thermal resistance	85.8	80.6	74.4	111.0	66.4	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	27.7	40.4	12.6	18.0	14.6	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	85.5	80.3	74.5	110.9	66.4	°C/W
R _θ JC(bot)	Junction-to-case (bottom) thermal resistance	N/A	N/A	54.3	N/A	44.3	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

over operating free-air temperature range; typical values measured at $T_A = 25^{\circ}C$ (unless otherwise noted).

	PARAMETER	TEST CC	NDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
				2 V	0.7		1.5	
V_{T+}	Positive switching threshold			4.5 V	1.7		3.15	V
				6 V	2.1		4.2	
				2 V	0.3		1.0	
V _{T-}	Negative switching threshold			4.5 V	0.9		2.2	V
				6 V	1.2		3.0	
				2 V	0.2		1.0	
${\scriptstyle \Delta V_T}$	Hysteresis (V _{T+} - V _{T-}) ⁽¹⁾			4.5 V	0.4		1.4	V
				6 V	0.6		1.6	
			I _{OH} = -20 μA	2 V to 6 V	V _{CC} - 0.1	V _{CC} - 0.002		
V _{OH}	High-level output voltage	$V_I = V_{IH} \text{ or } V_{IL}$	I _{OH} = -6 mA	4.5 V	4.0	4.3		V
			I _{OH} = -7.8 mA	6 V	5.4	5.75		
			I _{OL} = 20 μA	2 V to 6 V		0.002	0.1	
V _{OL}	Low-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 6 mA	4.5 V		0.18	0.30	V
			I _{OL} = 7.8 mA	6 V		0.22	0.33	
I _I	Input leakage current	$V_{I} = V_{CC} \text{ or } 0$		6 V		±100	±1000	nA
I _{CC}	Supply current	$V_{I} = V_{CC} \text{ or } 0, I_{C}$	_D = 0	6 V		0.1	2	μA
Ci	Input capacitance			2 V to 6 V			5	pF

(1) Guaranteed by design.

6.6 Timing Characteristics

C_L = 50 pF; over operating free-air temperature range (unless otherwise noted). See *Parameter Measurement Information*.

				Operating free-ai	r temperature (T _A)	
	PARAMETE	R	Vcc	25°C	- 40°C to 125°C	UNIT
				MIN MAX	MIN MAX	
			2 V	49	43	
: clock	Clock frequency		4.5 V	130	120	MHz
			6 V	170	150	
			2 V	6	7	
		SH/LD low	4.5 V	6	7	
	Pulse duration		6 V	6	7	
w	Pulse duration		2 V	7	11	ns
		CLK high or low	4.5 V	6	7	
			6 V	6	7	
			2 V	13	21	
		SH/LD high before CLK ↑	4.5 V	5	7	1
		OLK	6 V	4	6	
			2 V	8	14	
		SER before CLK †	4.5 V	4	6	
			6 V	4	6	
			2 V	6	9	ns
su	Setup time	CLK INH low before CLK ↑	4.5 V	4	5	
		OLIVI	6 V	4	5	
			2 V	6	9	
		CLK INH high before CLK ↑	4.5 V	4	5	
		belore office	6 V	4	5	
			2 V	9	17	1
		Data before SH/LD ↑	4.5 V	4	6	1
		1	6 V	4	6	
			2 V	0	0	
		Ser data after CLK ↑	4.5 V	0	0	1
		1	6 V	0	0	
			2 V	5	6	
ı	Hold time	PAR data after SH/ LD ↑	4.5 V	4	5	ns
			6 V	3	4	
			2 V	0	0	
		SH/LD high after CLK ↑	4.5 V	0	0	-
			6 V	0	0	

6.7 Switching Characteristics

C_L = 50 pF; over operating free-air temperature range (unless otherwise noted). See *Parameter Measurement Information*.

						Op	perating	free-air	temperat	ure (T _A)	l.	
	PARAMETER		FROM	то	Vcc		25°C		- 40°	UNIT		
						MIN	TYP	MAX	MIN	TYP	MAX	
					2 V	49			43			
f _{ma}	ıx	Max switching frequency			4.5 V	130			120			MHz
					6 V	170			150			

C_L = 50 pF; over operating free-air temperature range (unless otherwise noted). See Parameter Measurement Information.

					Ор	erating	free-air	temperat	ure (T _A)				
	PARAMETER	FROM	то	V _{cc}		25°C		- 40°	C to 125	5°C	UNIT		
					MIN	TYP	MAX	MIN	TYP	MAX			
				2 V			39			65			
		SH/LD		Q_H or \overline{Q}_H	Q_H or \overline{Q}_H	4.5 V			19			24	
				6 V			17			19			
		CLK	K Q _H or Q _H	2 V			32	45					
t _{pd}	Propagation delay			4.5 V			16			18	ns		
				6 V			14			16			
					2 V			30			48		
		н		4.5 V		·	15			18			
				6 V			14			16			
				2 V			9			17			
tt	Transition-time		Any output	4.5 V			5			8	ns		
				6 V			4			7			

6.8 Operating Characteristics

over operating free-air temperature range; typical values measured at $T_A = 25^{\circ}C$ (unless otherwise noted).

PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT	
C _{pd} Power dissipation capacitance per gate	No load	2 V to 6 V		20		pF	

6.9 Typical Characteristics

Clock

Input

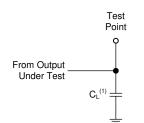
Data

Input

7 Parameter Measurement Information

Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_t < 2.5 ns.

For clock inputs, f_{max} is measured when the input duty cycle is 50%.


The outputs are measured one at a time with one input transition per measurement.

 V_{CC}

0 V

Vcc

0 V

CL includes probe and test-fixture capacitance.
 图 7-1. Load Circuit for Push-Pull Outputs

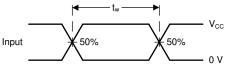
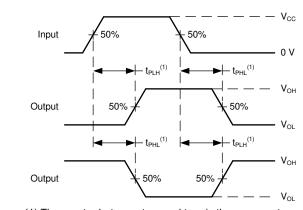
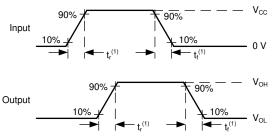


图 7-2. Voltage Waveforms, Pulse Duration




图 7-3. Voltage Waveforms, Setup and Hold Times

50%

50%

50%

(1) The greater between t_r and t_f is the same as t_t .

图 7-5. Voltage Waveforms, Input and Output Transition Times

8 Detailed Description

8.1 Overview

The SN74HCS165-Q1 is a parallel- or serial-in, serial-out 8-bit shift register with Schmitt-trigger inputs.

This device has two modes of operation: load data, and shift data.

When the shift or load (SH/ \overline{LD}) input is held in the low state, the internal registers are loaded with data from the eight lettered inputs (A-H). This operation is asynchronous. In this state, the output (Q) will have the same state as the input H, while the inverted output (\overline{Q}) will have the opposite state.

When the shift or load (SH/ \overline{LD}) input is held in the high state, the internal registers hold their current state until a clock pulse is received. On the rising edge of the clock (CLK) input, data from the serial input will be loaded into the first register, and the data in the internal registers will be shifted by one place. The last register will lose its value. The output (Q) will always be in the same state as the last register, and the inverted output (\overline{Q}) will have the opposite state. The clock inhibit (CLK INH) input can be held high to prevent clock pulses from being detected. CLK and CLK INH are interchangable inputs.

8.2 Functional Block Diagram



图 8-1. Logic Diagram (Positive Logic) for SN74HCS165-Q1

8.3 Feature Description

8.3.1 Balanced CMOS Push-Pull Outputs

This device includes balanced CMOS push-pull outputs. The term "balanced" indicates that the device can sink and source similar currents. The drive capability of this device may create fast edges into light loads so routing and load conditions should be considered to prevent ringing. Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without being damaged. It is important for the output power of the device to be limited to avoid damage due to overcurrent. The electrical and thermal limits defined in the *Absolute Maximum Ratings* must be followed at all times.

Unused push-pull CMOS outputs should be left disconnected.

8.3.2 CMOS Schmitt-Trigger Inputs

This device includes inputs with the Schmitt-trigger architecture. These inputs are high impedance and are typically modeled as a resistor in parallel with the input capacitance given in the *Electrical Characteristics* table from the input to ground. The worst case resistance is calculated with the maximum input voltage, given in the *Absolute Maximum Ratings* table, and the maximum input leakage current, given in the *Electrical Characteristics* table, using Ohm's law ($R = V \div I$).

The Schmitt-trigger input architecture provides hysteresis as defined by ΔV_T in the *Electrical Characteristics* table, which makes this device extremely tolerant to slow or noisy inputs. While the inputs can be driven much slower than standard CMOS inputs, it is still recommended to properly terminate unused inputs. Driving the inputs with slow transitioning signals will increase dynamic current consumption of the device. For additional information regarding Schmitt-trigger inputs, please see Understanding Schmitt Triggers.

8.3.3 Clamp Diode Structure

The inputs and outputs to this device have both positive and negative clamping diodes as depicted in Electrical Placement of Clamping Diodes for Each Input and Output.

CAUTION

Voltages beyond the values specified in the *Absolute Maximum Ratings* table can cause damage to the device. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

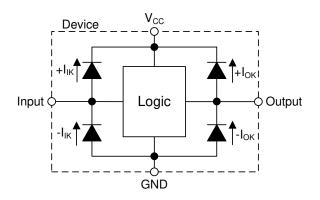
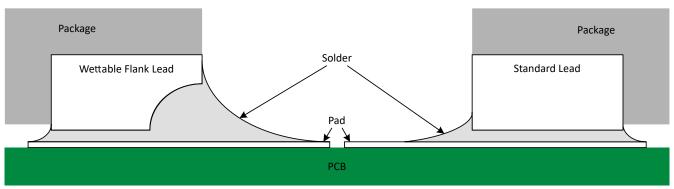


图 8-2. Electrical Placement of Clamping Diodes for Each Input and Output

8.3.4 Latching Logic

This device includes latching logic circuitry. Latching circuits commonly include D-type latches and D-type flipflops, but include all logic circuits that act as volatile memory.

When the device is powered on, the state of each latch is unknown. There is no default state for each latch at start-up.


The output state of each latching logic circuit only remains stable as long as power is applied to the device within the supply voltage range specified in the *Recommended Operating Conditions* table.

8.3.5 Wettable Flanks

This device includes wettable flanks for at least one package. See the *Features* section on the front page of the data sheet for which packages include this feature.

图 8-3. Simplified Cutaway View of Wettable-Flank QFN Package and Standard QFN Package After Soldering

Wettable flanks help improve side wetting after soldering which makes QFN packages easier to inspect with automatic optical inspection (AOI). A wettable flank can be dimpled or step-cut to provide additional surface area for solder adhesion which assists in reliably creating a side fillet as shown in 🛛 8-3. Please see the mechanical drawing for additional details.

8.4 Device Functional Modes

The Operating Mode Table and the Output Function Table list the functional modes of the SN74HCS165-Q1.

INPUTS ⁽¹⁾			FUNCTION
SH/LD	CLK	CLK INH	FUNCTION
L	X	Х	Parallel load
Н	н	Х	No change
Н	X	Н	No change
Н	L	t	Shift ⁽²⁾
Н	t t	L	Shift ⁽²⁾

表 8-1. Operating Mode Table

- (1) H = High Voltage Level, L = Low Voltage Level, X = Don't Care, \uparrow = Low to High transition
- (2) Shift : Content of each internal register shifts towards serial output Q_H. Data at SER is shifted into the first register.

表 8-2. Output	Function Table

INTERNAL REG	ISTERS ⁽¹⁾ ⁽²⁾	OUTPUTS ⁽²⁾					
A — G	Н	Q	Q				
Х	L	L	Н				
Х	Н	Н	L				

- (1) Internal registers refer to the shift registers inside the device. These values are set by either loading data from the parallel inputs, or by clocking data in from the serial input.
- (2) H = High Voltage Level, L = Low Voltage Level, X = Don't Care

9 Application and Implementation

备注

以下应用部分中的信息不属于 TI 器件规格的范围, TI 不担保其准确性和完整性。TI 的客 户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

9.1 Application Information

The SN74HCS165-Q1 is a parallel-input shift register, which can be used to reduce the number of required inputs on a system controller very significantly in some applications. Parallel data is loaded into the shift register, then the stored data can be loaded into a serial input of the system controller by clocking the shift register.

Multiple shift registers can be cascaded to provide more data inputs while still only using a single serial input to the system controller. This process is primarily limited by the required data input rate and timing characteristics of the selected shift register, as defined in the *Timing Charactestics* and *Switching Charactestics* tables.

An example block diagram is shown for using a single shift register in the *Typical application block diagram* below.

9.2 Typical Application

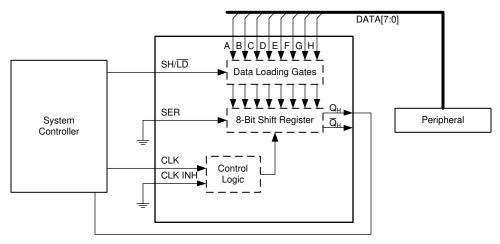


图 9-1. Typical application block diagram

9.2.1 Design Requirements

9.2.1.1 Power Considerations

Ensure the desired supply voltage is within the range specified in the *Recommended Operating Conditions*. The supply voltage sets the device's electrical characteristics as described in the *Electrical Characteristics*.

The positive voltage supply must be capable of sourcing current equal to the total current to be sourced by all outputs of the SN74HCS165-Q1 plus the maximum static supply current, I_{CC} , listed in *Electrical Characteristics* and any transient current required for switching. The logic device can only source as much current as is provided by the positive supply source. Be sure not to exceed the maximum total current through V_{CC} listed in the *Absolute Maximum Ratings*.

The ground must be capable of sinking current equal to the total current to be sunk by all outputs of the SN74HCS165-Q1 plus the maximum supply current, I_{CC} , listed in *Electrical Characteristics*, and any transient current required for switching. The logic device can only sink as much current as can be sunk into its ground connection. Be sure not to exceed the maximum total current through GND listed in the *Absolute Maximum Ratings*.

Copyright © 2022 Texas Instruments Incorporated

The SN74HCS165-Q1 can drive a load with a total capacitance less than or equal to 50 pF while still meeting all of the datasheet specifications. Larger capacitive loads can be applied, however it is not recommended to exceed 50 pF.

The SN74HCS165-Q1 can drive a load with total resistance described by $R_L \ge V_O / I_O$, with the output voltage and current defined in the *Electrical Characteristics* table with V_{OH} and V_{OL} . When outputting in the high state, the output voltage in the equation is defined as the difference between the measured output voltage and the supply voltage at the V_{CC} pin.

Total power consumption can be calculated using the information provided in CMOS Power Consumption and Cpd Calculation.

Thermal increase can be calculated using the information provided in Thermal Characteristics of Standard Linear and Logic (SLL) Packages and Devices.

CAUTION

The maximum junction temperature, $T_{J(max)}$ listed in the *Absolute Maximum Ratings*, is an additional limitation to prevent damage to the device. Do not violate any values listed in the *Absolute Maximum Ratings*. These limits are provided to prevent damage to the device.

9.2.1.2 Input Considerations

Input signals must cross $V_{t-(min)}$ to be considered a logic LOW, and $V_{t+(max)}$ to be considered a logic HIGH. Do not exceed the maximum input voltage range found in the *Absolute Maximum Ratings*.

Unused inputs must be terminated to either V_{CC} or ground. These can be directly terminated if the input is completely unused, or they can be connected with a pull-up or pull-down resistor if the input is to be used sometimes, but not always. A pull-up resistor is used for a default state of HIGH, and a pull-down resistor is used for a default state of LOW. The resistor size is limited by drive current of the controller, leakage current into the SN74HCS165-Q1, as specified in the *Electrical Characteristics*, and the desired input transition rate. A 10-k Ω resistor value is often used due to these factors.

The SN74HCS165-Q1 has no input signal transition rate requirements because it has Schmitt-trigger inputs.

Another benefit to having Schmitt-trigger inputs is the ability to reject noise. Noise with a large enough amplitude can still cause issues. To know how much noise is too much, please refer to the $\Delta V_{T(min)}$ in the *Electrical Characteristics*. This hysteresis value will provide the peak-to-peak limit.

Unlike what happens with standard CMOS inputs, Schmitt-trigger inputs can be held at any valid value without causing huge increases in power consumption. The typical additional current caused by holding an input at a value other than V_{CC} or ground is plotted in the *Typical Characteristics*.

Refer to the *Feature Description* section for additional information regarding the inputs for this device.

9.2.1.3 Output Considerations

The positive supply voltage is used to produce the output HIGH voltage. Drawing current from the output will decrease the output voltage as specified by the V_{OH} specification in the *Electrical Characteristics*. The ground voltage is used to produce the output LOW voltage. Sinking current into the output will increase the output voltage as specified by the V_{OL} specification in the *Electrical Characteristics*.

Push-pull outputs that could be in opposite states, even for a very short time period, should never be connected directly together. This can cause excessive current and damage to the device.

Two channels within the same device with the same input signals can be connected in parallel for additional output drive strength.

Unused outputs can be left floating. Do not connect outputs directly to V_{CC} or ground.

Refer to *Feature Description* section for additional information regarding the outputs for this device.

9.2.2 Detailed Design Procedure

- Add a decoupling capacitor from V_{CC} to GND. The capacitor needs to be placed physically close to the device and electrically close to both the V_{CC} and GND pins. An example layout is shown in the *Layout* section.
- 2. Ensure the capacitive load at the output is ≤ 50 pF. This is not a hard limit, however it will ensure optimal performance. This can be accomplished by providing short, appropriately sized traces from the SN74HCS165-Q1 to the receiving device(s).
- 3. Ensure the resistive load at the output is larger than (V_{CC} / I_{O(max)}) Ω. This will ensure that the maximum output current from the *Absolute Maximum Ratings* is not violated. Most CMOS inputs have a resistive load measured in megaohms; much larger than the minimum calculated above.
- 4. Thermal issues are rarely a concern for logic gates, however the power consumption and thermal increase can be calculated using the steps provided in the application report, CMOS Power Consumption and Cpd Calculation.

9.2.3 Application Curve

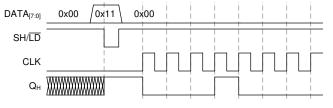


图 9-2. Application timing diagram

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions*. Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. A 0.1- μ F capacitor is recommended for this device. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. The 0.1- μ F and 1- μ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results, as shown in given example layout image.

11 Layout

11.1 Layout Guidelines

When using multiple-input and multiple-channel logic devices inputs must not ever be left floating. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such unused input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally, the inputs are tied to GND or V_{CC} , whichever makes more sense for the logic function or is more convenient.

11.2 Layout Example

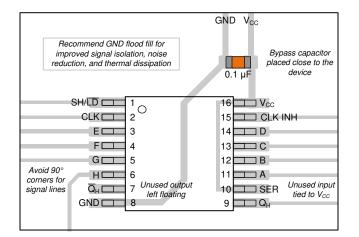


图 11-1. Example layout for the SN74HCS165-Q1 in the PW package.

12 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following:

- Texas Instruments, HCMOS Design Considerations application report (SCLA007)
- Texas Instruments, CMOS Power Consumption and Cpd Calculation application report (SDYA009)
- Texas Instruments, Designing With Logic application report

12.2 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新*进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

12.3 支持资源

TI E2E[™] 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解 答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

12.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments. 所有商标均为其各自所有者的财产。

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 术语表

TI术语表 本术语表列出并解释了术语、首字母缩略词和定义。

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		QLy	(2)	(6)	(3)		(4/5)	
SN74HCS165QBQBRQ1	ACTIVE	WQFN	BQB	16	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CS165Q	Samples
SN74HCS165QDRQ1	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HCS165Q	Samples
SN74HCS165QDYYRQ1	ACTIVE	SOT-23-THIN	DYY	16	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HCS165Q	Samples
SN74HCS165QPWRQ1	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HCS165Q	Samples
SN74HCS165QWBQBRQ1	ACTIVE	WQFN	BQB	16	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CS165Q	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

www.ti.com

PACKAGE OPTION ADDENDUM

19-Dec-2021

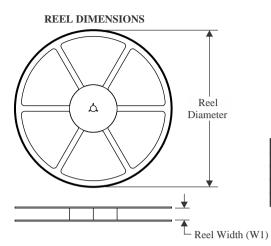
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

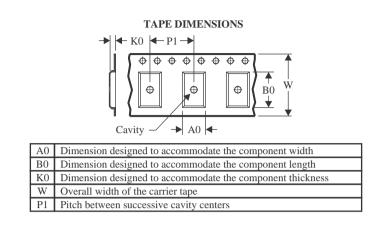
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74HCS165-Q1 :

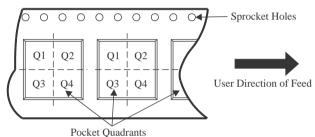
• Catalog : SN74HCS165

NOTE: Qualified Version Definitions:


• Catalog - TI's standard catalog product

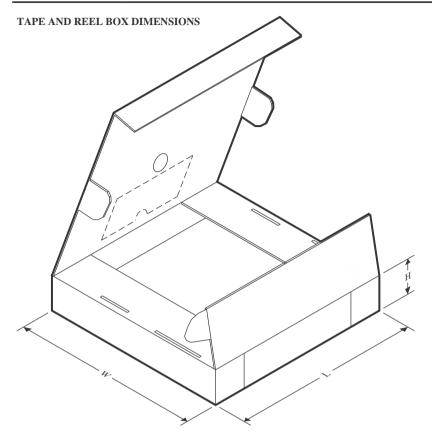


Texas


STRUMENTS

TAPE AND REEL INFORMATION

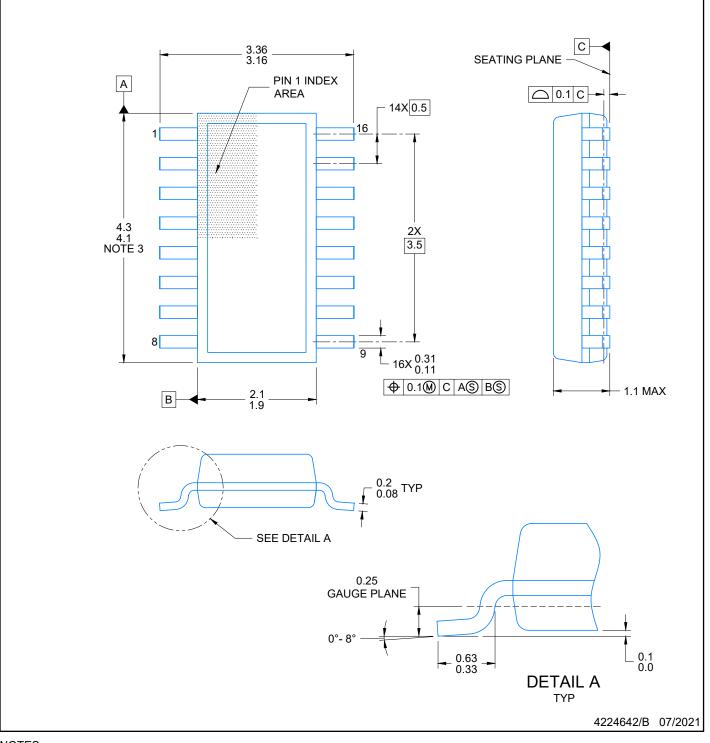
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	-	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74HCS165QBQBRQ1	WQFN	BQB	16	3000	180.0	12.4	2.8	3.8	1.2	4.0	12.0	Q1
SN74HCS165QDRQ1	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74HCS165QDYYRQ1	SOT-23- THIN	DYY	16	3000	330.0	12.4	4.8	3.6	1.6	8.0	12.0	Q3
SN74HCS165QPWRQ1	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74HCS165QWBQBRQ1	WQFN	BQB	16	3000	180.0	12.4	2.8	3.8	1.2	4.0	12.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

3-Jun-2022


*All dimensions are nominal

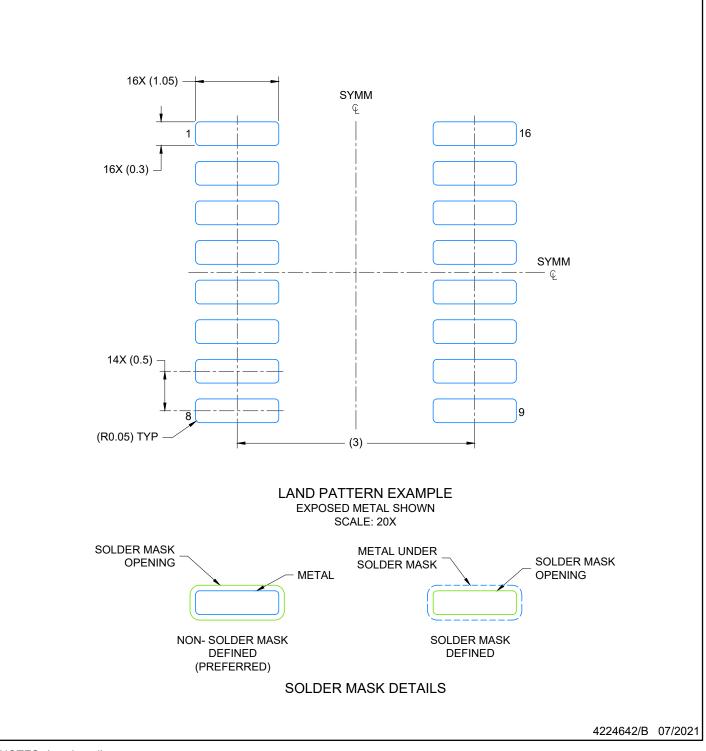
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74HCS165QBQBRQ1	WQFN	BQB	16	3000	210.0	185.0	35.0
SN74HCS165QDRQ1	SOIC	D	16	2500	356.0	356.0	35.0
SN74HCS165QDYYRQ1	SOT-23-THIN	DYY	16	3000	336.6	336.6	31.8
SN74HCS165QPWRQ1	TSSOP	PW	16	2000	356.0	356.0	35.0
SN74HCS165QWBQBRQ1	WQFN	BQB	16	3000	210.0	185.0	35.0

DYY0016A

PACKAGE OUTLINE SOT-23-THIN - 1.1 mm max height

PLASTIC SMALL OUTLINE

NOTES:

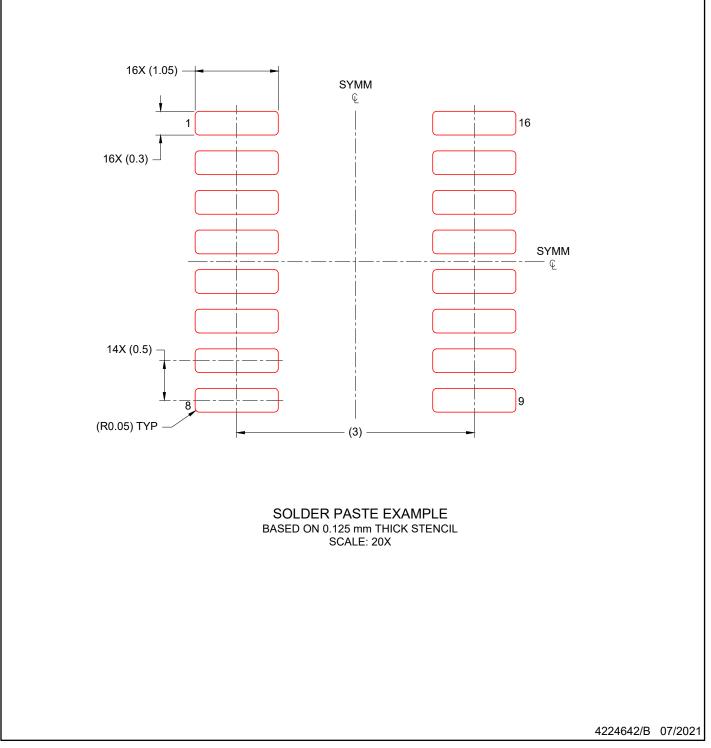

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- 5. Reference JEDEC Registration MO-345, Variation AA

DYY0016A

EXAMPLE BOARD LAYOUT SOT-23-THIN - 1.1 mm max height

PLASTIC SMALL OUTLINE

NOTES: (continued)


- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

DYY0016A

EXAMPLE STENCIL DESIGN SOT-23-THIN - 1.1 mm max height

PLASTIC SMALL OUTLINE

NOTES: (continued)

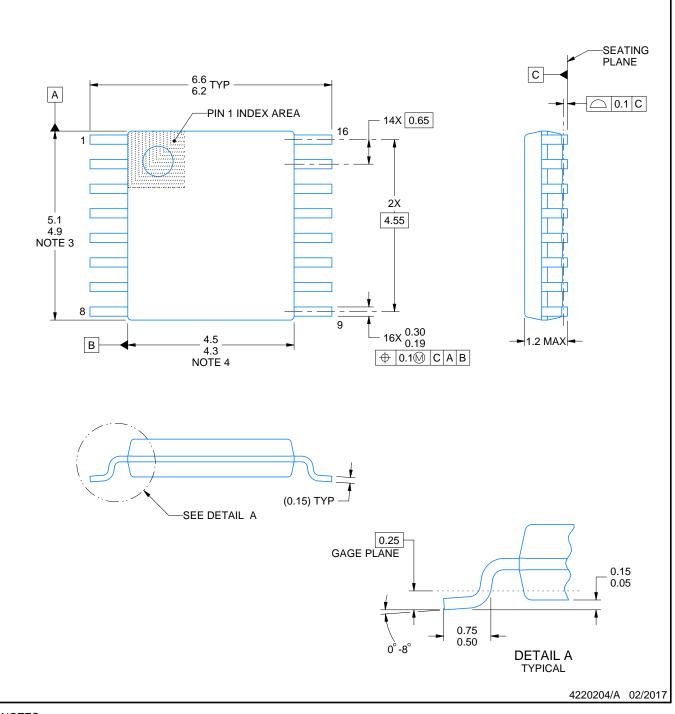
- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.


PW0016A

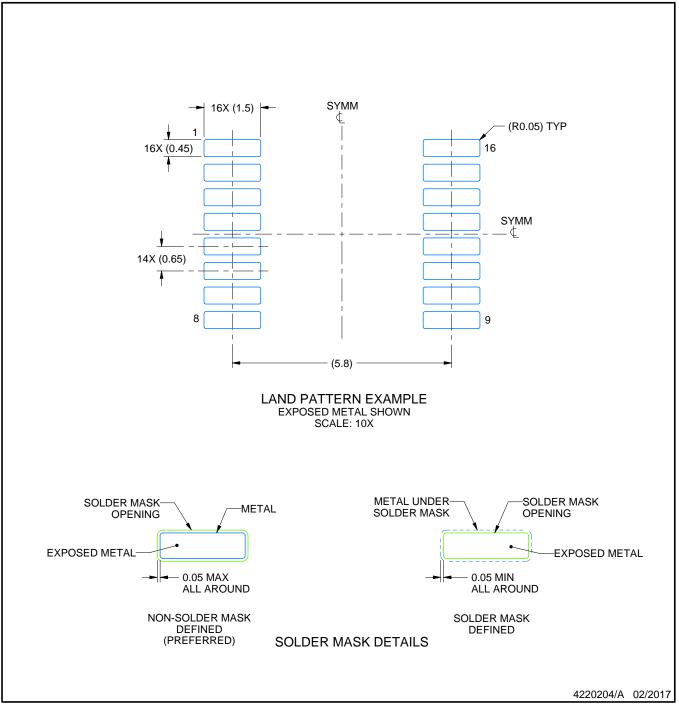
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



PW0016A

EXAMPLE BOARD LAYOUT

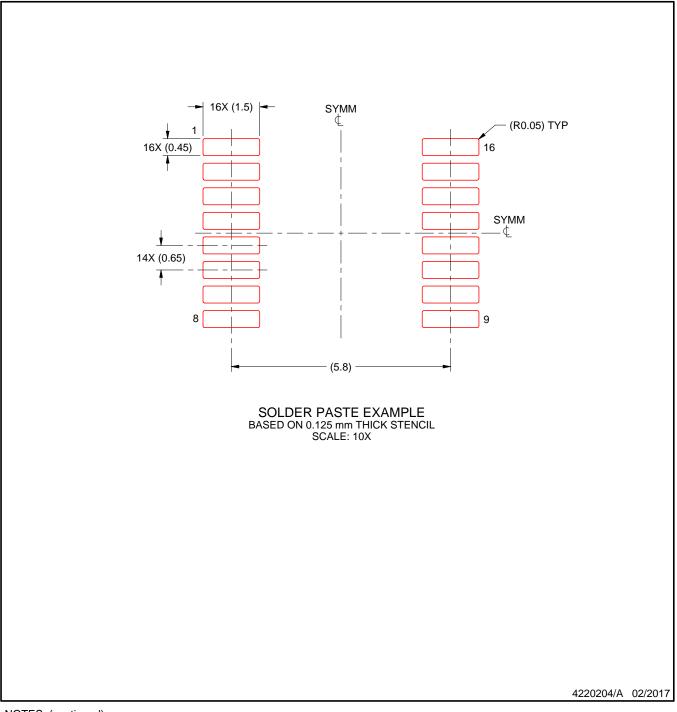
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0016A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

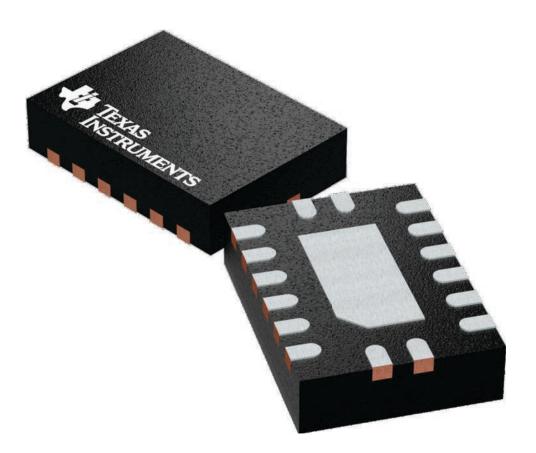
SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

BQB 16

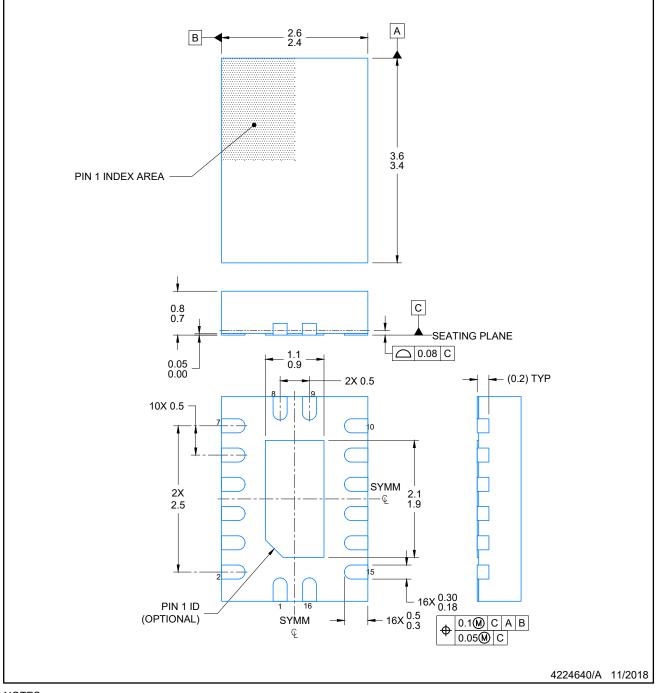

GENERIC PACKAGE VIEW

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

2.5 x 3.5, 0.5 mm pitch

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.



BQB0016A

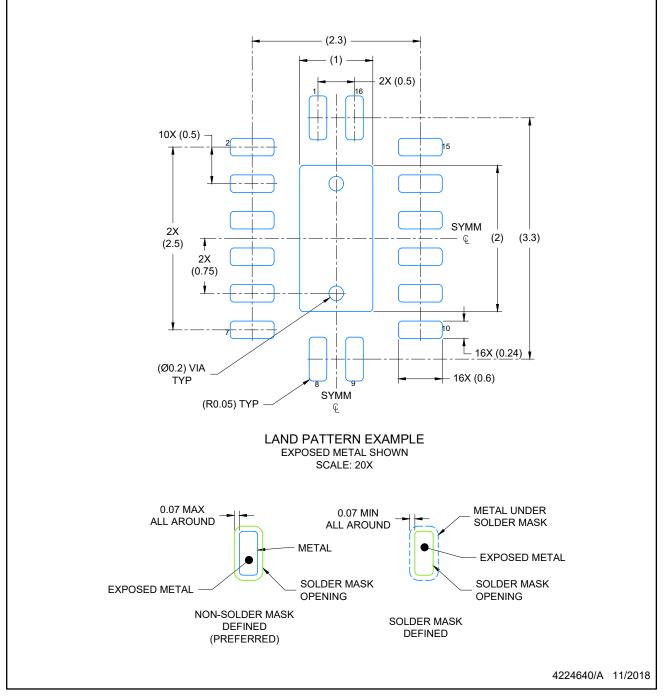
PACKAGE OUTLINE

WQFN - 0.8 mm max height

PLASTIC QUAD FLAT PACK-NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.



BQB0016A

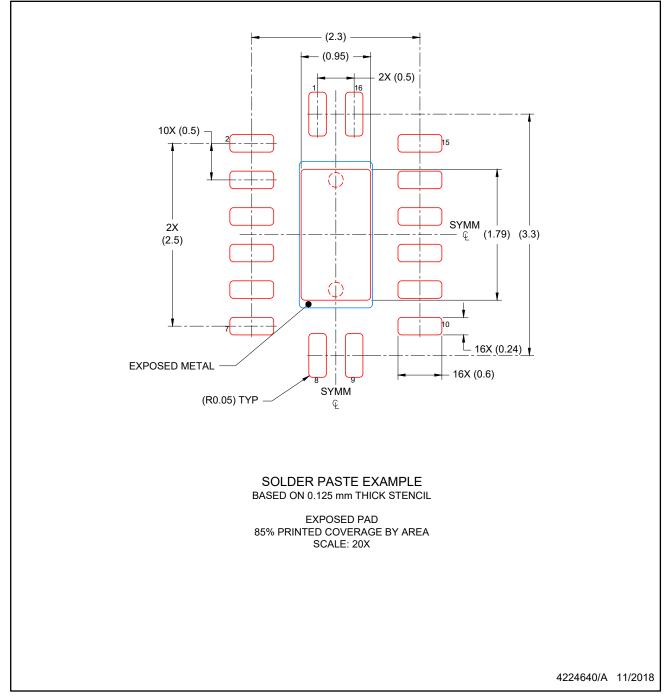
EXAMPLE BOARD LAYOUT

WQFN - 0.8 mm max height

PLASTIC QUAD FLAT PACK-NO LEAD

NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



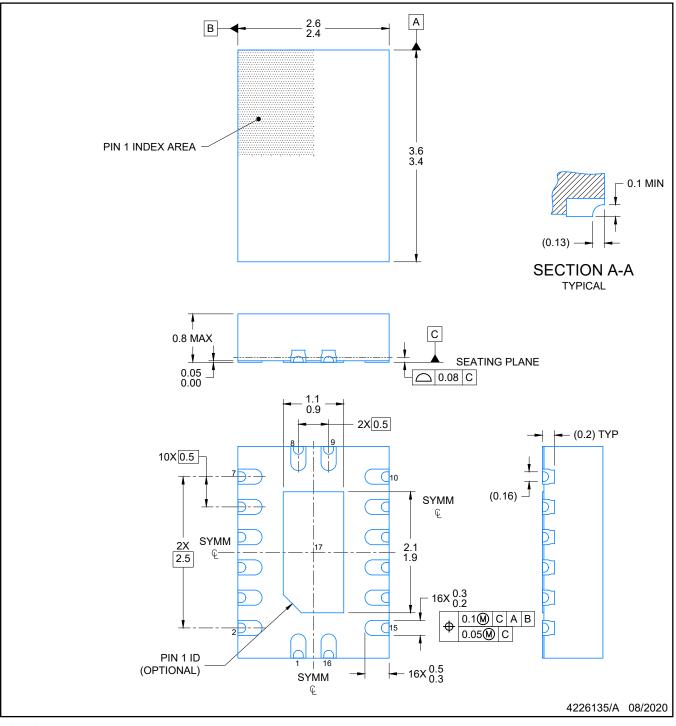
BQB0016A

EXAMPLE STENCIL DESIGN

WQFN - 0.8 mm max height

PLASTIC QUAD FLAT PACK-NO LEAD

NOTES: (continued)


6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

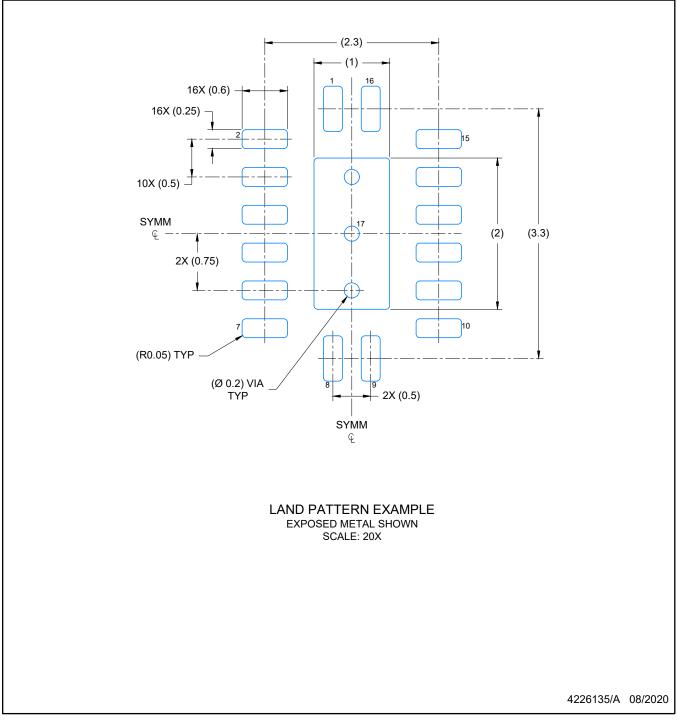
BQB0016B

PACKAGE OUTLINE WQFN - 0.8 mm max height

INDSTNAME

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.



BQB0016B

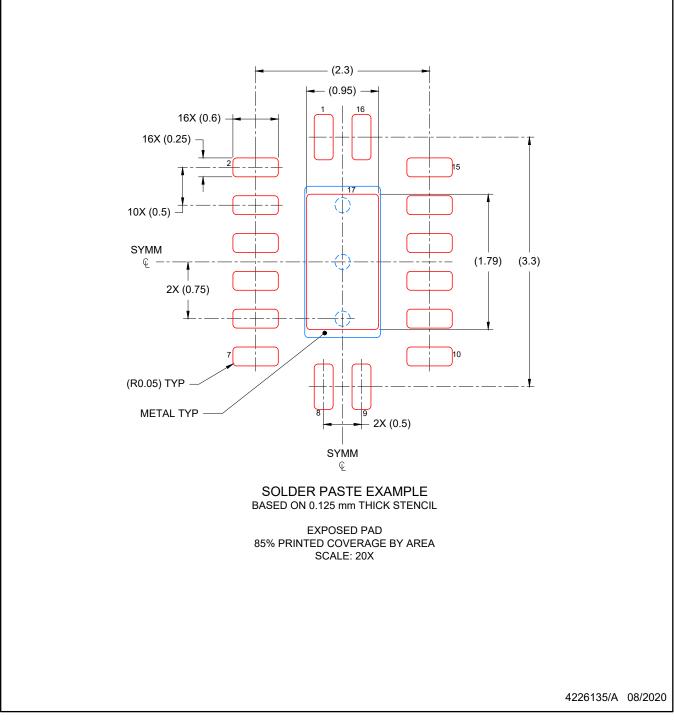
EXAMPLE BOARD LAYOUT

WQFN - 0.8 mm max height

INDSTNAME

NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



BQB0016B

EXAMPLE STENCIL DESIGN

WQFN - 0.8 mm max height

INDSTNAME

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Counter Shift Registers category:

Click to view products by Texas Instruments manufacturer:

Other Similar products are found below :

CD4031BE CD4034BE NLV74HC165ADTR2G 5962-9172201M2A MC100EP142MNG MC100EP016AMNG MC74LV594ADR2G NLV14094BDTR2G NLV74HC589ADR2G AiP74HC595TA16.TR SN74LS295BN AIP74HC164TA14.TR TM74HC164 74HC164D AiP74HC165SA16.TR 74HC573D AiP74HC165TA16.TR XL74HC597-TS 74HC164MT/TR XL74HC595TS 74HC595DMT/TR CD4094DMT/TR 74HC595D(MS) CD4094DM/TR 74HC164D GN165D 74HC595DM/TR AIP74HC595SA.TR XL4021B 74HC164D(MS) 74HC595MT/TR XL74HC165-TS 74HC595D 74HC595D 74HC595D. 74HC595BQ RS595SXTSS16 Aip74HC595SA16.TR SN74LS164DR-HXY 74HC164DR RS595SXS16 74HC165-HXY 74HC595E RS164XQ GN74HC595D 74HC164DRG XD74HC165 SN74LV165AQWBQBRQ1 AiP74HC4094SA16.TR HX74HC595IDRG