

SN74HCS86-Q1

ZHCSK21C - JULY 2019 - REVISED MARCH 2021

SN74HCS86-Q1 具有施密特触发输入的汽车类四路双输入异或门

1 特性

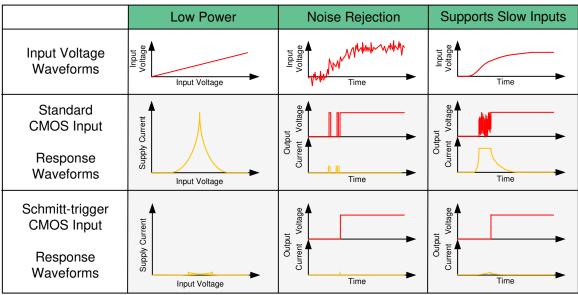
TEXAS

- 符合面向汽车应用的 AEC-Q100 标准:
 - 器件温度等级 1:

INSTRUMENTS

- 40°C 至 +125°C,T_A
- 器件 HBM ESD 分类等级 2
- 器件 CDM ESD 分类等级 C6
- 宽工作电压范围: 2V 至 6V
- 施密特触发输入可实现慢速或高噪声输入信号
- 低功耗
 - I_{CC} 典型值为 100nA
 - 输入泄漏电流典型值为 ±100nA
- 电压为 6V 时,输出驱动为 ±7.8mA

2 应用


- 检测输入信号中的相位差
- 创建可选的逆变器/缓冲器

3 说明

此器件包含四个具有施密特触发输入的独立双输入异或 门。每个逻辑门以正逻辑执行布尔函数 **Y** = **A** ⊕ **B**。

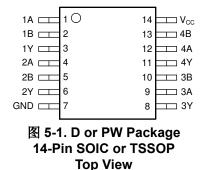
器件信息						
器件型号	封装 ⁽¹⁾	封装尺寸(标称值)				
SN74HCS86PW-Q1	TSSOP (14)	5.00mm × 4.40mm				
SN74HCS86D-Q1	SOIC (14)	9.90mm × 3.90mm				
SN74HCS86BQA-Q1	WQFN (14)	3.00mm x 2.50mm				

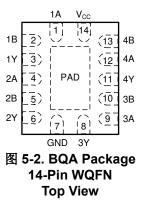
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。

施密特触发输入的优势

Table of Contents

1	特性	1
2	应用	1
3	说明	1
4	Revision History	2
5	Pin Configuration and Functions	3
	Pin Functions	3
6	Specifications	4
	6.1 Absolute Maximum Ratings	4
	6.2 ESD Ratings	4
	6.3 Recommended Operating Conditions	4
	6.4 Thermal Information	5
	6.5 Electrical Characteristics	
	6.6 Switching Characteristics	6
	6.7 Typical Characteristics	6
7	Parameter Measurement Information	7
8	Detailed Description	8
	8.1 Overview	8
	8.2 Functional Block Diagram	


8.3 Feature Description	8
8.4 Device Functional Modes	
9 Application and Implementation	
9.1 Application Information	
9.2 Typical Application	10
10 Power Supply Recommendations	1 <mark>3</mark>
11 Layout	13
11.1 Layout Guidelines	
11.2 Layout Example	13
12 Device and Documentation Support	14
12.1 Documentation Support	14
12.2 接收文档更新通知	14
12.3 支持资源	14
12.4 Trademarks	
12.5 静电放电警告	
12.6 术语表	
13 Mechanical, Packaging, and Orderable	
Information	15


4 Revision History 注:以前版本的页码可能与当前版本的页码不同

С	hanges from Revision B (September 2019) to Revision C (March 2021)	Page
•	更新了整个文档中的表格、图和交叉参考的编号格式	1
•	向 <i>器件信息</i> 表添加了 BQA 封装信息	
•	Added BQA package information to Pin Configuration and Functions	3
•	Added BQA package information to Thermal Information table	5
С	hanges from Revision A (August 2019) to Revision B (September 2019)	Page
•	向 <i>器件信息</i> 表中添加了 D 封装	1
•	Added D package information to Pin Configuration and Functions	3
•	Added D package column to Thermal Information table	5
С	hanges from Revision * (July 2019) to Revision A (August 2019)	Page
•	Deleted "I _{CC} " and "output" from "Continuous current through V _{CC} or GND" row for clarity	4

5 Pin Configuration and Functions

Pin Functions

PIN		- I/O	DESCRIPTION
NAME	NO.	- 1/0	DESCRIPTION
1A	1	Input	Channel 1, Input A
1B	2	Input	Channel 1, Input B
1Y	3	Output	Channel 1, Output Y
2A	4	Input	Channel 2, Input A
2B	5	Input	Channel 2, Input B
2Y	6	Output	Channel 2, Output Y
GND	7	_	Ground
3Y	8	Output	Channel 3, Output Y
3A	9	Input	Channel 3, Input A
3B	10	Input	Channel 3, Input B
4Y	11	Output	Channel 4, Output Y
4A	12	Input	Channel 4, Input A
4B	13	Input	Channel 4, Input B
V _{CC}	14	_	Positive Supply

1. BQA Package only.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		- 0.5	7	V
I _{IK}	Input clamp current ⁽²⁾	$V_{I} < -0.5 V \text{ or } V_{I} > V_{CC} + 0.5 V$		±20	mA
I _{OK}	Output clamp current ⁽²⁾	$V_{I} < -0.5 V \text{ or } V_{I} > V_{CC} + 0.5 V$		±20	mA
I _O	Continuous output current	$V_{O} = 0$ to V_{CC}		±35	mA
	Continuous current through V_{CC} or GND			±70	mA
TJ	Junction temperature ⁽³⁾		150	°C	
T _{stg}	Storage temperature		- 65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) Guaranteed by design.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human body model (HBM), per AEC Q100-002 ⁽¹⁾ HBM ESD Classification Level 2	±4000	V
V _(ESD)	Liechostand discharge	Charged device model (CDM), per AEC Q100-011 CDM ESD Classification Level C6	±1500	v

(1) AEC Q100-002 indicate that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	2	5	6	V
VI	Input voltage	0		V _{CC}	V
Vo	Output voltage	0		V _{CC}	V
Δ t/ Δ v	Input transition rise and fall rate		ι	Jnlimited	ns/V
T _A	Ambient temperature	- 40		125	°C

6.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	RMAL METRIC ⁽¹⁾ PW (TSSOP) D (SOIC) BQA (WQFN)		UNIT	
		14 PINS	14 PINS	14 PINS	
R _{θ JA}	Junction-to-ambient thermal resistance	151.7	133.6	109.7	°C/W
R ₀ JC(top)	Junction-to-case (top) thermal resistance	79.4	89.0	111.0	°C/W
R _{0 JB}	Junction-to-board thermal resistance	94.7	89.5	77.9	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	25.2	45.5	20.2	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	94.1	89.1	77.8	°C/W
R _{θ JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	56.6	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

over operating free-air temperature range; typical ratings measured at $T_A = 25^{\circ}C$ (unless otherwise noted).

	PARAMETER	TEST CC	NDITIONS	V _{cc}	MIN	ТҮР	MAX	UNIT
				2 V	0.7		1.5	
V _{T+}	Positive switching threshold			4.5 V	1.7		3.15	V
				6 V	2.1		4.2	
				2 V	0.3		1.0	
V _{T-}	Negative switching threshold			4.5 V	0.9		2.2	V
				6 V	1.2		3.0	
				2 V	0.2		1.0	
ΔV_T	Hysteresis (V _{T+} - V _{T-})			4.5 V	0.4		1.4	V
				6 V	0.6		1.6	
			I _{OH} = -20 μA	2 V to 6 V	V _{CC} - 0.1	V _{CC} - 0.002		
V _{OH}	High-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$	I _{OH} = -6 mA	4.5 V	4.0	4.3		V
			I _{OH} = -7.8 mA	6 V	5.4	5.75		
			I _{OL} = 20 μA	2 V to 6 V		0.002	0.1	
V _{OL}	Low-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 6 mA	4.5 V		0.18	0.30	V
			I _{OL} = 7.8 mA	6 V		0.22	0.33	
I _I	Input leakage current	$V_{I} = V_{CC} \text{ or } 0$		6 V		±100	±1000	nA
I _{CC}	Supply current	$V_{I} = V_{CC} \text{ or } 0, I_{C}$	_D = 0	6 V		0.1	2	μA
Ci	Input capacitance			2 V to 6 V			5	pF
C _{pd}	Power dissipation capacitance per gate	No load		2 V to 6 V		10		pF

6.6 Switching Characteristics

 C_L = 50 pF; over operating free-air temperature range; typical ratings measured at T_A = 25°C (unless otherwise noted). See Parameter Measurement Information.

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{cc}	MIN	TYP	MAX	UNIT
				2 V		15	36	
t _{pd}	Propagation delay	A or B	Y	4.5 V		7	13	ns
				6 V		6	12	
				2 V		9	16	
tt	Transition-time		Y	4.5 V		5	9	ns
				6 V		4	8	

6.7 Typical Characteristics

T_A = 25°C

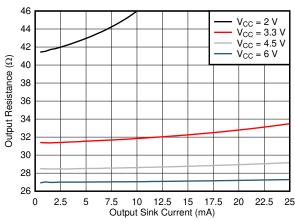


图 6-1. Output driver resistance in LOW state.

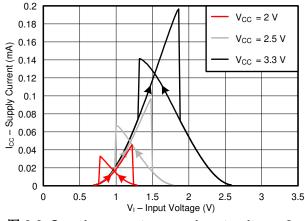


图 6-3. Supply current across input voltage, 2-, 2.5-, and 3.3-V supply

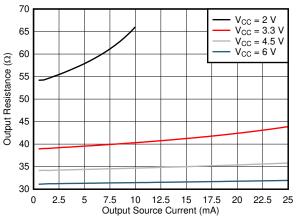


图 6-2. Output driver resistance in HIGH state.

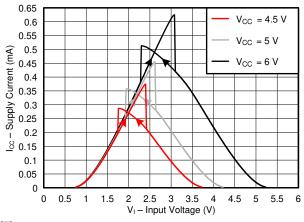


图 6-4. Supply current across input voltage, 4.5-, 5-, and 6-V supply

50%

50%

 V_{CC}

0 V

V_{OH}

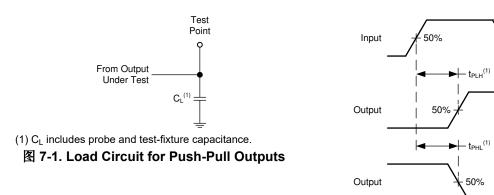
VoL

Vон

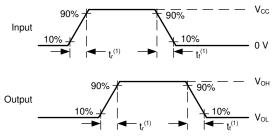
 V_{OL}

- t_{PHL}⁽¹⁾

50%


– t_{PLH}⁽¹⁾

7 Parameter Measurement Information


Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_t < 2.5 ns.

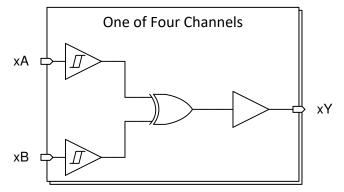
For clock inputs, f_{max} is measured when the input duty cycle is 50%.

The outputs are measured one at a time with one input transition per measurement.

The greater between t_{PLH} and t_{PHL} is the same as t_{pd}.
 了-2. Voltage Waveforms Propagation Delays

(1) The greater between t_{r} and t_{f} is the same as $t_{t}.$

图 7-3. Voltage Waveforms, Input and Output Transition Times



8 Detailed Description

8.1 Overview

This device contains four independent 2-input XOR Gates with Schmitt-trigger inputs. Each gate performs the Boolean function $Y = A \oplus B$ in positive logic.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Balanced CMOS Push-Pull Outputs

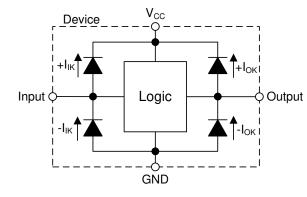
This device includes balanced CMOS push-pull outputs. The term "balanced" indicates that the device can sink and source similar currents. The drive capability of this device may create fast edges into light loads so routing and load conditions should be considered to prevent ringing. Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without being damaged. It is important for the output power of the device to be limited to avoid damage due to overcurrent. The electrical and thermal limits defined in the *Absolute Maximum Ratings* must be followed at all times.

Unused push-pull CMOS outputs should be left disconnected.

8.3.2 CMOS Schmitt-Trigger Inputs

This device includes inputs with the Schmitt-trigger architecture. These inputs are high impedance and are typically modeled as a resistor in parallel with the input capacitance given in the *Electrical Characteristics* table from the input to ground. The worst case resistance is calculated with the maximum input voltage, given in the *Absolute Maximum Ratings* table, and the maximum input leakage current, given in the *Electrical Characteristics* table, using Ohm's law ($R = V \div I$).

The Schmitt-trigger input architecture provides hysteresis as defined by ΔV_T in the *Electrical Characteristics* table, which makes this device extremely tolerant to slow or noisy inputs. While the inputs can be driven much slower than standard CMOS inputs, it is still recommended to properly terminate unused inputs. Driving the inputs with slow transitioning signals will increase dynamic current consumption of the device. For additional information regarding Schmitt-trigger inputs, please see Understanding Schmitt Triggers.


8.3.3 Clamp Diode Structure

The inputs and outputs to this device have both positive and negative clamping diodes as depicted in Electrical Placement of Clamping Diodes for Each Input and Output.

CAUTION

Voltages beyond the values specified in the *Absolute Maximum Ratings* table can cause damage to the device. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

图 8-1. Electrical Placement of Clamping Diodes for Each Input and Output

8.4 Device Functional Modes

Function Table lists the functional modes of the SN74HCS86-Q1.

10		
INPU	TS ⁽¹⁾	OUTPUT
Α	В	Y
L	L	L
L	н	н
Н	L	н
Н	Н	L

表 8-1. Function Table

(1) H = High Voltage Level, L = Low Voltage Level

9 Application and Implementation

备注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

In this application, a 2-input XOR gate is used as a phase difference detector as shown in Typical application block diagram. The remaining three gates can be used for other applications in the system, or the inputs can be grounded and the channels left unused.

The SN74HCS86-Q1 is used to identify phase difference between a reference clock and another input clock. Whenever the clock states are different, the XOR output will pulse HIGH until the clocks return to the same state. The output is fed into a low-pass filter to obtain a DC representation of the phase difference.

Typically, clock signals have fast transition rates, but additional filtering can be added to the clock signals which can lead to slower transitions rates. This makes the SN74HCS86-Q1 ideal for the application because it has Schmitt-trigger inputs that do not have input transition rate requirements.

9.2 Typical Application

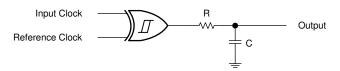


图 9-1. Typical application block diagram

9.2.1 Design Requirements

9.2.1.1 Power Considerations

Ensure the desired supply voltage is within the range specified in the *Recommended Operating Conditions*. The supply voltage sets the device's electrical characteristics as described in the *Electrical Characteristics*.

The positive voltage supply must be capable of sourcing current equal to the total current to be sourced by all outputs of the SN74HCS86-Q1 plus the maximum static supply current, I_{CC} , listed in *Electrical Characteristics* and any transient current required for switching. The logic device can only source as much current as is provided by the positive supply source. Be sure not to exceed the maximum total current through V_{CC} listed in the *Absolute Maximum Ratings*.

The ground must be capable of sinking current equal to the total current to be sunk by all outputs of the SN74HCS86-Q1 plus the maximum supply current, I_{CC} , listed in *Electrical Characteristics*, and any transient current required for switching. The logic device can only sink as much current as can be sunk into its ground connection. Be sure not to exceed the maximum total current through GND listed in the *Absolute Maximum Ratings*.

The SN74HCS86-Q1 can drive a load with a total capacitance less than or equal to 50 pF while still meeting all of the datasheet specifications. Larger capacitive loads can be applied, however it is not recommended to exceed 50 pF.

The SN74HCS86-Q1 can drive a load with total resistance described by $R_L \ge V_O / I_O$, with the output voltage and current defined in the *Electrical Characteristics* table with V_{OH} and V_{OL} . When outputting in the high state, the output voltage in the equation is defined as the difference between the measured output voltage and the supply voltage at the V_{CC} pin.

Total power consumption can be calculated using the information provided in CMOS Power Consumption and Cpd Calculation.

Thermal increase can be calculated using the information provided in Thermal Characteristics of Standard Linear and Logic (SLL) Packages and Devices.

CAUTION

The maximum junction temperature, $T_{J(max)}$ listed in the *Absolute Maximum Ratings*, is an additional limitation to prevent damage to the device. Do not violate any values listed in the *Absolute Maximum Ratings*. These limits are provided to prevent damage to the device.

9.2.1.2 Input Considerations

Input signals must cross $V_{t-(min)}$ to be considered a logic LOW, and $V_{t+(max)}$ to be considered a logic HIGH. Do not exceed the maximum input voltage range found in the *Absolute Maximum Ratings*.

Unused inputs must be terminated to either V_{CC} or ground. These can be directly terminated if the input is completely unused, or they can be connected with a pull-up or pull-down resistor if the input is to be used sometimes, but not always. A pull-up resistor is used for a default state of HIGH, and a pull-down resistor is used for a default state of LOW. The resistor size is limited by drive current of the controller, leakage current into the SN74HCS86-Q1, as specified in the *Electrical Characteristics*, and the desired input transition rate. A 10-k Ω resistor value is often used due to these factors.

The SN74HCS86-Q1 has no input signal transition rate requirements because it has Schmitt-trigger inputs.

Another benefit to having Schmitt-trigger inputs is the ability to reject noise. Noise with a large enough amplitude can still cause issues. To know how much noise is too much, please refer to the $\Delta V_{T(min)}$ in the *Electrical Characteristics*. This hysteresis value will provide the peak-to-peak limit.

Unlike what happens with standard CMOS inputs, Schmitt-trigger inputs can be held at any valid value without causing huge increases in power consumption. The typical additional current caused by holding an input at a value other than V_{CC} or ground is plotted in the *Typical Characteristics*.

Refer to the *Feature Description* section for additional information regarding the inputs for this device.

9.2.1.3 Output Considerations

The positive supply voltage is used to produce the output HIGH voltage. Drawing current from the output will decrease the output voltage as specified by the V_{OH} specification in the *Electrical Characteristics*. The ground voltage is used to produce the output LOW voltage. Sinking current into the output will increase the output voltage as specified by the V_{OL} specification in the *Electrical Characteristics*.

Push-pull outputs that could be in opposite states, even for a very short time period, should never be connected directly together. This can cause excessive current and damage to the device.

Two channels within the same device with the same input signals can be connected in parallel for additional output drive strength.

Unused outputs can be left floating. Do not connect outputs directly to V_{CC} or ground.

Refer to Feature Description section for additional information regarding the outputs for this device.

9.2.2 Detailed Design Procedure

- 1. Add a decoupling capacitor from V_{CC} to GND. The capacitor needs to be placed physically close to the device and electrically close to both the V_{CC} and GND pins. An example layout is shown in the *Layout* section.
- 2. Ensure the capacitive load at the output is ≤ 50 pF. This is not a hard limit, however it will ensure optimal performance. This can be accomplished by providing short, appropriately sized traces from the SN74HCS86-Q1 to the receiving device(s).

- 3. Ensure the resistive load at the output is larger than (V_{CC} / I_{O(max)}) Ω. This will ensure that the maximum output current from the *Absolute Maximum Ratings* is not violated. Most CMOS inputs have a resistive load measured in megaohms; much larger than the minimum calculated above.
- 4. Thermal issues are rarely a concern for logic gates, however the power consumption and thermal increase can be calculated using the steps provided in the application report, CMOS Power Consumption and Cpd Calculation.

9.2.3 Application Curves

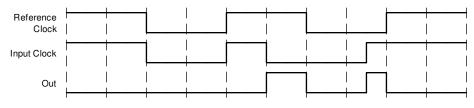


图 9-2. Application timing diagram

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions*. Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. A 0.1- μ F capacitor is recommended for this device. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. The 0.1- μ F and 1- μ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results, as shown in given example layout image.

11 Layout

11.1 Layout Guidelines

When using multiple-input and multiple-channel logic devices inputs must not ever be left floating. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such unused input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally, the inputs are tied to GND or V_{CC} , whichever makes more sense for the logic function or is more convenient.

11.2 Layout Example

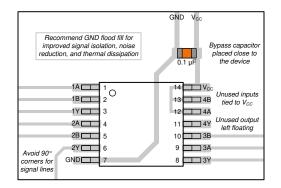


图 11-1. Example layout for the SN74HCS86-Q1

12 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following:

- Texas Instruments, HCMOS Design Considerations application report (SCLA007)
- Texas Instruments, CMOS Power Consumption and Cpd Calculation application report (SDYA009)
- Texas Instruments, *Designing With Logic* application report

12.2 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新*进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

12.3 支持资源

TI E2E[™] 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解 答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

12.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

12.5 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

12.6 术语表

TI术语表 本术语表列出并解释了术语、首字母缩略词和定义。

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
	(.)		Ū			(-)	(6)	(0)		(,	
SN74HCS86QBQARQ1	ACTIVE	WQFN	BQA	14	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HCS86Q	Samples
SN74HCS86QDRQ1	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HCS86Q1	Samples
SN74HCS86QPWRQ1	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HCS86Q	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

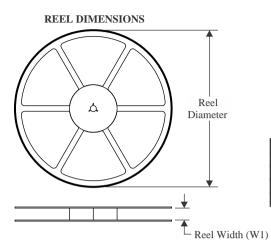
PACKAGE OPTION ADDENDUM

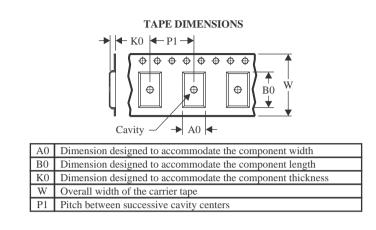
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74HCS86-Q1 :

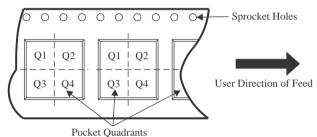
• Catalog : SN74HCS86

NOTE: Qualified Version Definitions:


• Catalog - TI's standard catalog product

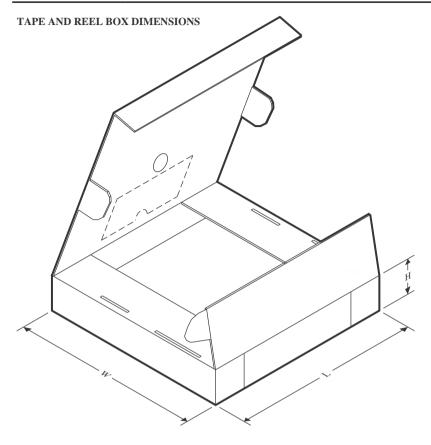


Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74HCS86QBQARQ1	WQFN	BQA	14	3000	180.0	12.4	2.8	3.3	1.1	4.0	12.0	Q1
SN74HCS86QDRQ1	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74HCS86QPWRQ1	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com

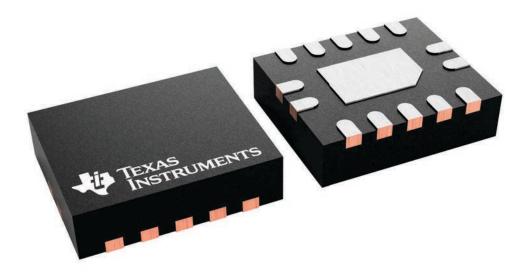
PACKAGE MATERIALS INFORMATION

3-Feb-2023

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74HCS86QBQARQ1	WQFN	BQA	14	3000	210.0	185.0	35.0
SN74HCS86QDRQ1	SOIC	D	14	2500	356.0	356.0	35.0
SN74HCS86QPWRQ1	TSSOP	PW	14	2000	356.0	356.0	35.0

BQA 14

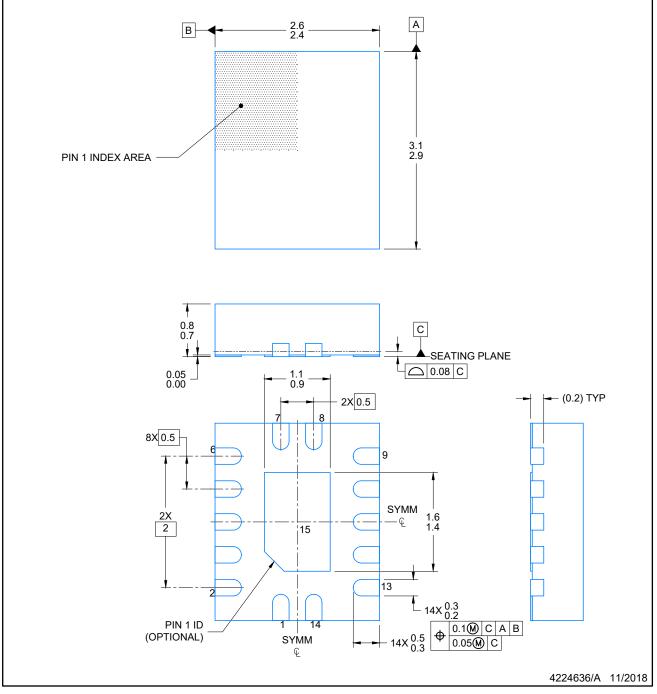

2.5 x 3, 0.5 mm pitch

GENERIC PACKAGE VIEW

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.



BQA0014A

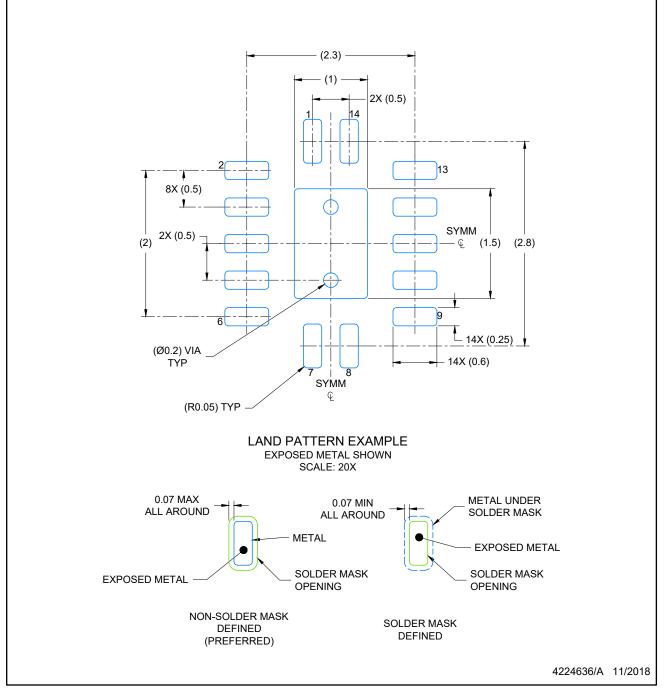
PACKAGE OUTLINE

WQFN - 0.8 mm max height

PLASTIC QUAD FLAT PACK-NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.



BQA0014A

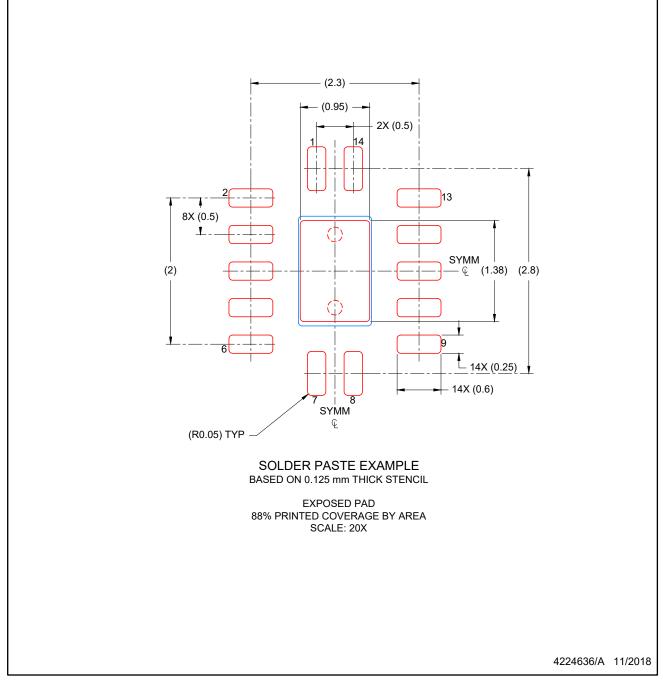
EXAMPLE BOARD LAYOUT

WQFN - 0.8 mm max height

PLASTIC QUAD FLAT PACK-NO LEAD

NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

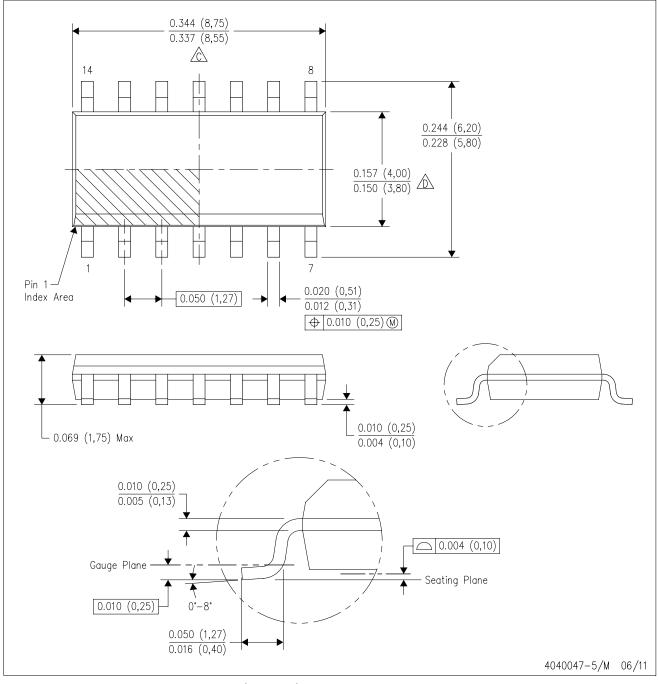


BQA0014A

EXAMPLE STENCIL DESIGN

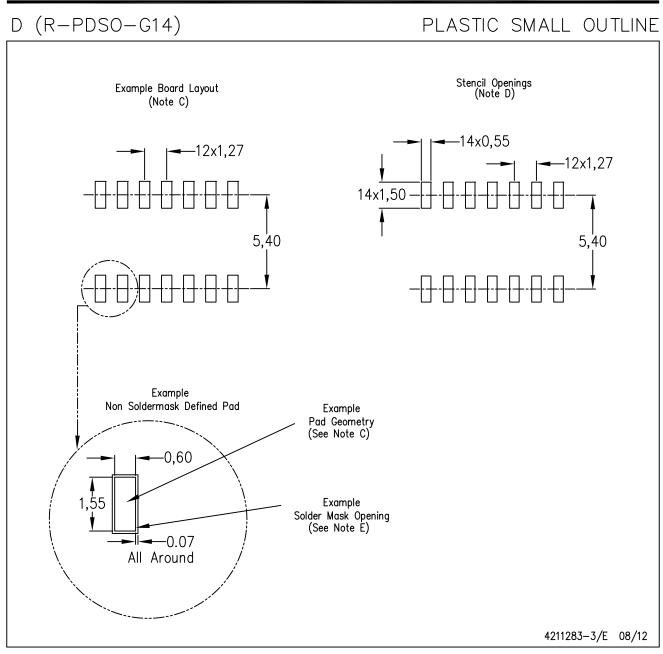
WQFN - 0.8 mm max height

PLASTIC QUAD FLAT PACK-NO LEAD


NOTES: (continued)

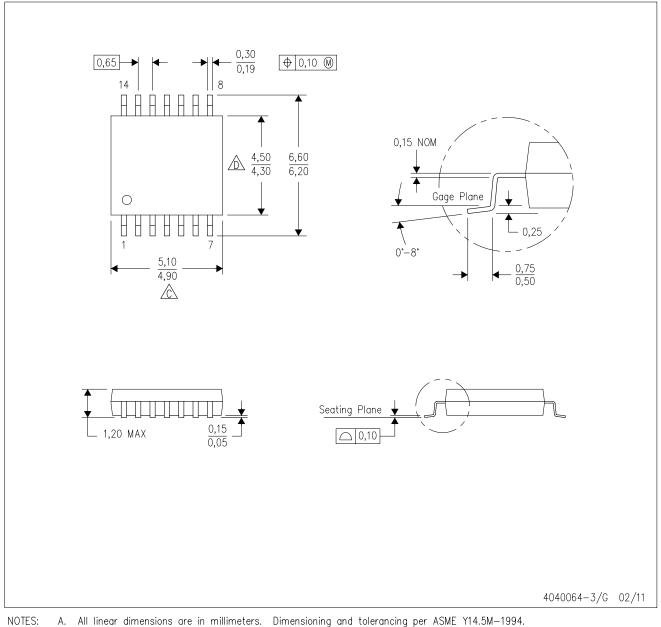
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

D (R-PDSO-G14)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

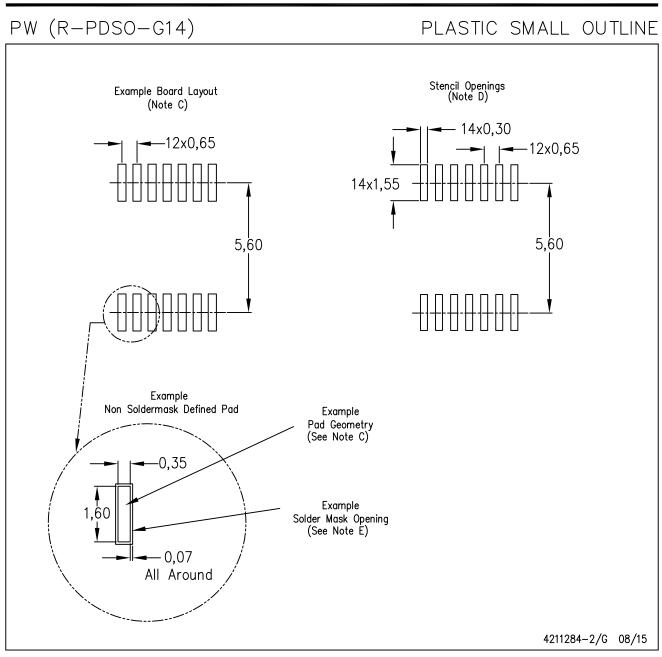
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE


A. An integration of the information o

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by Texas Instruments manufacturer:

Other Similar products are found below :

NL17SG32DFT2G CD4068BE NL17SG86DFT2G NLX1G11AMUTCG NLX1G97MUTCG 74LS38 74LVC1G08Z-7 CD4025BE NLV17SZ00DFT2G NLV17SZ126DFT2G NLV27WZ17DFT2G NLV74HC02ADR2G 74HC32S14-13 74LS133 74LVC1G32Z-7 74LVC1G86Z-7 NLV74HC14ADR2G NLV74HC20ADR2G NLVVHC1G09DFT1G NLX2G86MUTCG 74LVC2G32RA3-7 74LVC2G00HD4-7 NL17SG02P5T5G 74LVC2G86HK3-7 NLVVHC1G14DFT2G NLX1G99DMUTWG NLVVHC1G00DFT2G NLV7SZ57DFT2G NLV74VHC04DTR2G NLV27WZ00USG NLU1G86CMUTCG NLU1G08CMUTCG NL17SZ32P5T5G NL17SZ00P5T5G NL17SH02P5T5G 74AUP2G00RA3-7 NLVVHC1GT00DFT2G NLV74HC02ADTR2G NLX1G332CMUTCG NLVHCT132ADTR2G NL17SG86P5T5G NL17SZ05P5T5G NLV74VHC00DTR2G NLVVHC1G02DFT1G NLV74HC86ADR2G 74LVC2G86RA3-7 NL17SZ38DBVT1G NLV18SZ00DFT2G NLVVHC1G07DFT1G NLVVHC1G02DFT2G