

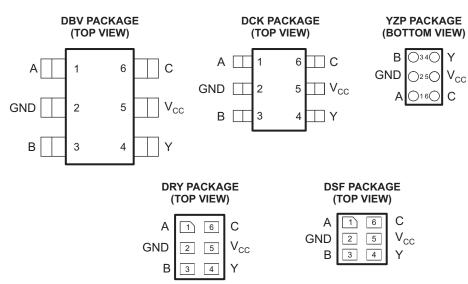
www.ti.com

SCES488E – SEPTEMBER 2003 – REVISED DECEMBER 2013

Single 3-Input Positive-NOR Gate

Check for Samples: SN74LVC1G27

FEATURES


- Available in the Texas Instruments NanoFree™ Package
- Supports 5-V V_{CC} Operation
- Inputs Accept Voltages to 5.5 V
- Supports Down Translation to V_{CC}
- Max t_{pd} of 4.5 ns at 3.3 V
- Low Power Consumption, 10-μA Max I_{CC}
- ±24-mA Output Drive at 3.3 V
- I_{off} Supports Live Insertion, Partial-Power-Down Mode, and Back-Drive Protection
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

DESCRIPTION

The SN74LVC1G27 device performs the Boolean function $Y = \overline{A} + \overline{B} + \overline{C}$ or $Y = \overline{A} \cdot \overline{B} \cdot \overline{C}$ in positive logic.

NanoFree[™] package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

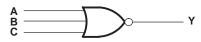
See mechanical drawings for dimensions.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. NanoFree is a trademark of Texas Instruments.

SCES488E - SEPTEMBER 2003 - REVISED DECEMBER 2013

TEXAS INSTRUMENTS

www.ti.com


This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Function Table

	INPUTS		OUTPUT
Α	В	С	Y
Н	Х	Х	L
х	Н	Х	L
х	Х	н	L
L	L	L	н

Logic Diagram (Positive Logic)

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	6.5	V
VI	Input voltage range ⁽²⁾		-0.5	6.5	V
Vo	Voltage range applied to any output in the h	igh-impedance or power-off state ⁽²⁾	-0.5	6.5	V
Vo	Voltage range applied to any output in the h	igh or low state ⁽²⁾⁽³⁾	-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
lo	Continuous output current			±50	mA
	Continuous current through V_{CC} or GND			±100	mA
		DBV package		165	
θ_{JA}	Package thermal impedance ⁽⁴⁾	DCK package		259	°C/W
		YZP package		123	
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The value of V_{CC} is provided in the recommended operating conditions table.

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

SN74LVC1G27

www.ti.com

SCES488E - SEPTEMBER 2003 - REVISED DECEMBER 2013

Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT
V	Supply voltogo	Operating	1.65	5.5	V
V _{CC}	Supply voltage	Data retention only	1.5		v
		$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$	$0.65 \times V_{CC}$		
V	High-level input voltage	V_{CC} = 2.3 V to 2.7 V	1.7		V
V _{IH}	High-level liput voltage	$V_{CC} = 3 V \text{ to } 3.6 V$	2		v
		V_{CC} = 4.5 V to 5.5 V	$0.7 \times V_{CC}$		
		$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$		$0.35 \times V_{CC}$	
V		V_{CC} = 2.3 V to 2.7 V		0.7	V
V _{IL}	Low-level input voltage	V_{CC} = 3 V to 3.6 V		0.8	v
		V_{CC} = 4.5 V to 5.5 V		$0.3 \times V_{CC}$	
VI	Input voltage		0	5.5	V
Vo	Output voltage		0	V _{CC}	V
	· · · · · · · · · · · · · · · · · · ·	V _{CC} = 1.65 V		-4	
		V_{CC} = 2.3 V		-8	
I _{OH}	High-level output current	$V_{CC} = 3 V$		-16	mA
		v _{CC} = 3 v		-24	
		$V_{CC} = 4.5 V$		-32	
		V _{CC} = 1.65 V		4	
		$V_{CC} = 2.3 V$		8	
I _{OL}	Low-level output current	$V_{CC} = 3 V$		16	mA
		V _{CC} = 3 V		24	
		$V_{CC} = 4.5 V$		32	
		V_{CC} = 1.8 V ± 0.15 V, 2.5 V ± 0.2 V		20	
Δt/Δv	Input transition rise or fall rate	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		10	ns/V
		$V_{CC} = 5 V \pm 0.5 V$		10	
T _A	Operating free-air temperature		-40	125	°C

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. SCES488E - SEPTEMBER 2003 - REVISED DECEMBER 2013

TEXAS INSTRUMENTS

www.ti.com

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST CONDITIONS		–40°C	to 85°C		-40°C	to 125°C		
PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾	MAX	MIN	TYP ⁽¹⁾	MAX	UNI
	I _{OH} = -100 μA	1.65 V to 5.5 V	V _{CC} – 0.1			V _{CC} - 0.1			
	$I_{OH} = -4 \text{ mA}$	1.65 V	1.2			1.2			
V _{OH}	$I_{OH} = -8 \text{ mA}$	2.3 V	1.9			1.9			v
	$I_{OH} = -16 \text{ mA}$	3 V	2.4			2.4			
	I _{OH} = -24 mA	3 V	2.3			2.3			
	I _{OH} = -32 mA	4.5 V	3.8			3.8			1
	I _{OL} = 100 μA 1.65 V to 5.5 V 0.1				0.1				
	I _{OL} = 4 mA	1.65 V			0.45			0.45	
V _{OL}	I _{OL} = 8 mA	2.3 V			0.3			0.3	V
	I _{OL} = 16 mA	2.1/			0.4			0.4	
	I _{OL} = 24 mA	3 V			0.55			0.55	
	I _{OL} = 32 mA	4.5 V			0.55			0.55	
I _I All inputs	$V_1 = 5.5 V \text{ or GND}$	0 to 5.5 V			±5			±5	μA
off	$V_1 \text{ or } V_0 = 5.5 \text{ V}$	0			±10			±10	μA
сс	$V_{I} = 5.5 \text{ V or GND}, I_{O} = 0$	1.65 V to 5.5 V			10			10	μA
ΔI _{CC}	One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GND	3 V to 5.5 V			500			500	μA
C _i	V _I = V _{CC} or GND	3.3 V		3.5					pF

(1) All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

Switching Characteristics

over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 1)

			SN74LVC1G27 -40°C to 85°C								
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = ± 0.1		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	A, B, or C	Y	2	18.2	1.2	6.2	1	4.5	0.8	3.1	ns

Switching Characteristics

over recommended operating free-air temperature range, C_L = 30 pF or 50 pF (unless otherwise noted) (see Figure 2)

PARAMETER FROM (INPUT)			SN74LVC1G27 -40°C to 85°C								
		TO (OUTPUT)	V _{CC} = ± 0.1			V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V		UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	A, B, or C	Y	2.2	20.5	1.4	7.1	1.3	5.4	1	3.6	ns

SCES488E - SEPTEMBER 2003 - REVISED DECEMBER 2013

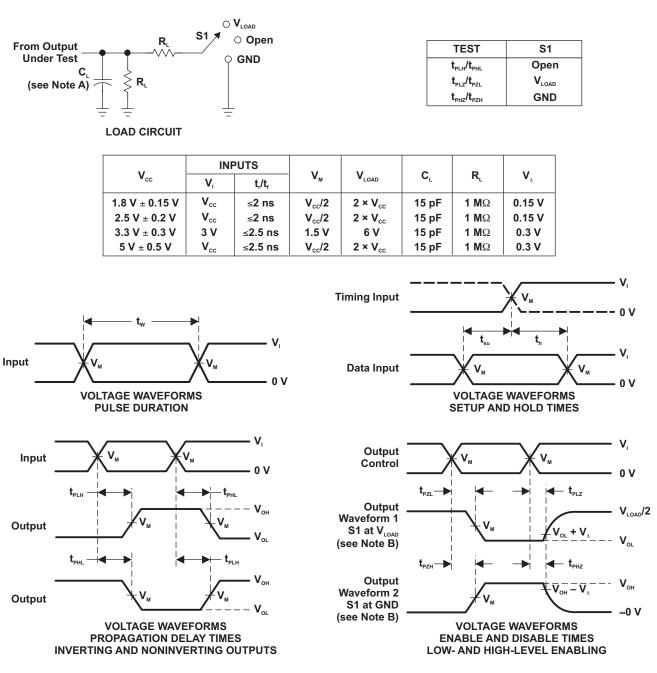
www.ti.com

Switching Characteristics

over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ or 50 pF (unless otherwise noted) (see Figure 2)

							SN74LV -40°C to					
PARAMETER	FROM (INPUT)		TO (OUTPUT)	V _{CC} = 1 ± 0.15		V _{CC} = 2 ± 0.2		V _{CC} = 3 ± 0.3		V _{CC} = ± 0.5		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	A, B, or C		Y	2.2	23.3	1.4	8.8	1.3	6.8	1.0	4.7	
fmov			C _L = 15 pF		125	70		70		70		
fmax		C _L = 50 pF		75	45		45		45			
t _{PLH}	PRE or CLR	Q or Q	0 15 55	7.6	12.3	1	14.5	1	14.5	1	14.5	
t _{PHL}	PRE OF CLR	QUIQ	C _L = 15 pF	7.6	12.3	1	14.5	1	14.5	1	14.5	
t _{PLH}	CLK	Q or Q	C ₁ = 15 pF	6.7	11.9	1	14	1	14	1	14	ns
t _{PHL}	ULK	QUIQ	$C_L = 15 \text{ pr}$	6.7	11.9	1	14	1	14	1	14	
t _{PLH}	PRE or CLR	Q or \overline{Q}		10.1	15.8	1	18	1	18	1	18	
t _{PHL}	FRE OF CLR	QUIQ	$C_L = 50 \text{ pF}$	10.1	15.8	1	18	1	18	1	18	
t _{PLH}	CLK	Q or \overline{Q} $C_1 = 50 \text{ pF}$	9.2	15.4	1	17.5	1	17.5	1	17.5		
t _{PHL}	ULK	QUIQ	C _L = 50 pF	9.2	15.4	1	17.5	1	17.5	1	17.5	

Operating Characteristics


 $T_A = 25^{\circ}C$

PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V	$V_{\rm CC} = 2.5 V$	$V_{CC} = 3.3 V$	$V_{CC} = 5 V$	UNIT
		CONDITIONS	TYP	TYP	TYP	TYP	
C _{pd}	Power dissipation capacitance	f = 10 MHz	17	18	19	22	pF

TEXAS INSTRUMENTS

www.ti.com

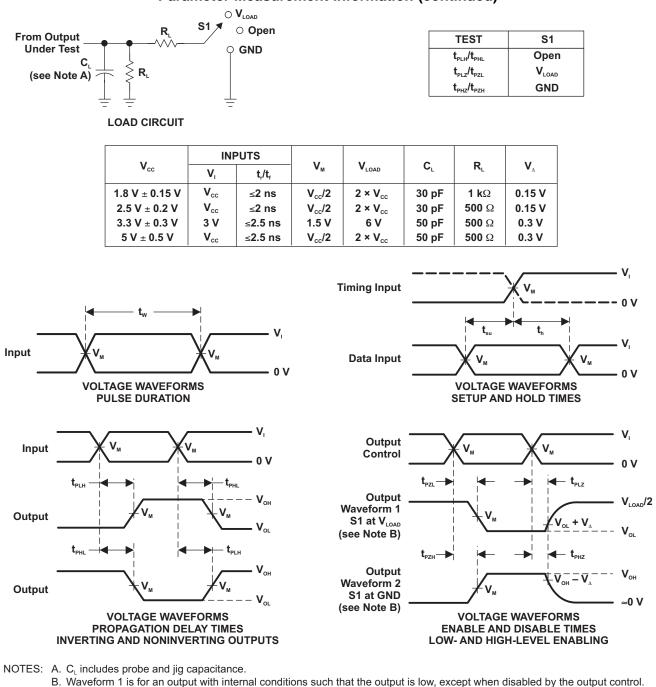
SCES488E - SEPTEMBER 2003 - REVISED DECEMBER 2013

Parameter Measurement Information

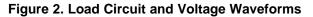
NOTES: A. C_{L} includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z₀ = 50 Ω.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. $t_{\mbox{\tiny PLH}}$ and $t_{\mbox{\tiny PHL}}$ are the same as $t_{\mbox{\tiny pd}}$
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms



www.ti.com


SN74LVC1G27

SCES488E - SEPTEMBER 2003 - REVISED DECEMBER 2013

Parameter Measurement Information (continued)

- Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_o = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. $t_{\mbox{\tiny PZL}}$ and $t_{\mbox{\tiny PZH}}$ are the same as $t_{\mbox{\tiny en}}.$
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

SCES488E - SEPTEMBER 2003 - REVISED DECEMBER 2013

REVISION HISTORY

Changes from Revision D (January 2007) to Revision E

Copyright © 2003–2013, Texas Instruments Incorporated

www.ti.com

Page

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
	. ,				-		(6)	()		× 7	
SN74LVC1G27DBVR	ACTIVE	SOT-23	DBV	6	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(C27F, C27K, C27R)	Samples
SN74LVC1G27DCKR	ACTIVE	SC70	DCK	6	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(CU5, CUJ, CUR)	Samples
SN74LVC1G27DCKRE4	ACTIVE	SC70	DCK	6	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CU5	Samples
SN74LVC1G27DCKRG4	ACTIVE	SC70	DCK	6	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CU5	Samples
SN74LVC1G27DRYR	ACTIVE	SON	DRY	6	5000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CU	Samples
SN74LVC1G27DSFR	ACTIVE	SON	DSF	6	5000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CU	Samples
SN74LVC1G27YZPR	ACTIVE	DSBGA	YZP	6	3000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 85	CUN	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

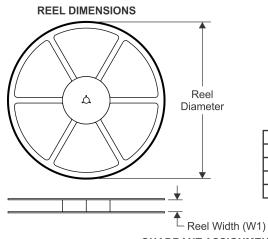
www.ti.com

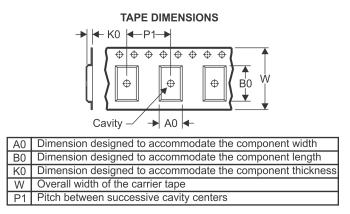
PACKAGE OPTION ADDENDUM

10-Dec-2020

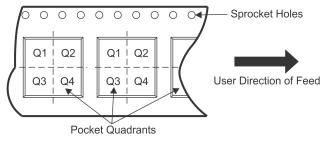
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

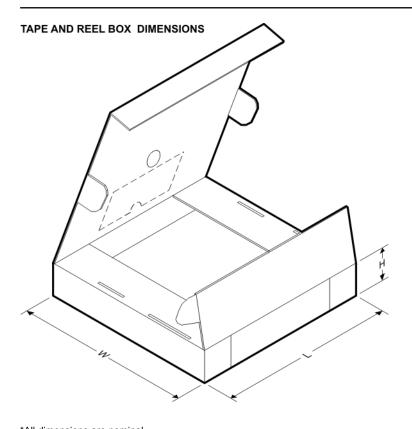

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC1G27DBVR	SOT-23	DBV	6	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
SN74LVC1G27DBVR	SOT-23	DBV	6	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
SN74LVC1G27DCKR	SC70	DCK	6	3000	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3
SN74LVC1G27DCKR	SC70	DCK	6	3000	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
SN74LVC1G27DCKR	SC70	DCK	6	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
SN74LVC1G27DCKRG4	SC70	DCK	6	3000	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
SN74LVC1G27DRYR	SON	DRY	6	5000	180.0	9.5	1.15	1.6	0.75	4.0	8.0	Q1
SN74LVC1G27DSFR	SON	DSF	6	5000	180.0	9.5	1.16	1.16	0.5	4.0	8.0	Q2
SN74LVC1G27YZPR	DSBGA	YZP	6	3000	178.0	9.2	1.02	1.52	0.63	4.0	8.0	Q1

Texas Instruments

www.ti.com

PACKAGE MATERIALS INFORMATION

24-Jul-2020

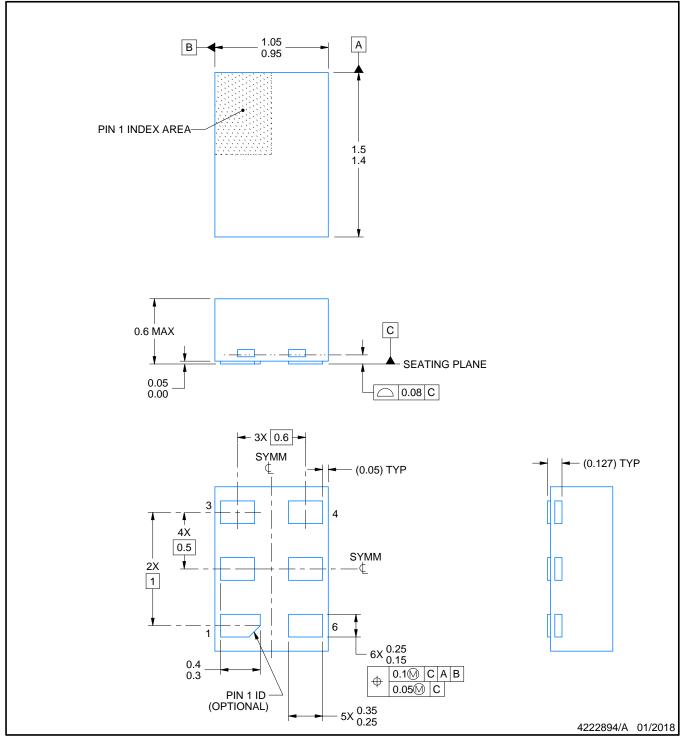
*All dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC1G27DBVR	SOT-23	DBV	6	3000	202.0	201.0	28.0
SN74LVC1G27DBVR	SOT-23	DBV	6	3000	180.0	180.0	18.0
SN74LVC1G27DCKR	SC70	DCK	6	3000	202.0	201.0	28.0
SN74LVC1G27DCKR	SC70	DCK	6	3000	180.0	180.0	18.0
SN74LVC1G27DCKR	SC70	DCK	6	3000	180.0	180.0	18.0
SN74LVC1G27DCKRG4	SC70	DCK	6	3000	180.0	180.0	18.0
SN74LVC1G27DRYR	SON	DRY	6	5000	184.0	184.0	19.0
SN74LVC1G27DSFR	SON	DSF	6	5000	184.0	184.0	19.0
SN74LVC1G27YZPR	DSBGA	YZP	6	3000	220.0	220.0	35.0

GENERIC PACKAGE VIEW

USON - 0.6 mm max height PLASTIC SMALL OUTLINE - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4207181/G


DRY0006A

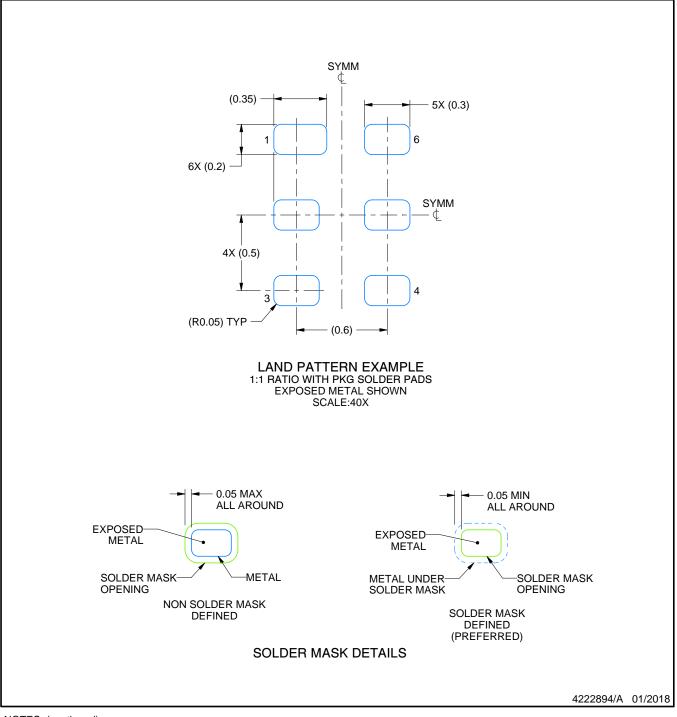
PACKAGE OUTLINE

USON - 0.6 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.



DRY0006A

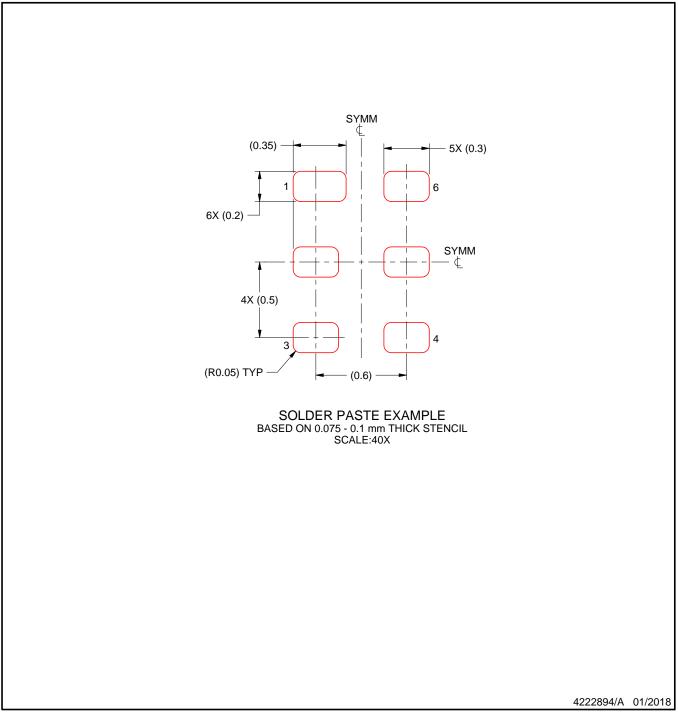
EXAMPLE BOARD LAYOUT

USON - 0.6 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

3. For more information, see QFN/SON PCB application report in literature No. SLUA271 (www.ti.com/lit/slua271).



DRY0006A

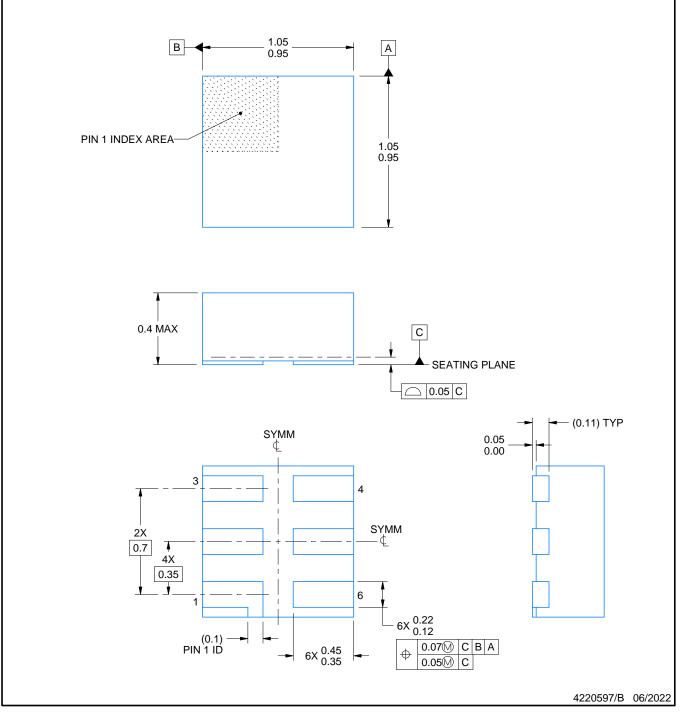
EXAMPLE STENCIL DESIGN

USON - 0.6 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


DSF0006A

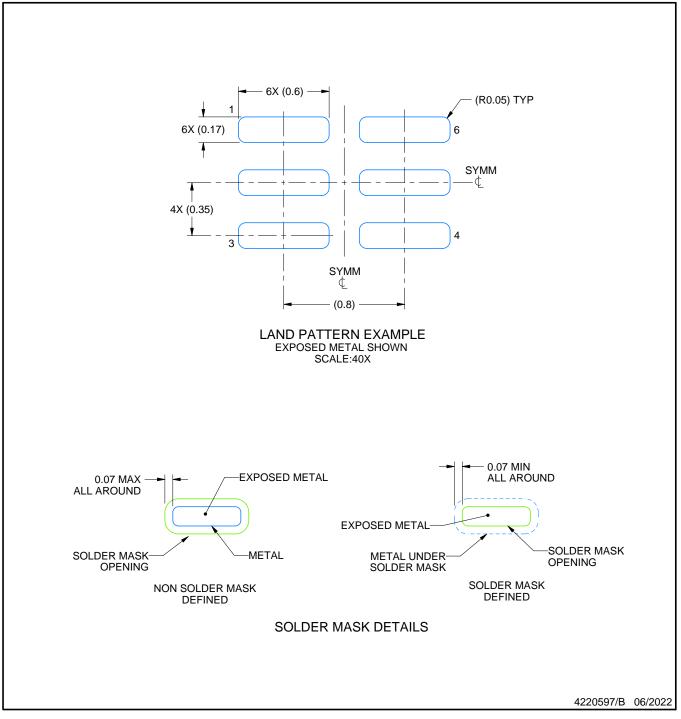
PACKAGE OUTLINE

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing Per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC registration MO-287, variation X2AAF.



DSF0006A

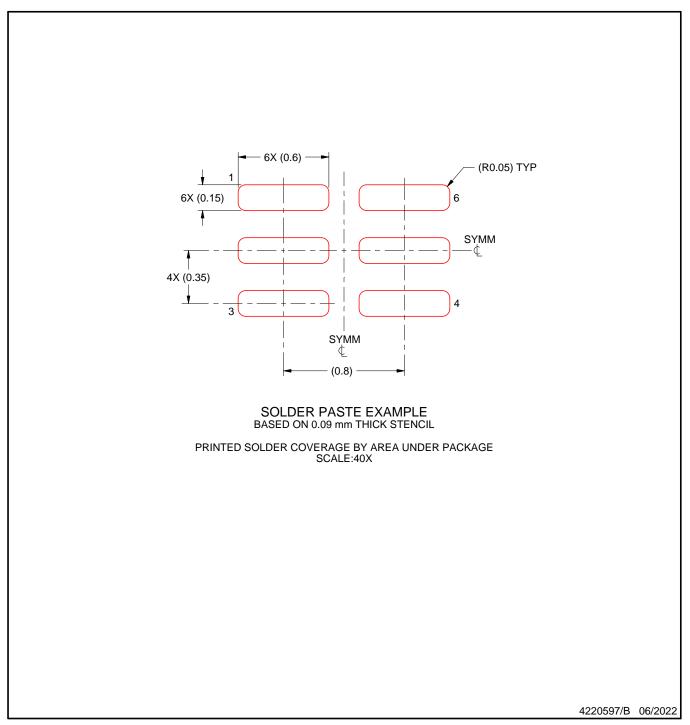
EXAMPLE BOARD LAYOUT

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

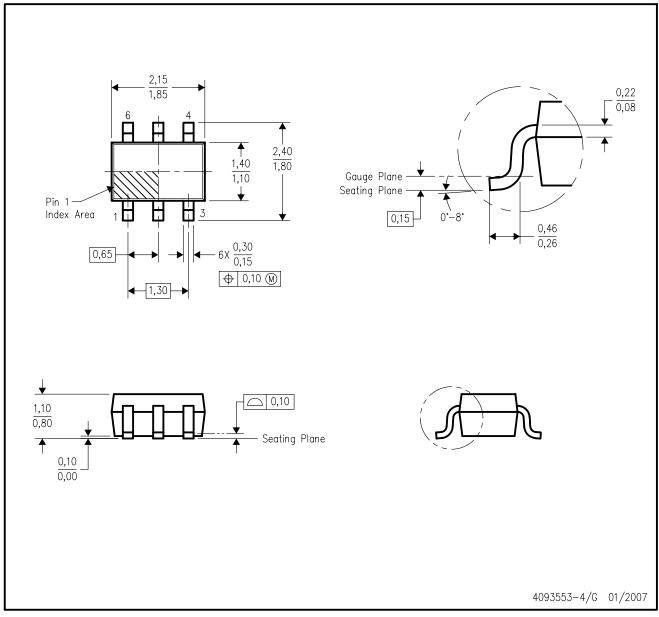


DSF0006A

EXAMPLE STENCIL DESIGN

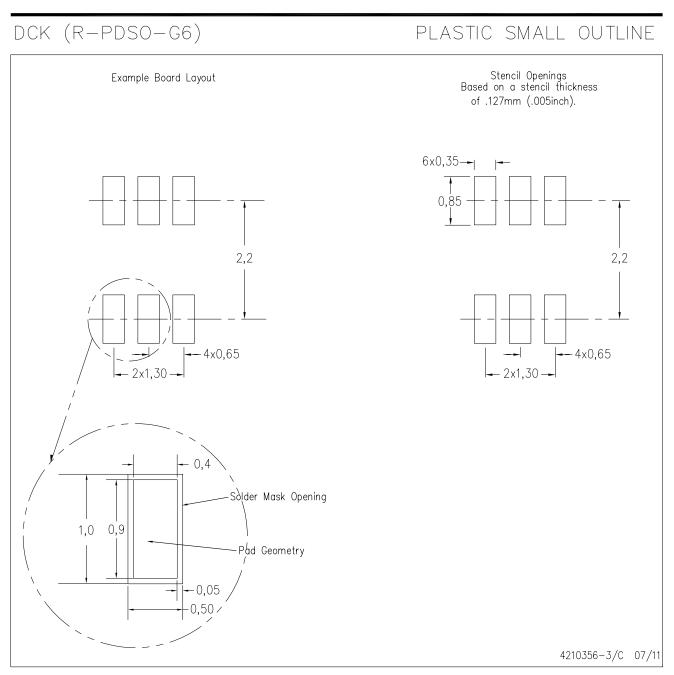
X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD



4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

DCK (R-PDSO-G6)

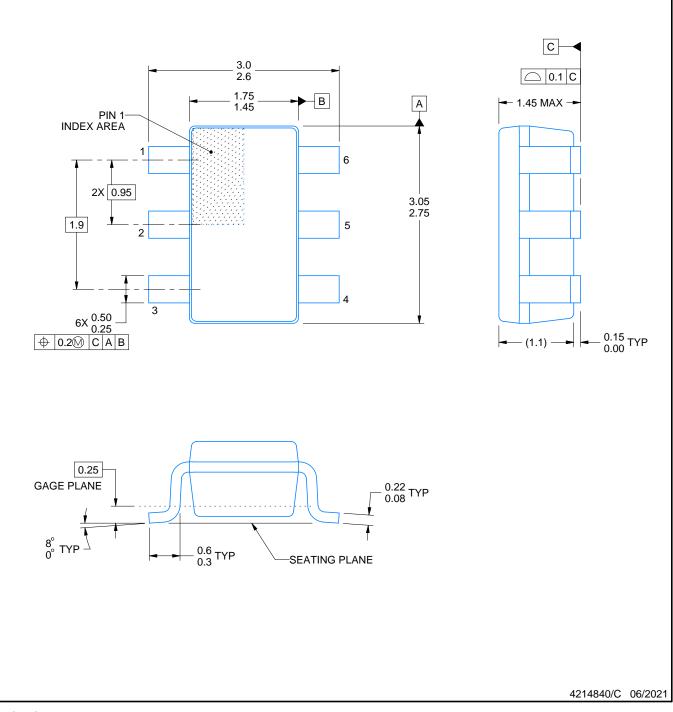

PLASTIC SMALL-OUTLINE PACKAGE

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-203 variation AB.

LAND PATTERN DATA

NOTES:

- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.


DBV0006A

PACKAGE OUTLINE

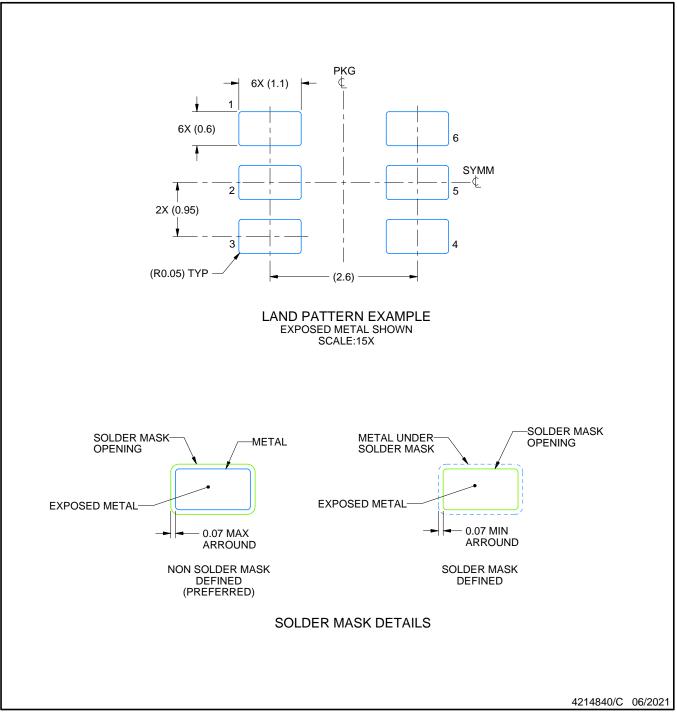
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.2. This drawing is subject to change without notice.3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.

- 4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation. 5. Refernce JEDEC MO-178.



DBV0006A

EXAMPLE BOARD LAYOUT

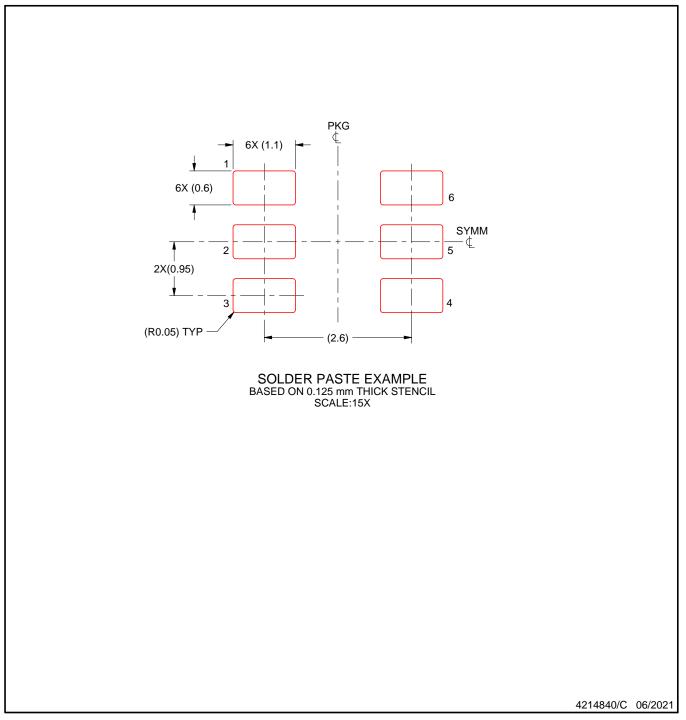
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DBV0006A

EXAMPLE STENCIL DESIGN

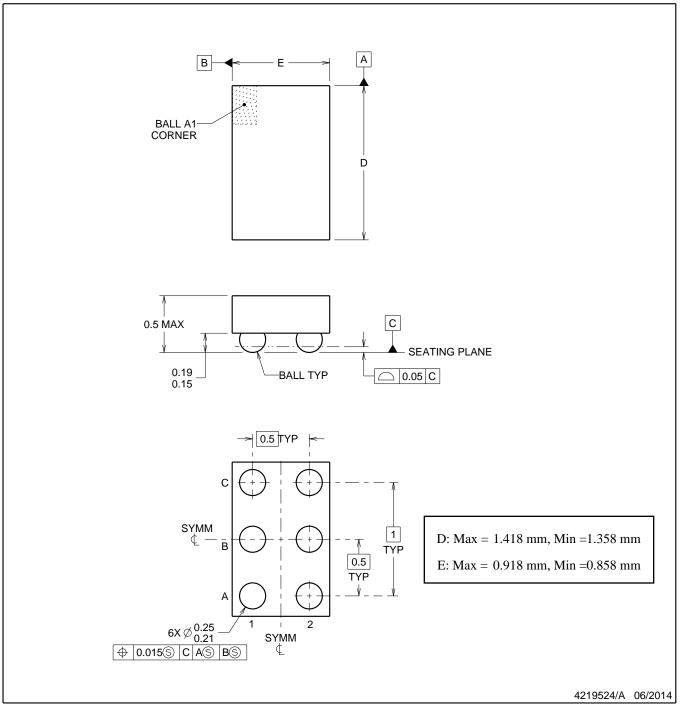
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.


YZP0006

PACKAGE OUTLINE

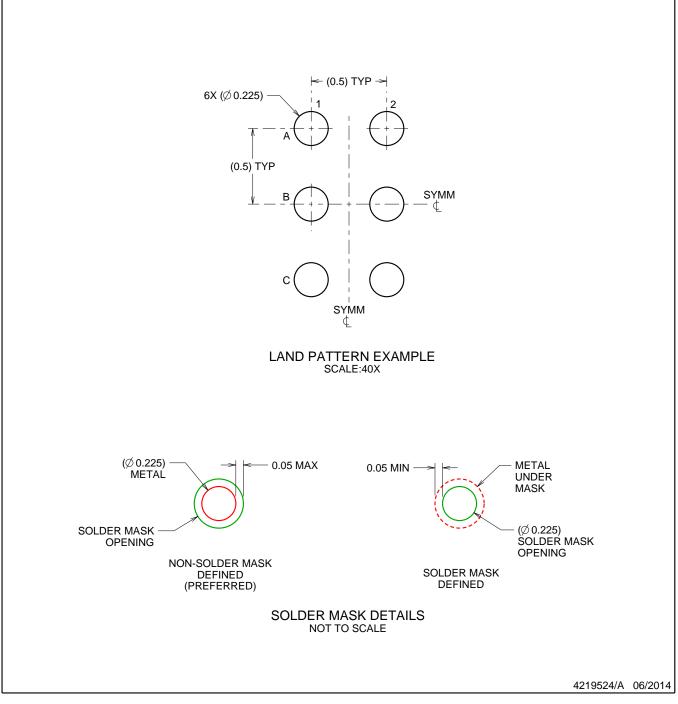
DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:

NanoFree Is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. NanoFree[™] package configuration.



YZP0006

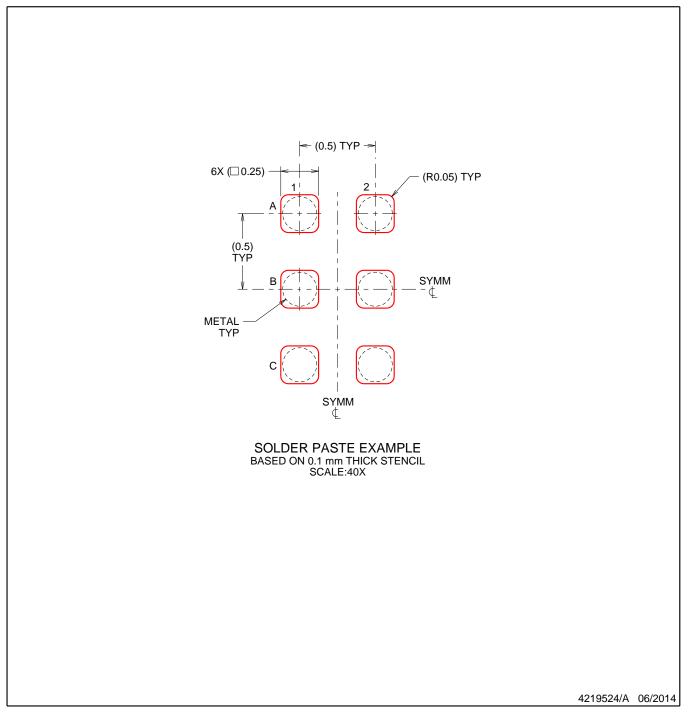
EXAMPLE BOARD LAYOUT

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017).



YZP0006

EXAMPLE STENCIL DESIGN

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by Texas Instruments manufacturer:

Other Similar products are found below :

NL17SG32DFT2G CD4068BE NL17SG86DFT2G NLX1G11AMUTCG NLX1G97MUTCG 74LS38 74LVC1G08Z-7 CD4025BE NLV17SZ00DFT2G NLV17SZ126DFT2G NLV27WZ17DFT2G NLV74HC02ADR2G 74HC32S14-13 74LS133 74LVC1G32Z-7 74LVC1G86Z-7 NLV74HC14ADR2G NLV74HC20ADR2G NLVVHC1G09DFT1G NLX2G86MUTCG 74LVC2G32RA3-7 74LVC2G00HD4-7 NL17SG02P5T5G 74LVC2G86HK3-7 NLVVHC1G14DFT2G NLX1G99DMUTWG NLVVHC1G00DFT2G NLV7SZ57DFT2G NLV74VHC04DTR2G NLV27WZ00USG NLU1G86CMUTCG NLU1G08CMUTCG NL17SZ32P5T5G NL17SZ00P5T5G NL17SH02P5T5G 74AUP2G00RA3-7 NLVVHC1GT00DFT2G NLV74HC02ADTR2G NLX1G332CMUTCG NLVHCT132ADTR2G NL17SG86P5T5G NL17SZ05P5T5G NLV74VHC00DTR2G NLVVHC1G02DFT1G NLV74HC86ADR2G 74LVC2G86RA3-7 NL17SZ38DBVT1G NLV18SZ00DFT2G NLVVHC1G07DFT1G NLVVHC1G02DFT2G