

FEATURES

SN54LVT16244B, SN74LVT16244B 3.3-V ABT 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS

SCBS716E-MARCH 2000-REVISED DECEMBER 2006

	SN54LVT16244BWD PACKAGE
Member of the Texas Instruments Wide Family	
 State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Ope and Low Static-Power Dissipation 	1Y1 L 2 47 L 1A1
 Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC}) 	1Y2 [] 3 46 [] 1A2 GND [] 4 45] GND 1Y3 [] 5 44 [] 1A3 1Y4 [] 6 43 [] 1A4
Support Unregulated Battery Operation to 2.7 V	Down $V_{CC} \begin{bmatrix} 7 & 42 \\ 2Y1 \end{bmatrix} V_{CC}$
 Typical V_{OLP} (Output Ground Bounce) < at V_{CC} = 3.3 V, T_A = 25°C 	D.8 V 2Y2 🗍 9 40 🗍 2A2 GND 🕻 10 39 🗍 GND
 I_{off} and Power-Up 3-State Support Hot Insertion 	2Y3 [] 11 38 [] 2A3 2Y4 [] 12 37 [] 2A4
 Latch-Up Performance Exceeds 100 mA JESD 78, Class II 	3Y2 🛛 14 35 🗋 3A2
 ESD Protection Exceeds JESD 22 2000-V Human-Body Model (A114-A) 	GND [] 15 34 [] GND 3Y3 [] 16 33 [] 3A3 3Y4 [] 17 32 [] 3A4
200-V Machine Model (A115-A)1000-V Charged-Device Model (C101	V _{CC} [] 18 31 [] V _{CC}
	4Y2 [] 20 29 [] 4A2 GND [] 21 28] GND
	4Y3 [] 22 27 [] 4A3 4Y4 [] 23 26 [] 4A4 4OE [] 24 25 [] 3OE

DESCRIPTION/ORDERING INFORMATION

ORDERING INFORMATION

T _A	PACKAG	GE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	FBGA – GRD	Reel of 1000	SN74LVT16244BGRDR	VD244B
	FBGA – ZRD (Pb-free)	Reel of 1000	SN74LVT16244BZRDR	VD244D
		Tube of 25	SN74LVT16244BDL	
	SSOP – DL		SN74LVT16244BDLG4	LVT16244B
	550P - DL	Reel of 1000	SN74LVT16244BDLR	LV110244D
4000 to 0500		Reel OF 1000	74LVT16244BDLRG4	
–40°C to 85°C	T0000 000	Deal of 2000	SN74LVT16244BDGGR	
	TSSOP – DGG	Reel of 2000	74LVT16244BDGGRG4	– LVT16244B
	TVSOP – DGV	Reel of 2000	SN74LVT16244BDGVR	VD244D
	TVSOP – DGV	Reel 01 2000	74LVT16244BDGVRE4	- VD244B
	VFBGA – GQL	Deal of 1000	SN74LVT16244BGQLR	V/D044D
	VFBGA – ZQL (Pb-free)	Reel of 1000	SN74LVT16244BZQLR	VD244B
–55°C to 125°C CFP – WD		Tube	SNJ54LVT16244BWD	SNJ54LVT16244BWD

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus is a trademark of Texas Instruments.

SCBS716E-MARCH 2000-REVISED DECEMBER 2006

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

The 'LVT16244B devices are 16-bit buffers and line drivers designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment. These devices can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. These devices provide true outputs and symmetrical active-low output-enable (\overline{OE}) inputs.

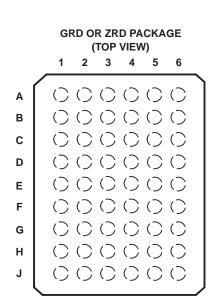
When V_{CC} is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

These devices are fully specified for hot-insertion applications using I_{off} and power-up 3-state. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

GQL OR ZQL PACKAGE (TOP VIEW)

	1 2 3 4 5 6
A	000000
в	0000000
с	0000000
D	0000000
E	() () () () () () () () () () () () () (
F	() () () () () () () () () () () () () (
G	0000000
н	0000000
J	0000000
к	000000

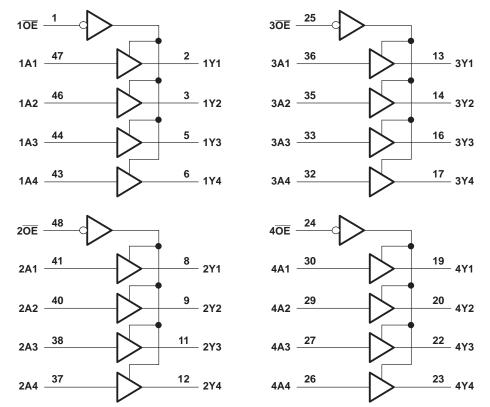
TERMINAL ASSIGNMENTS⁽¹⁾ (56-Ball GQL/ZQL Package)


	1	2	3	4	5	6
Α	1 0E	NC	NC	NC	NC	2 0E
В	1Y2	1Y1	GND	GND	1A1	1A2
С	1Y4	1Y3	V _{CC}	V _{CC}	1A3	1A4
D	2Y2	2Y1	GND	GND	2A1	2A2
Е	2Y4	2Y3			2A3	2A4
F	3Y1	3Y2			3A2	3A1
G	3Y3	3Y4	GND	GND	3A4	3A3
н	4Y1	4Y2	V _{CC}	V _{CC}	4A2	4A1
J	4Y3	4Y4	GND	GND	4A4	4A3
к	4 0E	NC	NC	NC	NC	3 <mark>0E</mark>

(1) NC – No internal connection

TERMINAL ASSIGNMENTS⁽¹⁾ (54-Ball GRD/ZRD Package)

	1	2	3	4	5	6
Α	1Y1	NC	1 0E	2 0E	NC	1A1
В	1Y3	1Y2	NC	NC	1A2	1A3
С	2Y1	1Y4	V _{CC}	V _{CC}	1A4	2A1
D	2Y3	2Y2	GND	GND	2A2	2A3
Е	3Y1	2Y4	GND	GND	2A4	3A1
F	3Y3	3Y2	GND	GND	3A2	3A3
G	4Y1	3Y4	V _{CC}	V _{CC}	3A4	4A1
н	4Y3	4Y2	NC	NC	4A2	4A3
J	4Y4	NC	4 0E	3 0E	NC	4A4


(1) NC – No internal connection

FUNCTION TABLE (EACH 4-BIT BUFFER)

INPU	INPUTS					
ŌĒ	Α	Y				
L	Н	Н				
L	L	L				
Н	Х	Z				

LOGIC DIAGRAM (POSITIVE LOGIC)

Pin numbers shown are for the DGG, DGV, DL, and WD packages.

SCBS716E-MARCH 2000-REVISED DECEMBER 2006

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT	
V _{CC}	Supply voltage range		-0.5	4.6	V	
VI	Input voltage range ⁽²⁾		-0.5	7	V	
Vo	Voltage range applied to any output in the high-impedance	e or power-off state ⁽²⁾	-0.5	7	V	
Vo	Voltage range applied to any output in the high state ⁽²⁾		-0.5	V _{CC} + 0.5	V	
	Conservation to a start in the law state	SN54LVT16244B		96		
I _O	Current into any output in the low state	SN74LVT16244B		mA		
	$\mathbf{O}_{\mathbf{A}}$	SN54LVT16244B		48		
I _O	Current into any output in the high state ⁽³⁾	SN74LVT16244B		64	mA	
I _{IK}	Input clamp current	V _I < 0		-50	mA	
I _{OK}	Output clamp current	V ₀ < 0		-50	mA	
		DGG package		70		
		DGV package	58			
θ_{JA}	Package thermal impedance ⁽⁴⁾	DL package			°C/W	
		GQL/ZQL package		42		
			36			
T _{stg}	Storage temperature range		-65	150	°C	

TEXAS

STRUMENTS www.ti.com

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed. (3) This current flows only when the output is in the high state and $V_O > V_{CC}$. (4) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions⁽¹⁾

			SN54LVT162	244B ⁽²⁾	SN74LVT		
			MIN	MAX	MIN	MAX	UNIT
V _{CC}	Supply voltage		2.7	3.6	2.7	3.6	V
V _{IH}	High-level input voltage		2		2		V
V _{IL}	Low-level input voltage		0.8		0.8	V	
VI	Input voltage			5.5		5.5	V
I _{OH}	High-level output current			-24		-32	mA
I _{OL}	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
$\Delta t / \Delta V_{CC}$	Power-up ramp rate		200		200		μs/V
T _A	Operating free-air temperature		-55	125	-40	85	°C

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

(2) Product preview

SCBS716E-MARCH 2000-REVISED DECEMBER 2006

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

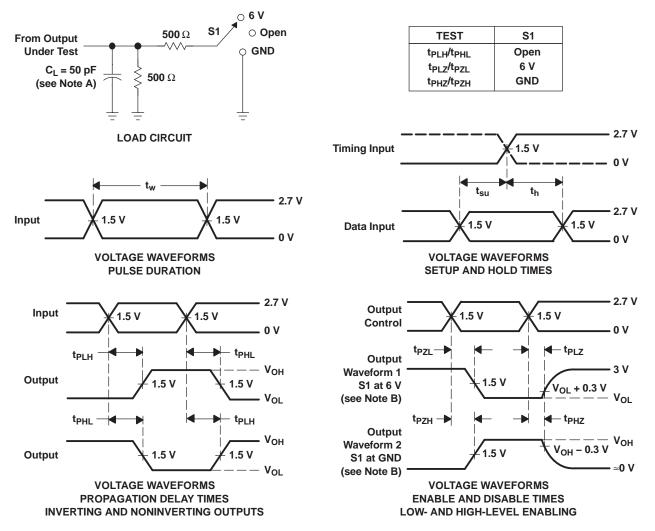
		тгот	CONDITIONS	SN54L	_VT16244B ⁽¹)	SN74L	VT16244	В	
PA	RAMETER	IESI	CONDITIONS	MIN	TYP ⁽²⁾	MAX	MIN	TYP ⁽²⁾	MAX	UNIT
V _{IK}		V _{CC} = 2.7 V,	I _I = -18 mA			-1.2			-1.2	V
		V _{CC} = 2.7 to 3.6 V,	I _{OH} = −100 μA	$V_{CC} - 0.2$			$V_{CC} - 0.2$			
\ <i>\</i>		V _{CC} = 2.7 V,	I _{OH} = -8 mA	2.4			2.4			V
V _{OH}		V 2.V	I _{OH} = -24 mA	2						V
		$V_{CC} = 3 V$	I _{OH} = -32 mA				2			
		V 07V	I _{OL} = 100 μA			0.2			0.2	
		$V_{CC} = 2.7 V$	I _{OL} = 24 mA			0.5			0.5	
v			I _{OL} = 16 mA			0.4			0.4	V
V _{OL}		V 2.V	I _{OL} = 32 mA			0.5			0.5	v
		$V_{CC} = 3 V$	I _{OL} = 48 mA			0.55				
			I _{OL} = 64 mA				0.55			
		$V_{CC} = 0 \text{ or } 3.6 \text{ V},$	V _I = 5.5 V			50			10	
I _I	Control inputs $V_{CC} = 3.6 V$,		$V_{I} = V_{CC}$ or GND			±1			±1	μA
1	D		$V_{I} = V_{CC}$		1				1	
	Data inputs	V _{CC} = 3.6 V	$V_{I} = 0$			-5			-5	
I _{off}		$V_{CC} = 0,$	V_{I} or V_{O} = 0 to 4.5 V						±100	μA
I _{OZH}		V _{CC} = 3.6 V,	V _O = 3 V			5			5	μA
I _{OZL}		V _{CC} = 3.6 V,	V _O = 0.5 V			-5			-5	μA
I _{OZP}		$\frac{V_{CC}}{OE} = 0 \text{ to } 1.5 \text{ V}, \text{ V}_{O}$	= 0.5 V to 3 V,		±	:100 ⁽³⁾			±100	μΑ
I _{OZP}	D	$\frac{V_{CC}}{OE} = 1.5 \text{ V to } 0, \text{ V}_{O}$	= 0.5 V to 3 V,		±	100 ⁽³⁾			±100	μΑ
		V _{CC} = 3.6 V,	Outputs high			0.19			0.19	
I _{cc}		$I_{0} = 0,$	Outputs low	5			5			mA
		$V_{I} = V_{CC}$ or GND	Outputs disabled	0.19		0.19	0.19			
		$V_{CC} = 3 V$ to 3.6 V, 0 Other inputs at V_{CC} of	Dne input at V _{CC} – 0.6 V, or GND			0.2			0.2	mA
Ci		V _I = 3 V or 0			4			4		pF
Co		$V_0 = 3 V \text{ or } 0$			9			9		pF

(1) Product preview

(1) Froduct preview
 (2) All typical values are at V_{CC} = 3.3 V, T_A = 25°C.
 (3) On products compliant to MIL-PRF-38535, this parameter is not production tested.
 (4) This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND.

SCBS716E-MARCH 2000-REVISED DECEMBER 2006

Switching Characteristics


over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

			SN	54LVT1	6244B ⁽¹⁾)						
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V			V _{CC} = 2.7 V		UNIT
			MIN	MAX	MIN	MAX	MIN	TYP ⁽²⁾	MAX	MIN	MAX	
t _{PLH}	А	Y	1.1	4.4		4.6	1.2	2.3	3.2		3.7	2
t _{PHL}	A	T	1.1	3.6		3.9	1.2	2	3.2		3.7	ns
t _{PZH}	OE	Y	1.1	4.6		5.4	1.2	2.6	4		5	ns
t _{PZL}	OL	I	1.1	5.4		6.2	1.2	2.7	4		5	115
t _{PHZ}	OE	Y	1.6	5.7		6.2	2.2	3.3	4.5		5	2
t _{PLZ}	ÜE	T	1.2	5		4.7	2	3.1	4.2		4.4	ns
t _{sk(LH)}									0.5			ns
t _{sk(HL)}									0.5			115

(1) Product preview (2) All typical values are at V_{CC} = 3.3 V, T_A = 25^{\circ}C.

SCBS716E-MARCH 2000-REVISED DECEMBER 2006

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.

D. The outputs are measured one at a time, with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

20-Jan-2021

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	Package	Eco Plan	Lead finish/	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	Ball material	(3)		(4/5)	
74LVT16244BDGGRG4	ACTIVE	TSSOP	DGG	48	2000	RoHS & Green	(6) NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVT16244B	Samples
SN74LVT16244BDGGR	ACTIVE	TSSOP	DGG	48	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVT16244B	Samples
SN74LVT16244BDGVR	ACTIVE	TVSOP	DGV	48	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	VD244B	Samples
SN74LVT16244BDL	ACTIVE	SSOP	DL	48	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVT16244B	Samples
SN74LVT16244BDLG4	ACTIVE	SSOP	DL	48	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVT16244B	Samples
SN74LVT16244BDLR	ACTIVE	SSOP	DL	48	1000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVT16244B	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

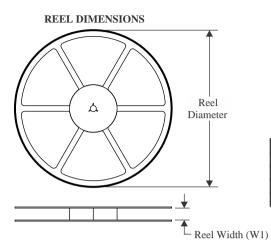
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

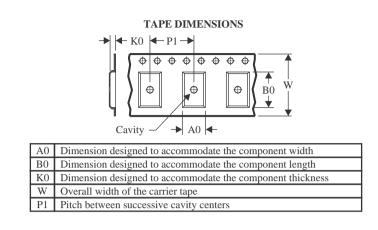
www.ti.com

PACKAGE OPTION ADDENDUM

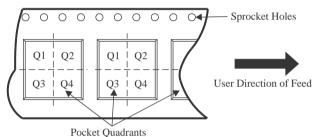
20-Jan-2021

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

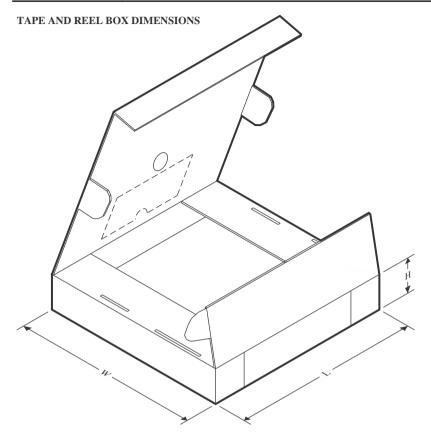


Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

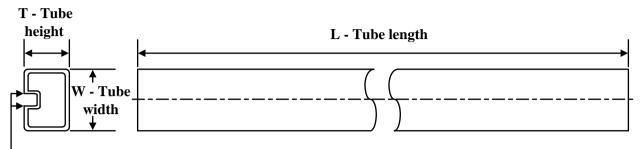

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVT16244BDGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1
SN74LVT16244BDGVR	TVSOP	DGV	48	2000	330.0	16.4	7.1	10.2	1.6	12.0	16.0	Q1
SN74LVT16244BDLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

3-Jun-2022

*All dimensions are nominal

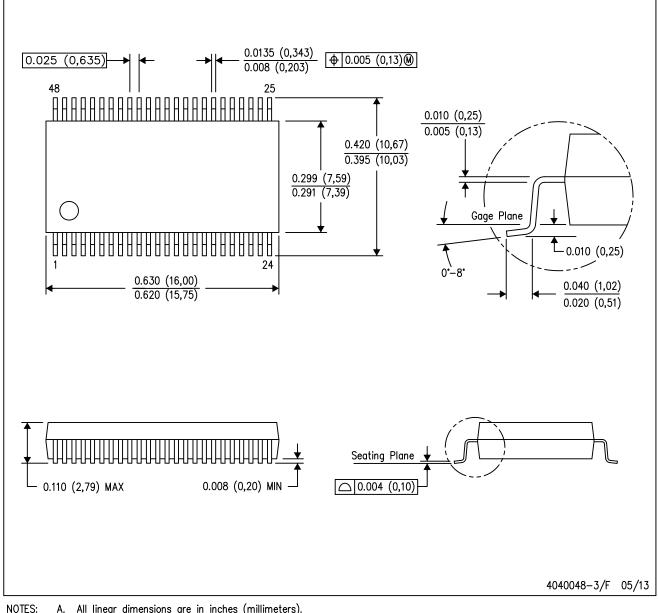

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVT16244BDGGR	TSSOP	DGG	48	2000	367.0	367.0	45.0
SN74LVT16244BDGVR	TVSOP	DGV	48	2000	356.0	356.0	35.0
SN74LVT16244BDLR	SSOP	DL	48	1000	367.0	367.0	55.0

TEXAS INSTRUMENTS

www.ti.com

3-Jun-2022

TUBE


- B - Alignment groove width

*All dimensions are nominal

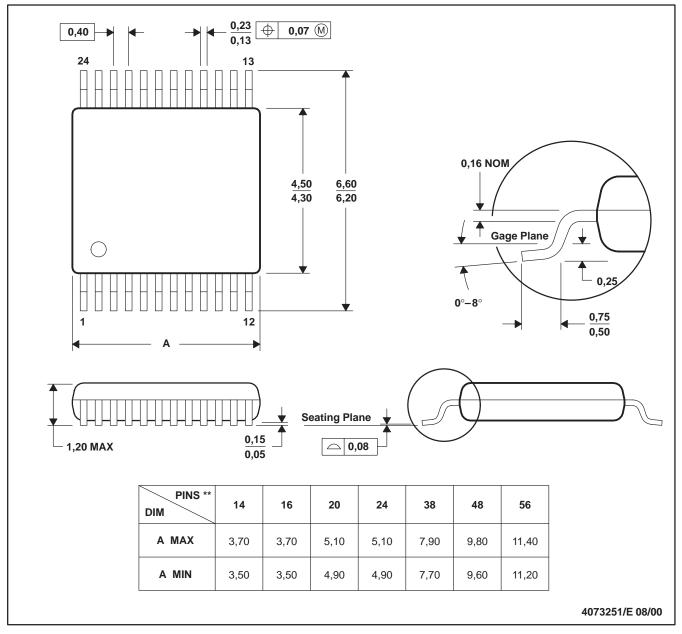
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74LVT16244BDL	DL	SSOP	48	25	473.7	14.24	5110	7.87
SN74LVT16244BDLG4	DL	SSOP	48	25	473.7	14.24	5110	7.87

DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.


MECHANICAL DATA

PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

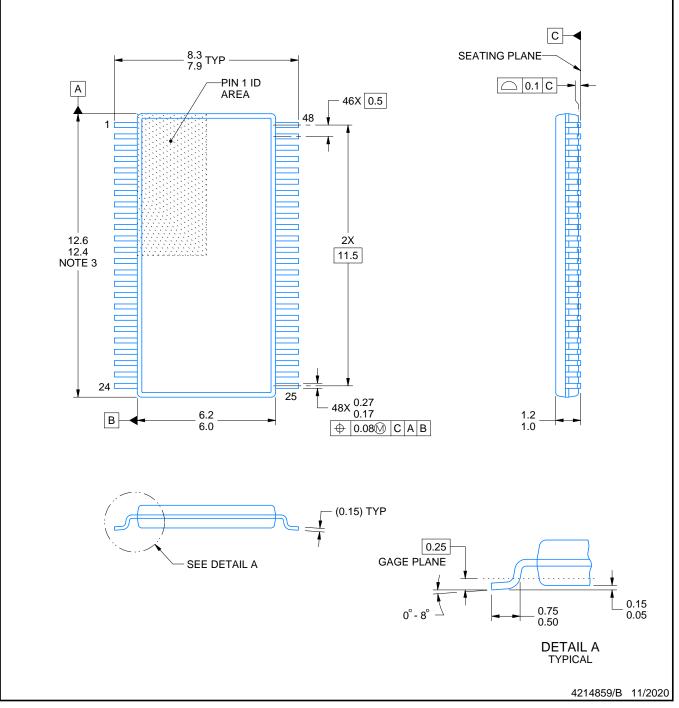
DGV (R-PDSO-G**)

24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153


14/16/20/56 Pins – MO-194

PACKAGE OUTLINE

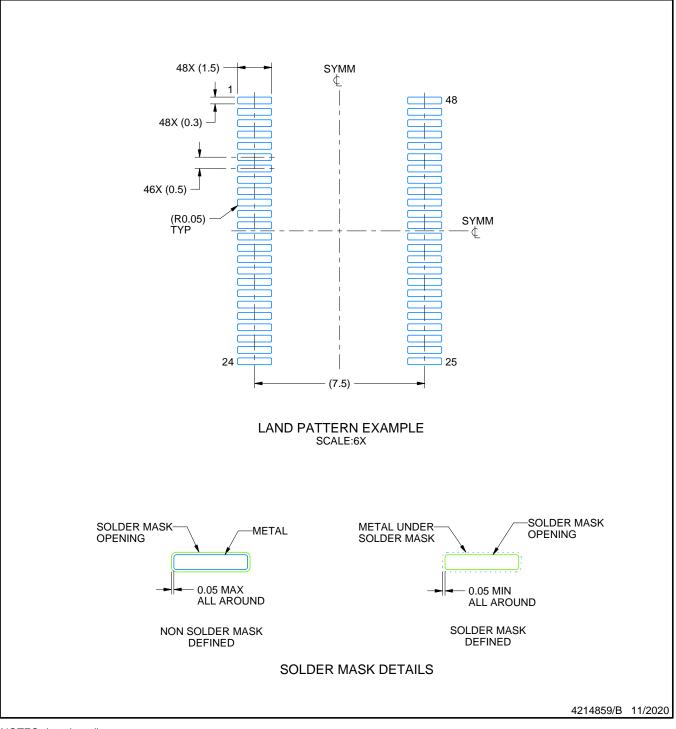
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not

- exceed 0.15 mm per side. 4. Reference JEDEC registration MO-153.


DGG0048A

DGG0048A

EXAMPLE BOARD LAYOUT

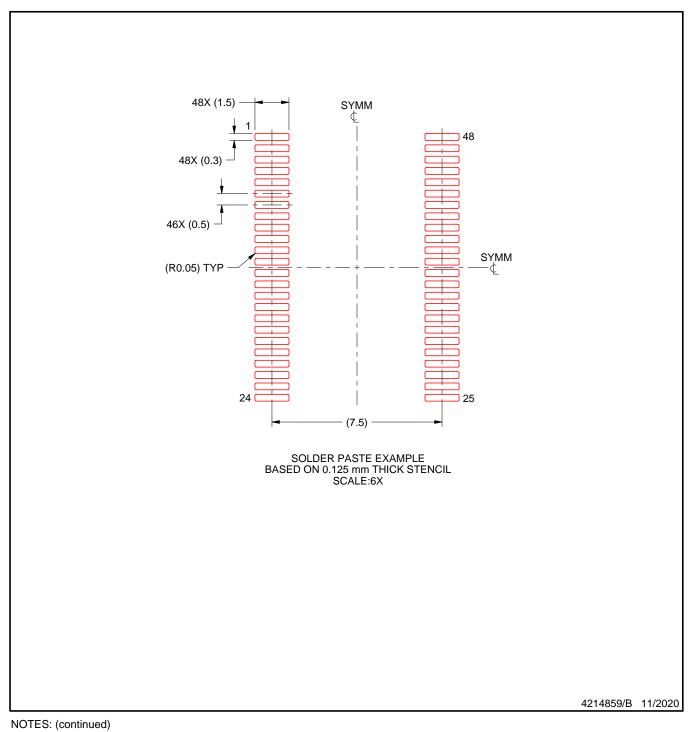
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DGG0048A

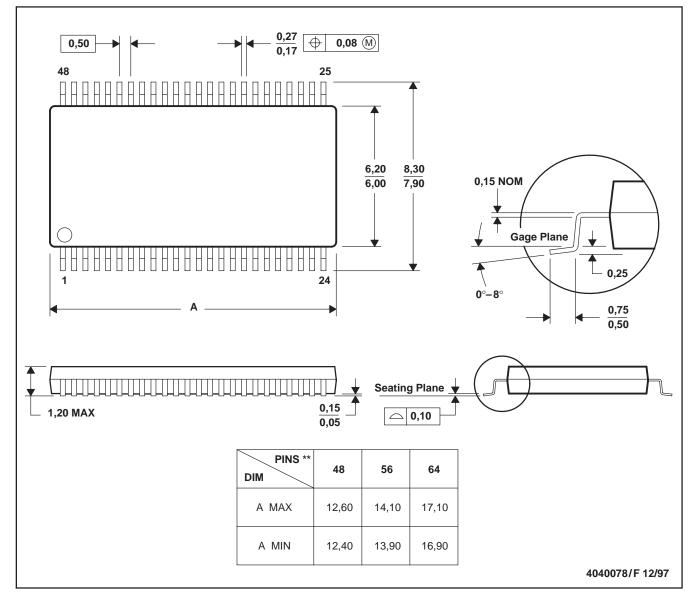
EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate

design recommendations. 8. Board assembly site may have different recommendations for stencil design.


MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by Texas Instruments manufacturer:

Other Similar products are found below :

LXV200-024SW 74AUP2G34FW3-7 HEF4043BP NL17SG125DFT2G NLU1GT126CMUTCG CD4041UBE 54FCT240CTDB 74HCT540N DS14C88N 070519XB NL17SZ07P5T5G 74LVC2G17FW4-7 CD4502BE 5962-8982101PA 61446R00 NL17SH17P5T5G NLV37WZ17USG 74HCT126T14-13 74VHC9126FT(BJ) RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC1G126FW4-7 74LVC2G126RA3-7 74LVCE1G125FZ4-7 54FCT240TLB NLX3G16DMUTCG NLX2G06AMUTCG LE87100NQCT LE87285NQC LE87290YQC LE87290YQCT 74AUP1G125FW5-7 NLU2G16CMUTCG MC74LCX244MN2TWG NL17SG17P5T5G NLV74HC125ADR2G NLVHCT245ADTR2G NLVVHC1G126DFT2G EL5623IRZ ISL15102AIRZ-T13 ISL1539IRZ-T13 MC100EP17MNG MC74HCT365ADR2G MC74LCX244ADTR2G NL27WZ126US NL37WZ16US NLU1G07MUTCG NLU2G07MUTCG NLX3G17BMX1TCG