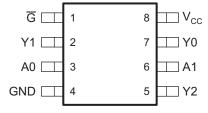


SN74LVC1G29 2-of-3 Decoder/Demultiplexer

Check for Samples: SN74LVC1G29


FEATURES

- Available in the Texas Instruments NanoFree™ Package
- **Supports 5-V V_{CC} Operation**
- Inputs Accept Voltages to 5.5 V
- Supports Down Translation to V_{CC}
- Max t_{pd} of 5.1 ns at 3.3 V
- Low Power Consumption, 10-μA Max I_{CC}
- ±24-mA Output Drive at 3.3 V
- **Typical V_{OLP} (Output Ground Bounce)** <0.8 V at $V_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}$
- Typical V_{OHV} (Output V_{OH} Undershoot) >2 V at V_{CC} = 3.3 V, T_A = 25°C
- Ioff Supports Live Insertion, Partial-Power-Down Mode, and Back-Drive Protection
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- **ESD Protection Exceeds JESD 22**
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

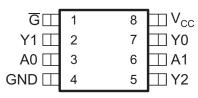
YZP PACKAGE (BOTTOM VIEW)

GND	0450	Y2
A0	0360	A1
Y1	0270	Y0
G	0180	Vcc

DCT PACKAGE (TOP VIEW)

See mechanical drawings for dimensions.

DESCRIPTION


This decoder is designed for 1.65-V to 5.5-V V_{CC} operation.

SN74LVC1G29 The device 2-of-3 is а decoder/demultiplexer. When the enable (\overline{G}) input signal is low, only one of the outputs is in the low state, depending on the input levels of A0 and A1. When G is high, Y0, Y1, and Y2 are high, regardless of the input states.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disable the outputs, preventing damaging current backflow through the device when it is powered down.

NanoFree™ package technology is a breakthrough in IC packaging concepts, using the die as the package.

DCU PACKAGE (TOP VIEW)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. NanoFree is a trademark of Texas Instruments.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Function Table

	INPUTS			OUTPUTS	
G	A 1	A0	Y0	Y1	Y2
L	L	Х	L	Н	Н
L	Н	L	Н	L	Н
L	Н	Н	Н	Н	L
Н	X	Χ	Н	Н	Н

Logic Diagram (Positive Logic)

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	6.5	V
VI	Input voltage range ⁽²⁾		-0.5	6.5	V
Vo	Voltage range applied to any output in the high-impe	edance or power-off state ⁽²⁾	-0.5	6.5	V
Vo	Voltage range applied to any output in the high or lo	w state ⁽²⁾⁽³⁾	-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current			±50	mA
	Continuous current through V _{CC} or GND			±100	mA
		DCT package		220	
θ_{JA}	Package thermal impedance ⁽⁴⁾	DCU package		227	°C/W
		YZP package		102	
T _{stg}	Storage temperature range		-65	150	°C

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (3) The value of V_{CC} is provided in the *Recommended Operating Conditions* table.
- 4) The package thermal impedance is calculated in accordance with JESD 51-7.

Submit Documentation Feedback

Copyright © 2004–2014, Texas Instruments Incorporated

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT		
. ,	Complexications	Operating	1.65	5.5	V		
V _{CC}	Supply voltage	Data retention only	1.5		V		
		V _{CC} = 1.65 V to 1.95 V					
. /	High lavel innertualtees	V_{CC} = 2.3 V to 2.7 V	1.7		V		
V_{IH}	High-level input voltage	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	2		V		
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	0.7 × V _{CC}				
		V _{CC} = 1.65 V to 1.95 V		0.35 × V _{CC}			
. ,	Laur laurel innut voltane	V_{CC} = 2.3 V to 2.7 V		0.7	V		
V_{IL}	Low-level input voltage	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		0.8	V		
		V _{CC} = 4.5 V to 5.5 V		0.3 × V _{CC}			
VI	Input voltage		0	5.5	V		
Vo	Output voltage		0	V _{CC}	V		
		V _{CC} = 1.65 V		-4			
		V _{CC} = 2.3 V		-8			
ОН	High-level output current	urrent		-16	mA		
		V _{CC} = 3 V		-24			
		V _{CC} = 4.5 V		-32			
		V _{CC} = 1.65 V		4			
		V _{CC} = 2.3 V		8			
loL	Low-level output current	V 0.V		16	mA		
		V _{CC} = 3 V		24			
		V _{CC} = 4.5 V		32			
		$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}, 2.5 \text{ V} \pm 0.2 \text{ V}$		20			
Δt/Δν	Input transition rise or fall rate	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		10	ns/V		
		$V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$		5			
T _A	Operating free-air temperature		-40	85	°C		

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Submit Documentation Feedback

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{cc}	MIN TYP ⁽¹⁾ M	AX	UNIT
	I _{OH} = -100 μA	1.65 V to 5.5 V	V _{CC} - 0.1		
	$I_{OH} = -4 \text{ mA}$	1.65 V	1.2		
V	$I_{OH} = -8 \text{ mA}$	2.3 V	1.9		V
V_{OH}	$I_{OH} = -16 \text{ mA}$	2.1/	2.4		V
	$I_{OH} = -24 \text{ mA}$	3 V	2.3		
	$I_{OH} = -32 \text{ mA}$	4.5 V	3.8		
	I _{OL} = 100 μA	1.65 V to 5.5 V		0.1	
	I _{OL} = 4 mA	1.65 V	0	.45	
V	I _{OL} = 8 mA	2.3 V		0.3	V
V_{OL}	I _{OL} = 16 mA	3 V		0.4	V
	I _{OL} = 24 mA	3 V	0	.55	
	I _{OL} = 32 mA	4.5 V	0	.55	
I _I	$V_I = 5.5 \text{ V or GND}$	0 to 5.5 V		±1	μΑ
I _{off}	V_I or $V_O = 5.5 \text{ V}$	0	:	±10	μΑ
I _{CC}	$V_1 = 5.5 \text{ V or GND}, \qquad I_O = 0$	1.65 V to 5.5 V		10	μΑ
ΔI_{CC}	One input at $V_{CC} - 0.6 \text{ V}$, Other inputs at V_{CC} or GND	3 V to 5.5 V	!	500	μΑ
C_{l}	$V_I = V_{CC}$ or GND	3.3 V	3.5		pF

⁽¹⁾ All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

Switching Characteristics

over recommended operating free-air temperature range, C_L = 15 pF (unless otherwise noted) (see Figure 1)

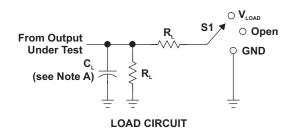
PARAMETER	FROM	TO (OUTPUT)	V _{CC} = ± 0.1			2.5 V .2 V	V _{CC} = ± 0.3		V _{CC} = ± 0.5		UNIT
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	A or \overline{G}	Υ	2.5	15.4	1.5	7.1	1	5.1	0.5	4.2	ns

Switching Characteristics

over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ or 50 pF (unless otherwise noted) (see Figure 2)

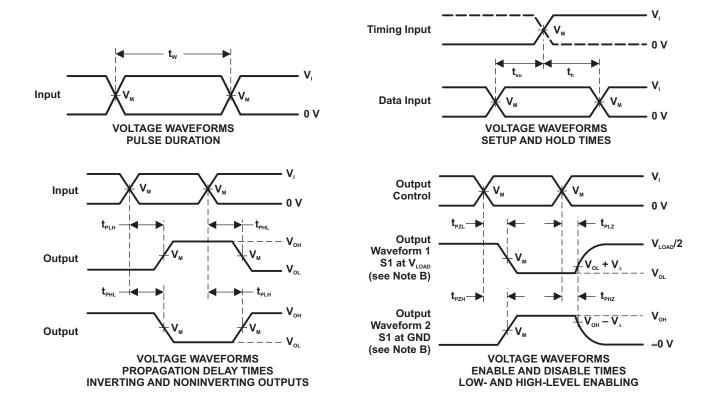
PARAMETER	FROM	TO (OUTPUT)	V _{CC} = ± 0.	1.8 V 15 V	V _{CC} = ± 0.		V _{CC} = ± 0.3		V _{CC} = ± 0.5		UNIT
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	A or \overline{G}	Υ	2.5	15.8	1.5	7.5	1	6.1	0.5	5.1	ns

Operating Characteristics


 $T_A = 25^{\circ}C$

	PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	V _{CC} = 5 V TYP	UNIT
_	Power dissipation	G to Y1	f 40 MH-	17	17	18	19	F
C_{pd}	capacitance	A1 to Yn	f = 10 MHz	33	33	33	35	pF

Product Folder Links : SN74LVC1G29



Parameter Measurement Information

TEST	S1
t _{PLH} /t _{PHL}	Open
$t_{_{\mathrm{PLZ}}}/t_{_{\mathrm{PZL}}}$	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

.,	INI	PUTS	.,	.,			
V _{cc}	V,	t,/t,	V _M	V _{LOAD}	C _L	R _⊾	V _A
1.8 V ± 0.15 V	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	15 pF	1 M Ω	0.15 V
2.5 V ± 0.2 V	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	15 pF	1 M Ω	0.15 V
3.3 V ± 0.3 V	3 V	≤2.5 ns	1.5 V	6 V	15 pF	1 M Ω	0.3 V
5 V ± 0.5 V	V _{cc}	≤2.5 ns	V _{cc} /2	2 × V _{cc}	15 pF	1 M Ω	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

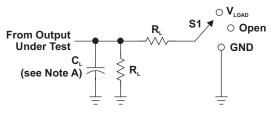
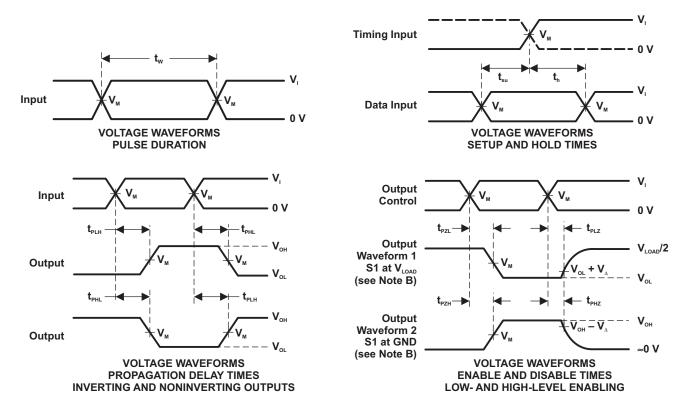

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{o} = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. $t_{\mbox{\tiny PZL}}$ and $t_{\mbox{\tiny PZH}}$ are the same as $t_{\mbox{\tiny en}}.$
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

Submit Documentation Feedback


Parameter Measurement Information (continued)

TEST	S1
t _{PLH} /t _{PHL}	Open
$t_{_{\mathrm{PLZ}}}/t_{_{\mathrm{PZL}}}$	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

LOAD CIRCUIT

,,	INI	PUTS		V		_	.,
V _{cc}	V,	t,/t,	V _M	V _{LOAD}	C _∟	R _⊾	V _A
1.8 V ± 0.15 V	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	30 pF	1 k Ω	0.15 V
$2.5~\textrm{V}~\pm~0.2~\textrm{V}$	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	30 pF	500 Ω	0.15 V
$3.3~V~\pm~0.3~V$	3 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
5 V ± 0.5 V	V _{cc}	≤2.5 ns	V _{cc} /2	2 × V _{cc}	50 pF	500 Ω	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{o} = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and \dot{t}_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 2. Load Circuit and Voltage Waveforms

Submit Documentation Feedback

Copyright © 2004–2014, Texas Instruments Incorporated

REVISION HISTORY

Cł	hanges from Revision B (January 2007) to Revision C	Page
•	Updated document to new TI data sheet format.	1
•	Deleted Ordering Information table.	1
•	Updated Features.	1
•	Added ESD warning.	2

Product Folder Links: SN74LVC1G29

PACKAGE OPTION ADDENDUM

29-Jan-2021

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74LVC1G29DCTR	ACTIVE	SM8	DCT	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	C29 (R, Z)	Samples
SN74LVC1G29DCUR	ACTIVE	VSSOP	DCU	8	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	(C29J, C29Q, C29R)	Samples
SN74LVC1G29DCUT	ACTIVE	VSSOP	DCU	8	250	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	(C29J, C29Q, C29R)	Samples
SN74LVC1G29YZPR	ACTIVE	DSBGA	YZP	8	3000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 85	D9N	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

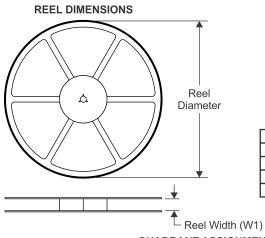
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

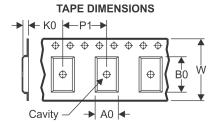
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

29-Jan-2021


continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

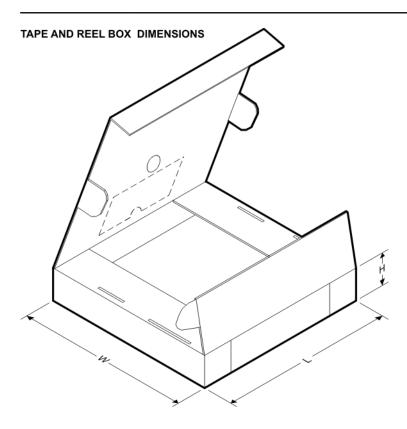

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 23-Oct-2020

TAPE AND REEL INFORMATION

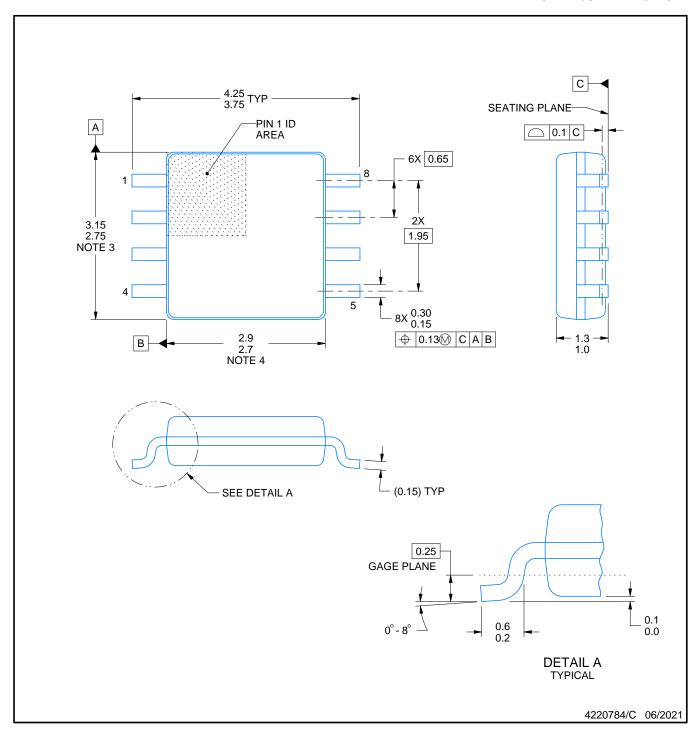
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Sprocket Holes Q1 | Q2 | Q1 | Q2 Q3 | Q4 | Q3 | Q4 Pocket Quadrants

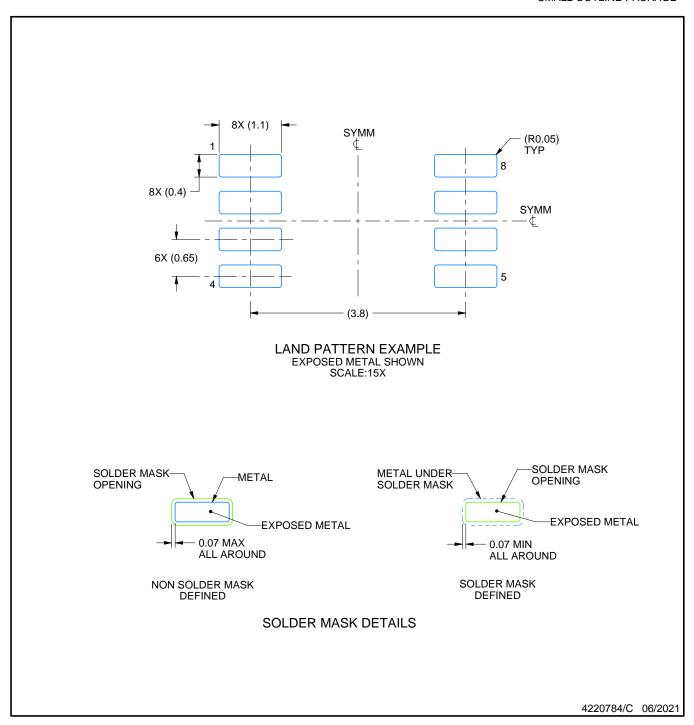
*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC1G29DCTR	SM8	DCT	8	3000	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
SN74LVC1G29DCUR	VSSOP	DCU	8	3000	178.0	9.5	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC1G29DCUR	VSSOP	DCU	8	3000	178.0	9.0	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC1G29DCUR	VSSOP	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC1G29DCUT	VSSOP	DCU	8	250	178.0	9.5	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC1G29DCUT	VSSOP	DCU	8	250	178.0	9.0	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC1G29YZPR	DSBGA	YZP	8	3000	178.0	9.2	1.02	2.02	0.63	4.0	8.0	Q1


www.ti.com 23-Oct-2020

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC1G29DCTR	SM8	DCT	8	3000	182.0	182.0	20.0
SN74LVC1G29DCUR	VSSOP	DCU	8	3000	202.0	201.0	28.0
SN74LVC1G29DCUR	VSSOP	DCU	8	3000	180.0	180.0	18.0
SN74LVC1G29DCUR	VSSOP	DCU	8	3000	202.0	201.0	28.0
SN74LVC1G29DCUT	VSSOP	DCU	8	250	202.0	201.0	28.0
SN74LVC1G29DCUT	VSSOP	DCU	8	250	180.0	180.0	18.0
SN74LVC1G29YZPR	DSBGA	YZP	8	3000	220.0	220.0	35.0


NOTES:

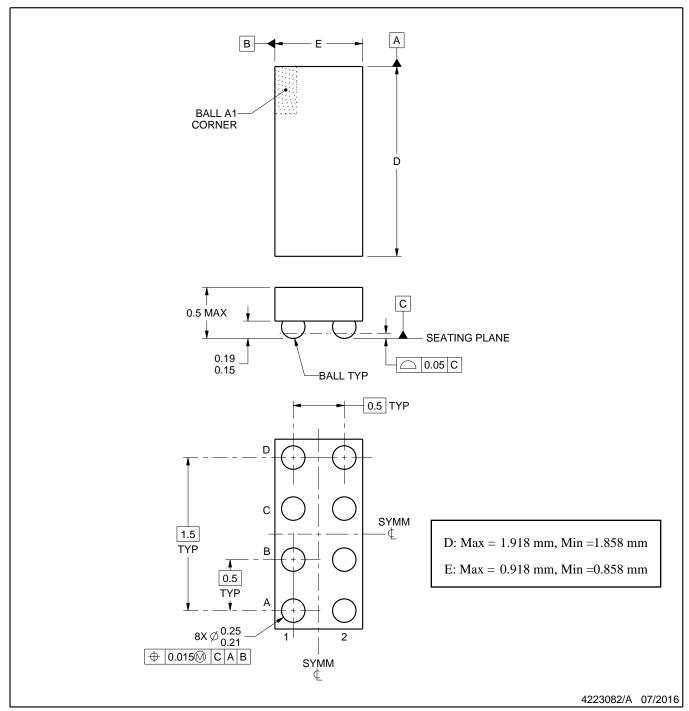
- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.

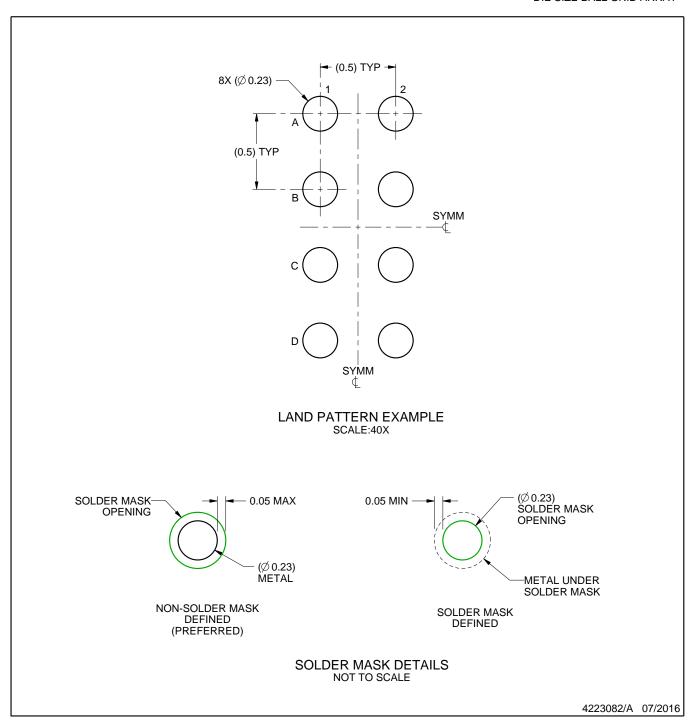
NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.


NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

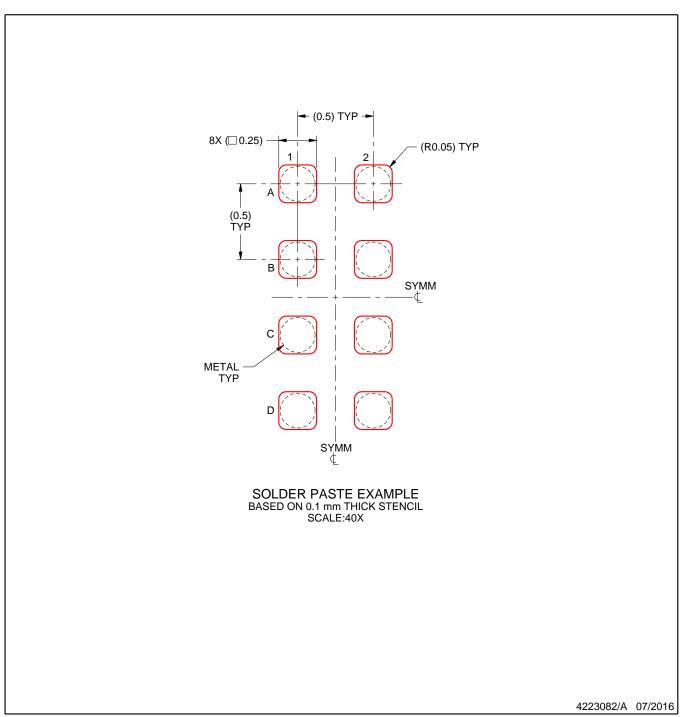
DIE SIZE BALL GRID ARRAY



NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.

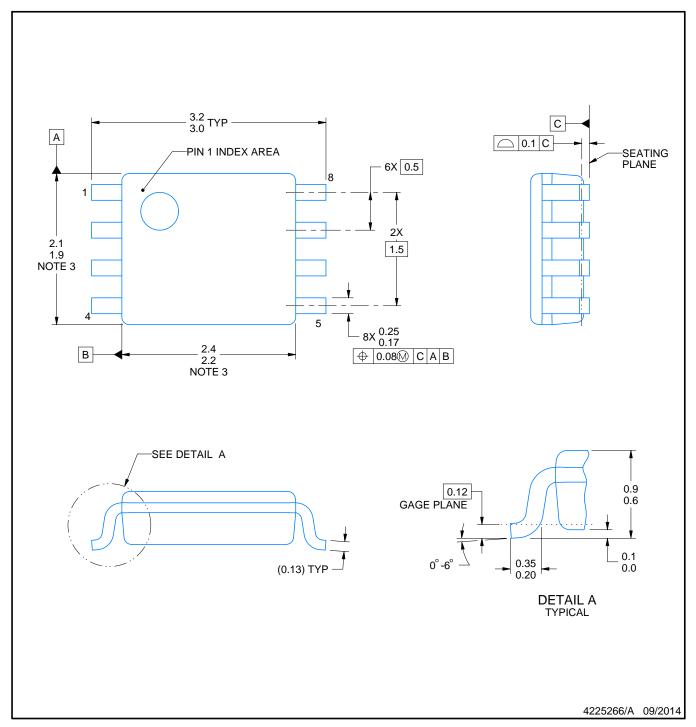
DIE SIZE BALL GRID ARRAY



NOTES: (continued)

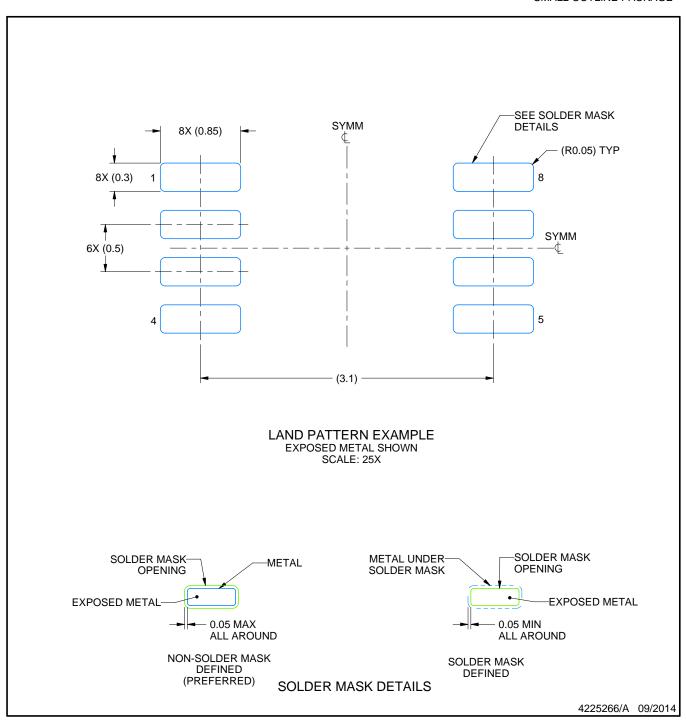
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).

DIE SIZE BALL GRID ARRAY



NOTES: (continued)

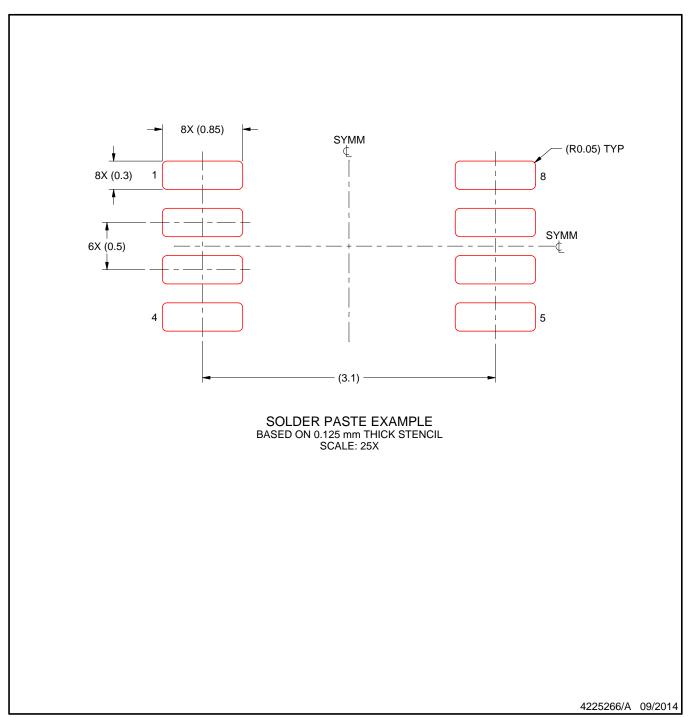
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-187 variation CA.



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Encoders, Decoders, Multiplexers & Demultiplexers category:

Click to view products by Texas Instruments manufacturer:

Other Similar products are found below:

MC74HC163ADTG 74HC253N NLV74VHC1G01DFT1G NLVHCT4851ADTR2G NLV14028BDR2G COMX-CAR-210 SN74LS148N PI3B3251LE PI3B3251QE NLV74HC4851AMNTWG MC74LVX257DG M74HCT4851ADWR2G NL7SZ19DBVT1G PI5C3253LEX MC74ACT138NG NB3L8533DTR2G NLV74AC157DR2G 74HC138DT 74HC153DT 74HC238DT 74HC151DT ADS131M02IRUKR CBMG709ATS16 74HC238N HT74HC154ARWZ RS2G139XS16-G 74HCT251D 74HC138T U74HC138G-S16-R AIP74HCT138SA.TB XD74C922 SN74LVC1G19DBVR(UMW) RS1G157XC6 74HC151M/TR AiP74HC237TA16.TB AIP74HC138TA16.TB 74HC138DRG AiP74LVC138TA16.TB CD4511BDRG AiP74LVC157TA16.TB SN74HC42N(LX) SN74LS157N(LX) SN74LS42N QS3VH251QG8 MC74HC151ADTG MC74LVX257DTR2G 74VHC238FT(BJ) 74VHC4066AFT(BJ) 74VHCT138AFT(BJ) NC7SZ157P6X