

SN75LVPE5421

ZHCSN44A - DECEMBER 2021 - REVISED OCTOBER 2022

SN75LVPE5421 具有 2:1 多路复用器的 PCle® 5.0 32Gbps 4 通道线性转接驱动器

1 特性

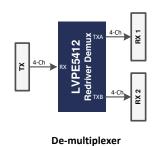
- 具有集成式 2:1 多路复用器的四通道 PCIe 5.0 线性 转接驱动器或中继器
- 此线性转接驱动器与协议无关,可兼容 PCle、 UPI、CCIX、NVLink、DisplayPort、SAS、SATA
- 单个 3.3V 电源,可使用 PCIe 电源轨
- 4 通道运行时,有功功率低至 720mW
- 无需散热器
- 频率为 16GHz 时,支持高达 24dB 的均衡功能
- 出色的 RX/TX 差分 RL(8-16GHz 时,为-10dB)
- 55fs RMS 的低附加随机抖动(带 PRBS 数据)
- 90ps 低延迟
- 自动接收器检测和无缝支持 PCIe 链路训练
- 通过引脚控制或 SMBus/I²C 进行器件配置。
- 通过引脚选择多路复用器
- 内部稳压器具有抗电源噪声能力
- 高速量产测试可确保制造可靠性
- 通过一个或多个器件支持 x4、x8 和 x16 总线宽度
- 可提供配套多路信号分离器产品 SN75LVPE5412
- 0°C 至 85°C 温度范围
- 3.5mm × 9mm 42 引脚 0.5mm 间距 WQFN 封装

2 应用

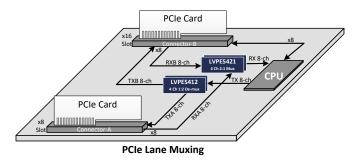
- 台式计算机和主板
- 显示面板、游戏机
- 机架式服务器、微服务器和塔式服务器
- 高性能计算、硬件加速器
- 数据存储、网络附加存储
- 存储区域网络 (SAN) 和主机总线适配器 (HBA) 卡
- 网络接口卡 (NIC)

3 说明

SN75LVPE5421 是一款具有集成式多路复用器的四通 道线性转接驱动器。这款低功耗高性能线性转接驱动器 专为支持 PCle 5.0 和其他速率高达 32Gbps 的接口而 设计。


SN75LVPE5421 接收器部署了连续时间线性均衡器 (CTLE),可提供高频增强。均衡器可以打开由于 PCB 布线或电缆等互连介质引起的码间串扰 (ISI) 而完全关 闭的输入眼图。在 PCIe 链路训练期间,线性转接驱动 器与根复合体 (RC) 和端点 (EP) 之间的无源通道作为 一个整体接受训练,以达到理想的发送和接收均衡设 置,从而实现出色的电气链路。该器件具有低通道间串 扰、低附加抖动和极低的回波损耗,因此在链路中几乎 可作为无源元件。这款器件具有内部线性稳压器,对板 上电源噪声具有高抗扰度,从而为高速数据路径提供纯 净电源。

SN75LVPE5421 在量产期间实施了高速测试,从而确 保可靠的高产量制造。此器件还具有低交流和直流增益 变化,可在各种平台部署中提供一致的均衡功能。


封装信息(1)

器件型号	封装	封装尺寸(标称值)
SN75LVPE5421	RUA (WQFN, 42)	3.50 mm × 9.00 mm

如需了解所有可用封装,请参阅数据表末尾的可订购产品附

Multiplexer

应用用例

Table of Contents

1 特性 1	7.3 Feature Description	13
2 应用	7.4 Device Functional Modes	
3 说明	7.5 Programming	15
4 Revision History2	8 Application and Implementation	20
5 Pin Configuration and Functions	8.1 Application Information	20
6 Specifications	8.2 Typical Applications	20
6.1 Absolute Maximum Ratings6	9 Power Supply Recommendations	<mark>2</mark> 4
6.2 ESD Ratings6	10 Layout	<mark>2</mark> 4
6.3 Recommended Operating Conditions6	10.1 Layout Guidelines	24
6.4 Thermal Information	10.2 Layout Example	24
6.5 DC Electrical Characteristics	11 Device and Documentation Support	26
6.6 High Speed Electrical Characteristics8	11.1 接收文档更新通知	26
6.7 SMBUS/I2C Timing Charateristics9	11.2 支持资源	
6.8 Typical Characteristics10	11.3 Trademarks	26
6.9 Typical Jitter Characteristics11	11.4 Electrostatic Discharge Caution	26
7 Detailed Description12	11.5 术语表	
7.1 Overview12	12 Mechanical, Packaging, and Orderable	
7.2 Functional Block Diagram12	Information	26

4 Revision History 注:以前版本的页码可能与当前版本的页码不同

C	Changes from Revision * (December 2021) to Revision A (October 2022)	Page
•	Changed the Reset value for the 7-4 Bit in the DEVICE_ID0 Register (Offset = 0xF0) table	16

5 Pin Configuration and Functions

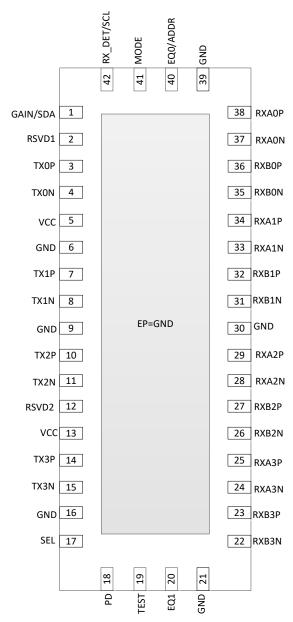


图 5-1. RUA Package, 42-Pin WQFN (Top View)

表 5-1. Pin Functions

PII	N		表 5-1. Pin Functions		
NAME	NO.	TYPE ⁽¹⁾	DESCRIPTION		
MODE	41	I, 5-level	Sets device control configuration modes. The 5-level IO pin is defined in 表 7-1. The pin can be exercised at device power up or in normal operation mode. L0: <i>Pin Mode</i> - device control configuration is done solely by strap pins. L1 or L2: <i>SMBus/I²C Mode</i> - device control configuration is done by an external controller with SMBus/I²C primary. This pin along with ADDR pin sets devices secondary address. L3 and L4 (Float): RESERVED - TI internal test modes.		
EQ0 /ADDR	40	I, 5-level	In Pin Mode:		
EQ1	20	I, 5-level	The EQ0 and EQ1 pins sets receiver linear equalization CTLE (AC gain) for all channels according to 表 7-2. These pins are sampled at device power-up only. In SMBus/I²C Mode: The ADDR pin in conjunction with MODE pin sets SMBus / I²C secondary address according to 表 7-5. The pin is sampled at device power-up only.		
GAIN /SDA	1	I, 5-level / IO	In Pin Mode: Flat gain (broadbad gain – DC and AC) from the input to the output of the device for all channels. Note: the device also provides AC (high frequency) gain in the form of equalization controlled by EQ pins or SMBus/I²C registers. The pin is sampled at device power-up only. In SMBus/I²C Mode: 3.3 V SMBus/I²C data. External pullup resistor such as 4.7 kΩ required for operation.		
GND	EP, 6, 9, 16, 21, 30, 39	Р	Ground reference for the device. EP: the Exposed Pad at the bottom of the QFN package. It is used as the GND return for the device. The EP should be connected to one or more ground planes through the low resistance path. A via array provides a low impedance path to GND. The EP also improves thermal dissipation.		
PD	18	I, 3.3-V LVCMOS	2-level logic controlling the operating state of the redriver. Active in both <i>Pin Mode</i> and <i>SMBus/l</i> ² <i>C Mode</i> . The pin is used part of PCle RX_DET state machine as outlined in 表 7-4. High: power down for all channels Low: power up, normal operation for all channels		
RSVD1, 2	2, 12	_	Reserved pins – for best signal integrity performance connect the pins to GND. Alternate option would be 0 Ω resistors from pins to GND.		
RX_DET /SCL	42	I, 5-level / IO	In <i>Pin Mode:</i> Sets receiver detect state machine options according to 表 7-4. The pin is sampled at device power-up only. In <i>SMBus/I²C Mode:</i> 3.3 V SMBus/I²C clock. External pullup resistor such as 4.7 kΩ required for operation.		
RXA0N	37	I	Inverting differential RX input - Port A, Channel 0.		
RXA0P	38	I	Noninverting differential RX input - Port A, Channel 0.		
RXA1N	33	I	Inverting differential RX input - Port A, Channel 1.		
RXA1P	34	I	Noninverting differential RX input - Port A, Channel 1.		
RXA2N	28	I	Inverting differential RX input - Port A, Channel 2.		
RXA2P	29	I	Noninverting differential RX input - Port A, Channel 2.		
RXA3N	24	I	Inverting differential RX input - Port A, Channel 3.		
RXA3P	25	I	Noninverting differential RX input - Port A, Channel 3.		
RXB0N	35	I	Inverting differential RX input - Port B, Channel 0.		
RXB0P	36	I	Noninverting differential RX input - Port B, Channel 0.		
RXB1N	31	I	Inverting differential RX input - Port B, Channel 1.		
RXB1P	32	I	Noninverting differential RX input - Port B, Channel 1.		
RXB2N	26	l	Inverting differential RX input - Port B, Channel 2.		
RXB2P	27	I	Noninverting differential RX input - Port B, Channel 2.		

表 5-1. Pin Functions (continued)

	PIN	TYPE(1)	DESCRIPTION		
NAME	NO.	- ITPE(')	DESCRIPTION		
RXB3N	22	I	Inverting differential RX input - Port B, Channel 3.		
RXB3P	23	ı	Noninverting differential RX input - Port B, Channel 3.		
SEL	17	I, 3.3 V LVCMOS	Selects the mux path. Active in both <i>Pin Mode</i> and <i>SMBus/l</i> ² <i>C Mode</i> . The pin has a weak internal pull-down resistor. Note: the SEL pin must be exercised in system implementations for mux selection between Port A vs Port B. The pin is used for PCle RX_DET state machine as outlined in 表 7-4. L: Port A selected. H: Port B selected.		
TX0N	4	0	Inverting differential TX output, Channel 0.		
TX0P	3	0	Noninverting differential TX output, Channel 0.		
TX1N	8	0	Inverting differential TX output, Channel 1.		
TX1P	7	0	Noninverting differential TX output, Channel 1.		
TX2N	11	0	Inverting differential TX output, Channel 2.		
TX2P	10	0	Noninverting differential TX output, Channel 2.		
TX3N	15	0	Inverting differential TX output, Channel 3.		
TX3P	X3P 14 O Noninverting differential TX output, Channel 3.				
TEST	19	0	TI internal test pin. Keep no connect.		
VCC	5, 13	Р	Power supply, VCC = $3.3 \text{ V} \pm 10\%$. The VCC pins on this device should be connected through a low-resistance path to the board VCC plane.		

⁽¹⁾ I = input, O = output, P = power, GND = ground

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
VCC _{ABSMAX}	Supply voltage (VCC)	- 0.5	4.0	V
VIO _{CMOS,ABSMAX}	3.3 V LVCMOS and open drain I/O voltage	- 0.5	4.0	V
VIO _{5LVL,ABSMAX}	5-level input I/O voltage	- 0.5	2.75	V
VIO _{HS-RX,ABSMAX}	High-speed I/O voltage (RXnP, RXnN)	- 0.5	3.2	V
VIO _{HS-TX,ABSMAX}	High-speed I/O voltage (TXnP, TXnN)	- 0.5	2.75	V
T _{J,ABSMAX}	Junction temperature		150	°C
T _{stg}	Storage temperature range	- 65	150	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality, performance, and shorten the device lifetime.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
V _(ESD)	Liectrostatic discriarge	Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±500	

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±2 kV may actually have higher performance.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT
VCC	Supply voltage, VCC to GND	DC plus AC power should not exceed these limits	3.0	3.3	3.6	V
		DC to <50 Hz, sinusoidal ¹			250	mVpp
		50 Hz to 500 kHz, sinusoidal ¹			100	mVpp
N_{VCC}	Supply noise tolerance	500 kHz to 2.5 MHz, sinusoidal ¹			33	mVpp
		Supply noise, >2.5 MHz, sinusoidal ¹			10	mVpp
T _{RampVCC}	VCC supply ramp time	From 0 V to 3.0 V	0.150		100	ms
TJ	Operating junction temperature		0		115	°C
T _A	Operating ambient temperature		0		85	°C
PW _{LVCMOS}	Minimum pulse width required for the device to detect a valid signal on LVCMOS inputs	PD and SEL	200			μ S
VCC _{SMBUS}	SMBus/I ² C SDA and SCL open drain termination voltage	Supply voltage for open drain pull-up resistor			3.6	V
F _{SMBus}	SMBus/I ² C clock (SCL) frequency in SMBus secondary mode		10		400	kHz
VID _{LAUNCH}	Source differential launch amplitude		800		1200	mVpp
DR	Data rate		1		32	Gbps

Product Folder Links: SN75LVPE5421

Submit Document Feedback

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	SN75LVPE54 21	UNIT
		RUA, 42 Pins	
R ₀ JA-High K	Junction-to-ambient thermal resistance	26.1	°C/W
R _{θ JC(top)}	Junction-to-case (top) thermal resistance	14.1	°C/W
R ₀ JB	Junction-to-board thermal resistance	8.7	°C/W
ψJT	Junction-to-top characterization parameter	1.6	°C/W
ψ ЈВ	Junction-to-board characterization parameter	8.6	°C/W
R _{θ JC(bot)}	Junction-to-case (bottom) thermal resistance	2.6	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report.

6.5 DC Electrical Characteristics

over operating free-air temperature and voltage range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power						
P _{ACT}	Device active power	All channels enabled (PD = L)		720	970	mW
P _{STBY}	Device power consumption in standby power mode	All channels disabled (PD = H)		23	36	mW
Control IO					'	
V _{IH}	High level input voltage	SDA, SCL, PD, SEL pins	2.1			V
V _{IL}	Low level input voltage	SDA, SCL, PD, SEL pins			1.08	V
V _{OH}	High level output voltage	$R_{pull-up} = 4.7 \text{ k}\Omega \text{ (SDA, SCL pins)}$	2.1			V
V _{OL}	Low level output voltage	I _{OL} = -4 mA (SDA, SCL pins)			0.4	V
I _{IH,SEL}	Input high leakage current for SEL pins	V _{Input} = VCC, for SEL pin			100	μΑ
I _{IH}	Input high leakage current	V _{Input} = VCC, (SCL, SDA, PD pins)			10	μA
I _{IL}	Input low leakage current	V _{Input} = 0 V, (SCL, SDA, PD, SEL pins)	-10			μA
I _{IH,FS}	Input high leakage current for fail safe input pins	V _{Input} = 3.6 V, VCC = 0 V, (SCL, SDA, PD, SEL pins)			200	μΑ
C _{IN-CTRL}	Input capacitance	SCL, SDA, PD, SEL pins		1.6		pF
5 Level IOs (MODE, GAIN, EQ1, EQ0, RX_DET pins)					
I _{IH_5L}	Input high leakage current, 5 level IOs	VIN = 2.5 V			10	μA
I _{IL_5L}	Input low leakage current for all 5 level IOs except MODE.	VIN = GND	-10			μΑ
I _{IL_5L,MODE}	Input low leakage current for MODE pin	VIN = GND	-200			μΑ
Receiver					'	
V _{RX-DC-CM}	RX DC common mode voltage	Device is in active or standby state		1.4		V
Z _{RX-DC}	Rx DC single-ended impedance			50		Ω
Z _{RX-HIGH-IMP-} DC-POS	DC input CM input impedance during Reset or power-down	Inputs are at V _{RX-DC-CM} voltage	20			kΩ
Transmitter		1			'	
Z _{TX-DIFF-DC}	DC differential Tx impedance	Impedance of Tx during active signaling, VID, diff = 1 Vpp		100		Ω
V _{TX-DC-CM}	Tx DC common mode Voltage			1.0		V
I _{TX-SHORT}	Tx short circuit current	Total current the Tx can supply when shorted to GND		70		mA

6.6 High Speed Electrical Characteristics

over operating free-air temperature and voltage range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYI	P MAX	UNIT
Receiver					
		50 MHz to 1.25 GHz	-2	2	dB
		1.25 GHz to 2.5 GHz	-2:	2	dB
RL _{RX-DIFF}	Input differential return loss	2.5 GHz to 4.0 GHz	-2:	2	dB
		4.0 GHz to 8.0 GHz	-1	3	dB
		8.0 GHz to 16 GHz	-:	9	dB
		50 MHz to 2.5 GHz	-2)	dB
RL _{RX-CM}	Input common-mode return loss	2.5 GHz to 8.0 GHz	-1	4	dB
		8.0 GHz to 16 GHz	-1	3	dB
XT _{RX}	Receive-side pair-to-pair isolation	Pair-to-pair isolation (SDD21) between two adjacent receiver pairs from 10 MHz to 16 GHz.	-5:	5	dB
Transmitter					
V _{TX-AC-CM-PP}	Tx AC peak-to-peak common mode voltage	Measured with lowest EQ, GAIN = L4; PRBS-7, 32 Gbps, over at least 10 ⁶ bits using a bandpass filter from 30 kHz to 500 MHz		50	mVpp
V _{TX-RCV-} DETECT	Amount of voltage change allowed during receiver detection	Measured while Tx is sensing whether a low-impedance receiver is present. No load is connected to the driver output	0	600	mV
		50 MHz to 1.25 GHz	-2	2	dB
		1.25 GHz to 2.5 GHz	-2:	2	dB
RL _{TX-DIFF}	Output differential return loss	2.5 GHz to 4.0 GHz	-2	1	dB
		4.0 GHz to 8.0 GHz	-1:	5	dB
		8.0 GHz to 16 GHz	-!	9	dB
		50 MHz to 2.5 GHz	-1	6	dB
RL _{TX-CM}	Output common-mode return loss	2.5 GHz to 8.0 GHz	-1:	2	dB
		8.0 GHz to 16 GHz	-1	1	dB
XT _{TX}	Transmit-side pair-to-pair isolation	Minimum pair-to-pair isolation (SDD21) between two adjacent transmitter pairs from 10 MHz to 16 GHz.	-4:	5	dB
Device Datap	ath				
T _{PLHD/PHLD}	Input-to-output latency (propagation delay) through a data channel	For either low-to-high or high-to-low transition.	9	130	ps
L _{TX-SKEW}	Lane-to-lane output skew	Between any two lanes within a single transmitter.		20	ps
T _{RJ-DATA}	Additive random jitter with data	Jitter through redriver minus the calibration trace. 32 Gbps PRBS15. 800 mVpp-diff input swing.	5	5	fs
T _{RJ-INTRINSIC}	Intrinsic additive random jitter with clock	Jitter through redriver minus the calibration trace. 32 GHz clock. 800 mVpp-diff input swing.	3:	5	fs
JITTER _{TOTAL} - DATA	Additive total jitter with data	Jitter through redriver minus the calibration trace. 32 Gbps PRBS15. 800 mVpp-diff input swing.	1.)	ps
JITTER _{TOTAL}	Intrinsic additive total jitter with clock	Jitter through redriver minus the calibration trace. 16 GHz clock. 800 mVpp-diff input swing.	0.	1	ps

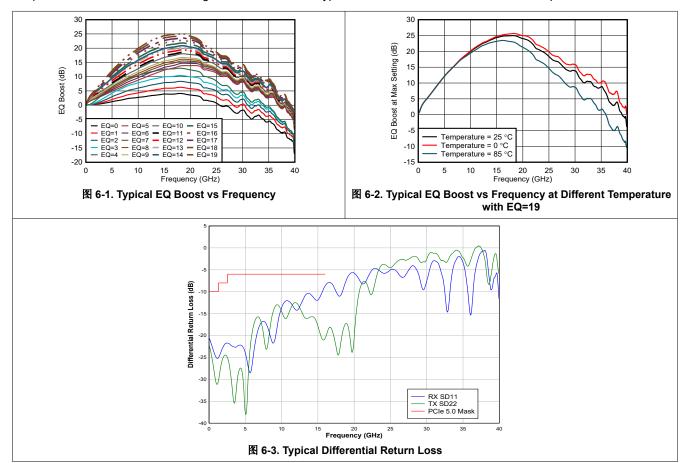
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

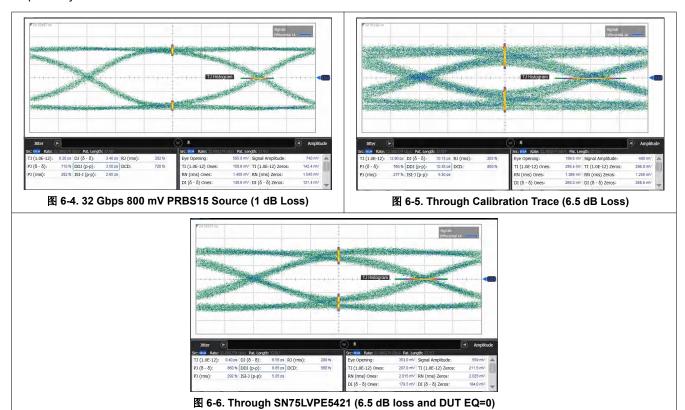
6.6 High Speed Electrical Characteristics (continued)

over operating free-air temperature and voltage range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		Minimum EQ, GAIN1/0=L0		-5.6		dB
		Minimum EQ, GAIN1/0=L1		-3.8		dB
FLAT-GAIN	Broadband DC and AC flat gain - input to output, measured at DC	Minimum EQ, GAIN1/0=L2		-1.2		dB
	,	Minimum EQ, GAIN1/0=L3		2.6		dB
		Minimum EQ, GAIN1/0=L4 (Float)		0.6		dB
EQ-MAX _{16G}	EQ boost at max setting (EQ INDEX = 19)	AC gain at 16 GHz relative to gain at 100 MHz.		24		dB
LINEARITY- DC	Output DC linearity	at 0 dB flat gain		1700		mVpp
LINEARITY- AC	Output AC linearity at 32 Gbps	at 0 dB flat gain		930		mVpp


6.7 SMBUS/I2C Timing Charateristics

over operating free-air temperature range (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Secondary	/ Mode					
t _{SP}	Pulse width of spikes which must be suppressed by the input filter				50	ns
t _{HD-STA}	Hold time (repeated) START condition. After this period, the first clock pulse is generated		0.6			μs
t _{LOW}	LOW period of the SCL clock		1.3			μs
T _{HIGH}	HIGH period of the SCL clock		0.6			μs
t _{SU-STA}	Set-up time for a repeated START condition		0.6			μs
t _{HD-DAT}	Data hold time		0			μs
T _{SU-DAT}	Data setup time		0.1			μs
t _r	Rise time of both SDA and SCL signals	Pull-up resistor = 4.7 k Ω , Cb = 10 pF		120		ns
t _f	Fall time of both SDA and SCL signals	Pull-up resistor = 4.7 k Ω , Cb = 10 pF		2		ns
t _{SU-STO}	Set-up time for STOP condition		0.6			μs
t _{BUF}	Bus free time between a STOP and START condition		1.3			μs
t _{VD-DAT}	Data valid time				0.9	μs
t _{VD-ACK}	Data valid acknowledge time				0.9	μs
C _b	Capacitive load for each bus line				400	pF

6.8 Typical Characteristics

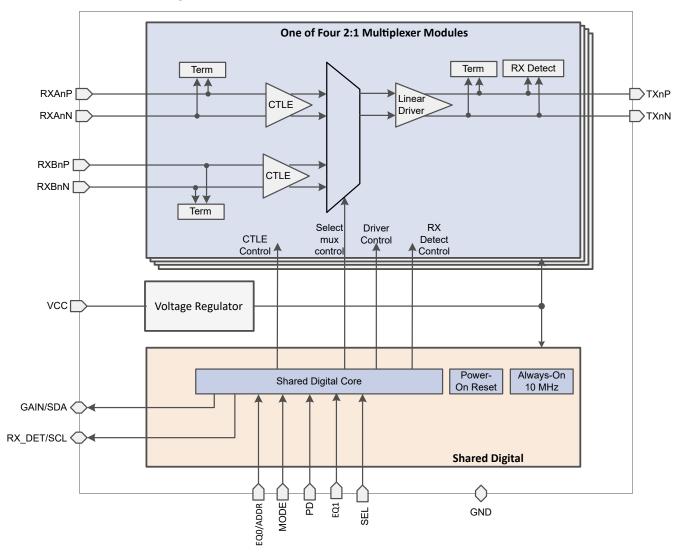
图 6-1 shows typical EQ gain curves versus frequency for different EQ settings. 图 6-2 shows EQ gain variation over temperature for maximum EQ setting of 19. 图 6-3 shows typical differential return loss for Rx and Tx pins.

6.9 Typical Jitter Characteristics

7 Detailed Description

7.1 Overview

The SN75LVPE5421 is a four channel linear redriver with ingrated multiplexer (mux). The low-power high-performance linear repeater or redriver is designed to support PCIe 1.0, 2.0, 3.0, 4.0, and 5.0. The device is a protocol agnostic linear redriver that can operate for other AC-coupled interface up to 32 Gbps.


The signal channels of the SN75LVPE5421 operate independently from one another. Each channel includes a continuous-time linear equalizer (CTLE) and a linear output driver, which together compensate for a lossy transmission channel between the source transmitter and the final receiver. The linearity of the data path is specifically designed to preserve any transmit equalization while keeping PCle receiver's (either from Root Complex or Endpoint) equalization effective.

The SN75LVPE5421 can be configured in two different ways:

Pin Mode – device control configuration is done solely by strap pins. Pin mode is expected to be good enough for many system implementation needs.

SMBus/I²C Secondary Mode – provides most flexibility. Requires an external SMBus/I²C primary device to configure SN75LVPE5421 though writing to its secondary address.

7.2 Functional Block Diagram

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

7.3 Feature Description

7.3.1 Five-Level Control Inputs

The SN75LVPE5421 has five 5-level inputs pins (EQ1, EQ0, GAIN, MODE, and RX_DET) that are used to control the configuration of the device. These 5-level inputs use a resistor divider to help set the 5 valid levels and provide a wider range of control settings. External resistors must be of 10% tolerance or better. The EQ0, EQ1, GAIN, and RX_DET pins are sampled at power-up only. The MODE pin can be exercised at device power up or in normal operation mode.

表	7-1.	5-Level	Control	Pin	Settings
---	------	---------	---------	-----	----------

LEVEL	SETTING
LO	1 kΩ to GND
L1	8.25 kΩ to GND
L2	24.9 kΩ to GND
L3	75 kΩ to GND
L4	F (Float)

7.3.2 Linear Equalization

The SN75LVPE5421 receivers feature a continuous-time linear equalizer (CTLE) that applies high-frequency boost and low-frequency attenuation to help equalize the frequency-dependent insertion loss effects of a passive channel. The receivers implement two stage linear equilizer for wide range of equalization capability. The equalizer stages also provide flexibility to make subtle modifications of mid-frequency boost for best EQ gain profile match with wide range of channel media characteristics. The EQ profile control feature is only available in SMBus/I²C Mode. In Pin Mode the settings are optimized for FR4 traces.

表 7-2 shows available equalization boost through EQ control pins or SMBus/I²C registers. In Pin Control mode EQ1 and EQ0 pins set equalization boost for all channels. In I²C Mode individual channels can be independently programmed for EQ boost.

表 7-2. Equalization Control Settings

	EQUALIZATION SETTING				TYPICAL EQ	BOOST (dB)		
	Pin N	Mode		SMBus/I	² C Mode			
EQ INDEX	EQ1	EQ0	eq_stage1_3:0	eq_stage2_2:0	eq_profile_3:0	eq_stage1_bypass	At 8 GHz	At 16 GHz
0	L0	L0	0	0	0	1	2.0	4.0
1	L0	L1	1	0	0	1	4.0	6.0
2	L0	L2	3	0	0	1	5.0	8.0
3	L0	L3	7	0	0	1	7.0	10.0
4	L0	L4	7	1	0	1	8.0	12.0
5	L1	L0	0	0	1	0	7.0	12.0
6	L1	L1	1	0	1	0	7.5	13.0
7	L1	L2	2	0	1	0	8.0	14.0
8	L1	L3	3	0	3	0	9.0	15.0
9	L1	L4	4	0	3	0	10.0	15.5
10	L2	L0	5	1	7	0	10.5	16.0
11	L2	L1	6	1	7	0	11.0	17.0
12	L2	L2	8	1	7	0	12.0	17.5

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

表 7-2. Equalization Control Settings (continued)

	EQUALIZATION SETTING						TYPICAL EQ	BOOST (dB)
	Pin N	/lode		SMBus/I	² C Mode			
EQ INDEX	EQ1	EQ0	eq_stage1_3:0	eq_stage2_2:0	eq_profile_3:0	eq_stage1_bypass	At 8 GHz	At 16 GHz
13	L2	L3	10	1	7	0	12.5	18.5
14	L2	L4	10	2	15	0	13.0	19.0
15	L3	L0	11	3	15	0	14.0	20.0
16	L3	L1	12	4	15	0	15.0	21.0
17	L3	L2	13	5	15	0	16.0	22.0
18	L3	L3	14	6	15	0	16.5	23.0
19	L3	L4	15	7	15	0	17.0	24.0

7.3.3 Flat Gain

The GAIN pin can be used to set the overall datapath flat gain (broadband gain including high frequency) of the SN75LVPE5421 when the device is in Pin Mode. The pin GAIN sets the Flat-Gain for all channels. In I²C Mode each channel can be independently set. 表 7-3 shows flat gain control configuration settings. The default recommendation for most systems will be GAIN = L4 (float) that provides flat gain of 0 dB.

The flat gain and equalization of the SN75LVPE5421 must be set such that the output signal swing at DC and high frequency does not exceed the DC and AC linearity ranges of the devices, respectively.

表 7-3. Flat Gain Configuration Settings

Pin Mode GAIN	I ² C Mode flat_gain_2:0	Flat Gain
LO	0	−5.6 dB
L1	1	−3.8 dB
L2	3	−1.2 dB
L3	7	+2.6 dB
L4 (float)	5	+0.6 dB (default recommendation)

7.3.4 Receiver Detect State Machine

The SN75LVPE5421 deploys an RX detect state machine that governs the RX detection cycle as defined in the PCI express specifications. At device power up or through manually triggered event using PD or SEL pin or writing to the relevant I²C/SMBus register, the redriver determines whether or not a valid PCI express termination is present at the far end of the link. The RX_DET pin of SN75LVPE5421 provides additional flexibility for system designers to appropriately set the device in desired mode according to 表 7-4. For the PCIe application the RX_DET pin can be left floating for default settings.

Note: power up ramp or PD/SEL event triggers RX detect for all four channels. In applications where SN75LVPE5421 channels are used for multiple PCle links, the RX detect function can be performed for individual channels through writing in appropriate I^2 C/SMBus registers.

表 7-4. Receiver Detect State Machine Settings

PD	RX_DET	RX Common-mode Impedance	COMMENTS
L	LO	Always 50 Ω	PCI Express RX detection state machine is disabled. Recommended for non PCIe interface use case where the SN75LVPE5421 is used as buffer with equalization.

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

www.ti.com.cn

PD	RX_DET	RX Common-mode Impedance	COMMENTS		
L	L1	Pre Detect: Hi-Z Post Detect: 50 Ω .	Outputs polls until 3 consecutive valid detections		
L	L2	Pre Detect: Hi-Z Post Detect: 50 Ω.	Outputs polls until 2 consecutive valid detections		
L	L3	Pre Detect: Hi-Z Post Detect: 50 Ω .	Reserved		
L	L4 (Float)	Pre Detect: Hi-Z Post Detect: 50 Ω.	TX polls every ≅150 µs until valid termination is detected. RX CM impedance held at Hi-Z until detection Reset by asserting PD high for 200 µs then low. Recommended default setting for PCIe.		
Н	X	Hi-Z	Reset Channels and set their RX impedance to Hi-Z		

7.4 Device Functional Modes

7.4.1 Active PCIe Mode

The device is in normal operation with PCIe state machine enabled by RX DET = L4 (float). This mode is recommended for PCIe use cases. In this mode, the PD pin is driven low in a system (for example, by PCIe connector PRSNT signal). In this mode, the device redrives and equalizes PCle RX or TX signals to provide better signal integrity.

7.4.2 Active Buffer Mode

The device is in normal operation with PCIe state machine disabled by RX DET = L0. This mode is recommended for non-PCIe use cases. In this mode, the device is working as a buffer to provide linear equalization to improve signal integrity.

7.4.3 Standby Mode

The device is in standby mode invoked by PD = H. In this mode, the device is in standby mode conserving power.

7.5 Programming

7.5.1 Pin Mode

The SN75LVPE5421 can be fully configured through pin-strap pins. In this mode the device uses 2-level and 5level pins for device control and signal integrity optimum settings.

7.5.2 SMBUS/I²C Register Control Interface

If MODE = L2 (SMBus / I²C secondary control mode), the SN75LVPE5421 is configured for best signal integrity through a standard I²C or SMBus interface that may operate up to 400 kHz. The secondary address of the SN75LVPE5421 is determined by the pin strap settings on the ADDR and MODE pins. 表 7-5 provides the eight possible secondary addresses (7-bit) for each channel banks of the device. In SMBus/l²C modes the SCL, SDA pins must be pulled up to a 3.3 V supply with a pull-up resistor. The value of the resistor depends on total bus capacitance. 4.7 k Ω is a good first approximation for a bus capacitance of 10 pF.

表 7-5. SMBUS/I2C Secondary Address Settings

	· · · · · · · · · · · · · · · · · · ·	,	
MODE	ADDR	7-bit Secondary Address Channels 0-1	7-bit Secondary Address Channels 2-3
L1	L0	0x18	0x19
L1	L1	0x1A	0x1B
L1	L2	0x1C	0x1D
L1	L3	0x1E	0x1F
X	L4	Reserved	Reserved
L2	L0	0x20	0x21
L2	L1	0x22	0x23

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

表 7-5. SMBUS/I2C Secondary Address Settings (continued)

MODE	ADDR	7-bit Secondary Address Channels 0-1	7-bit Secondary Address Channels 2-3
L2	L2	0x24	0x25
L2	L3	0x26	0x27

The SN75LVPE5421 has two types of registers:

- **Shared Registers:** These registers can be accessed at any time and are used for device-level configuration, status read back, control, or to read back the device ID information.
- Channel Registers: These registers are used to control and configure specific features for each individual channel. All channels have the same register set and can be configured independent of each other or configured as a group through broadcast writes to Bank 0 or Bank 1.

The SN75LVPE5421 features two banks of channels, Bank 0 (Channels 0-1) and Bank 1 (Channels 2-), each featuring a separate register set and requiring a unique SMBus secondary address.

Channel Registers Base Address	Channel Bank 0 Access	Channel Bank 1 Access
0x00	Channel 0 registers	Channel 2 registers
0x20	Channel 0 registers	Channel 2 registers
0x40	Channel 1 registers	Channel 3 registers
0x60	Channel 1 registers	Channel 3 registers
0x80	Broadcast write channel Bank 0 registers, read channel 0 registers	Broadcast write channel Bank 1 registers, read channel 2 registers
0xE0	Bank 0 Share registers	Bank 1 Share registers

7.5.2.1 Shared Registers

表 7-6. General Registers (Offset = 0xE2)

· · · · · · · · · · · · · · · · · · ·									
Bit	Field	Type Reset D		Description					
7	RESERVED	R	0x0	Reserved					
6	rst_i2c_regs	R/W/SC	0x0	Device reset control: Reset all I2C registers to default values (self-clearing).					
5	rst_i2c_mas	R/W/SC	0x0	Reset I ² C Primary (self-clearing).					
4-0	RESERVED	R	0x0000	Reserved					

表 7-7. DEVICE_ID0 Register (Offset = 0xF0)

Bit	Field	Туре	Reset	Description
7-4	RESERVED	R	0x0001	Reserved
3	device_id0_3	R	0x1	Device ID0 [3:1]: 101
2	device_id0_2	R	0x0	see MSB
1	device_id0_1	R	0x1	see MSB
0	RESERVED	R	Х	Reserved

表 7-8. DEVICE ID1 Register (Offset = 0xF1)

Field	Туре	Reset	Description					
device_id[7]	R	0x0	Device ID 0010 1000: SN75LVPE5421					
device_id[6]	R	0x0	see MSB					
device_id[5]	R	0x1	see MSB					
device_id[4]	R	0x0	see MSB					
device_id[3]	R	0x1	see MSB					
device_id[2]	R	0x0	see MSB					
	device_id[7] device_id[6] device_id[5] device_id[4] device_id[3]	Field Type device_id[7] R device_id[6] R device_id[5] R device_id[4] R device_id[3] R	Field Type Reset device_id[7] R 0x0 device_id[6] R 0x0 device_id[5] R 0x1 device_id[4] R 0x0 device_id[3] R 0x1					

Product Folder Links: SN75LVPE5421

www.ti.com.cn

表 7-8. DEVICE_ID1 Register (Offset = 0xF1) (continued)

Bit	Field	Туре	Reset	Description
1	device_id[1]	R	0x0	see MSB
0	device_id[0]	R	0x1	see MSB

7.5.2.2 Channel Registers

表 7-9. RX Detect Status Register (Channel Register Base + Offset = 0x00)

Bit	Field	Туре	Reset	Description
7	RX_det_comp_p	R	0x0	RX Detect positive data pin status: 0: Not detected 1: Detected - the value is latched
6	RX_det_comp_n	R	0x0	RX Detect negative data pin status: 0: Not detected 1: Detected - the value is latched
5-0	RESERVED	R	0x0	Reserved

表 7-10. EQ Gain Control Register (Channel Register Base + Offset = 0x01)

Bit	Field	Туре	Reset	Description
7	eq_stage1_bypass	R/W	0x0	Enable EQ stage 1 bypass:
				0: Bypass disabled
				1: Bypass enabled
6	eq_stage1_3	R/W	0x0	EQBoost stage 1 control
5	eq_stage1_2	R/W	0x0	See 表 7-2 for details
4	eq_stage1_1	R/W	0x0	
3	eq_stage1_0	R/W	0x0	
2	eq_stage2_2	R/W	0x0	EQ Boost stage 2 control
1	eq_stage2_1	R/W	0x0	See 表 7-2 for details
0	eq_stage2_0	R/W	0x0	

表 7-11. EQ Gain / Flat Gain Control Register (Channel Register Base + Offset = 0x03)

Bit	Field	Type	Reset	Description
7	RESERVED	R	0x0	Reserved
6	eq_profile_3	R/W	0x0	EQ mid-frequency boost profile
5	eq_profile_2	R/W	0x0	See 表 7-2 for details
4	eq_profile_1	R/W	0x0	
3	eq_profile_0	R/W	0x0	
2	flat_gain_2	R/W	0x1	Flat gain select:
1	flat_gain_1	R/W	0x0	See 表 7-3 for details
0	flat_gain_0	R/W	0x1	

表 7-12. RX Detect Control Register (Channel Register Base + Offset = 0x04)

Bit	Field	Туре	Reset	Description
7-3	RESERVED	R	0x0	Reserved
2	mr_RX_det_man	R/W	0x0	Manual override of RX_detect_p/n decision: 0: RX detect state machine is enabled 1: RX detect state machine is overridden - always valid RX termination detected
1	en_RX_det_count	R/W	0x0	Enable additional RX detect polling 0: Additional RX detect polling disabled 1: Additional RX detect polling enabled
0	sel_RX_det_count	R/W	0x0	Select number of valid RX detect polls - gated by en_RX_det_count = 1 0: Device transmitters poll until 2 consecutive valid detections 1: Device transmitters poll until 3 consecutive valid detections

Product Folder Links: SN75LVPE5421

Ibmit Document Feedback

表 7-13. PD Override Register (Channel Register Base + Offset = 0x05)

	At 1011 B Overhale Register (Chainer Register Base - Chock Cate)								
Bit	Field	Type	Reset	Description					
7	device_en_override	R/W	0x0	Enable power down overrides thorugh SMBus/I ² C 0: Manual override disabled 1: Manual override enabled					
6-0	device_en	R/W	0x111111	Manual power down of redriver various blocks - gated by device_en_override = 1 111111: All blocks are enabled 000000: All blocks are disabled					

表 7-14. RX Detect Reset Register (Channel Register Base + Offset = 0x0A)

Bit	Field	Туре	Reset	Description
7-3	RESERVED	R	0x0	Reserved
2	mr_RX_det_rst	R/W	0x0	RX Detect state machine reset. Toggle the bit if RX Detect machine needs to be reset in I ² C mode 0: state machine is not reset 1: RX detect state machine is reset
1-0	RESERVED	R/W	0x0	Reserved

8 Application and Implementation

备注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The SN75LVPE5421 is a high-speed linear repeater with integrated mux. The device extends the reach of differential channels impaired by loss from transmission media like PCBs and cables. It can be deployed in a variety of different systems. The following sections outline typical applications and their associated design considerations.

8.2 Typical Applications

The SN75LVPE5421 is a PCI Express linear redriver that can also be configured as interface agnostic redriver by disabling its RX detect feature. The device can be used in a wide range of interfaces including:

- PCI Express
- Ultra Path Interconnect (UPI)
- SATA
- SAS
- DisplayPort

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

8.2.1 PCle x8 Lane Switching

The SN75LVPE5412 and SN75LVPE5421 can be used to switch PCle lanes from a CPU into one of the two PCle CEM connectors.

8 8-1 shows a simplified schematic for the following configuration:

- Two SN75LVPE5412 demultiplex eight TX channels from the CPU into one of the two PCIe slots.
- Two SN75LVPE5421 multiplex eight RX channels from one of the two PCIe slots to CPU.

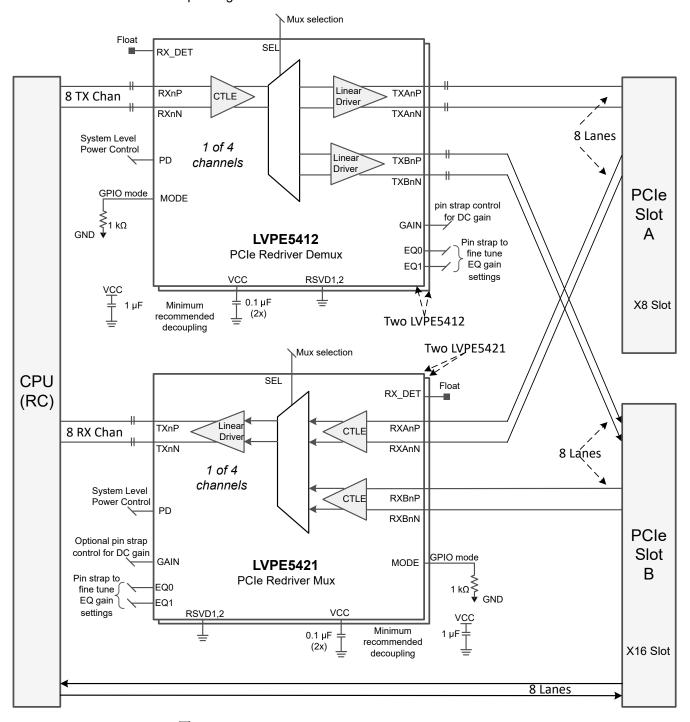


图 8-1. Simplified Schematic for PCle Lane Switching

8.2.1.1 Design Requirements

As with any high-speed design, there are many factors which influence the overall performance. The following list indicates critical areas for consideration during design:

- Use 85 Ω impedance traces when interfacing with PCIe CEM connectors. Length matching on the P and N traces should be done on the single-ended segments of the differential pair.
- Use a uniform trace width and trace spacing for differential pairs.
- Place AC-coupling capacitors near to the receiver end of each channel segment to minimize reflections.
- For Gen 3.0, 4.0, and 5.0, AC-coupling capacitors of 220 nF are recommended, set the maximum body size to 0402, and add a cutout void on the GND plane below the landing pad of the capacitor to reduce parasitic capacitance to GND.
- · Back-drill connector vias and signal vias to minimize stub length.
- Use reference plane vias to ensure a low inductance path for the return current.

8.2.1.2 Detailed Design Procedure

In PCIe Gen 3.0, 4.0, and 5.0 applications, the specification requires RX-TX link training to establish and optimize signal conditioning settings at 8.0, 16.0, and 32.0 Gbps, respectively. In link training, the RX partner requests a series of FIR – pre-shoot and de-emphasis coefficients (10 presets) from the TX partner. The RX partner includes CTLE and DFE. The link training would pre-condition the signal, with an equalized link between the Root Complex and Endpoint.

Note: there is no link training in PCIe Gen 1.0 (2.5 Gbps) or PCIe Gen 2.0 (5.0 Gbps) applications. The SN75LVPE5421 is placed in between the TX and RX. It helps extend the PCB trace reach distance by boosting the attenuated signals with its equalization, which allows the user to recover the signal by the downstream RX more easily.

For operation in Gen 5.0, 4.0, and 3.0 links, the SN75LVPE5421 transmit outputs are designed to pass the TX Preset signaling onto the RX for the PCIe Gen 5.0, 4.0, and 3.0 link to train and optimize the equalization settings. The suggested setting for the device is GAIN = L4 (default). Adjustments to the EQ setting should be performed based on the channel loss to optimize the eye opening in the RX partner. The TX equalization presets or CTLE and DFE coefficients in the RX can also be adjusted to further improve the eye opening.

Product Folder Links: SN75I VPF5421

8.2.2 Protocol Agnostic Linear Redriver for High Speed Interfaces

The SN75LVPE5421 can be used as a four channel protocol agnostic linear redriver multiplexer (mux) for data rates up to 32 Gbps. To use the device in a non-PCIe application, the RX_DET pin must be pin-strapped to GND with 1 k Ω resistor (L0).

This section explains how the SN75LVPE5421 can be used in DisplayPort (DP) application. The device is a linear redriver which is agnostic to DP link training. The DP link training negotiation between a display source and sink stays effective through the device. The redriver becomes part of the electrical channel along with passive traces, cables, and so forth, resulting in optimum source and sink parameters for best electrical link.

№ 8-2 shows a simplified schematic for DisplayPort multiplexing application using SN75LVPE5421. Auxiliary and Hot plug detect (HPD) are muxed outside of the device. If system use case requires implementing DP power states, then the device must be controlled by the I²C.

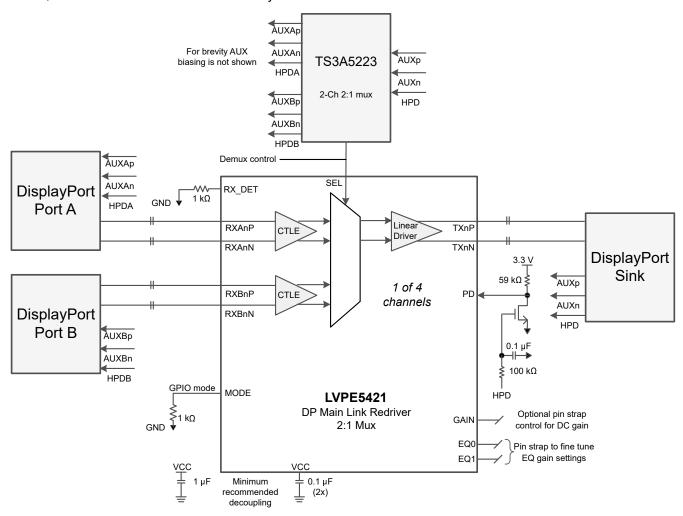


图 8-2. Simplified Schematic for DisplayPort Multiplexer Application

The inverted DisplayPort HPD signal can be used to put the device into standby mode by using its PD pin. Note: in a DisplayPort link a sink can use HPD line to create an interrupt for its link partner source. If HPD signal is used for power management, then an RC filter must be installed to filter out HPD interrupt signals.

The SN75LVPE5421 can similarly be used for other AC-coupled high speed interfaces. Care must be taken to understand the specifications of the interface to ensure feasibility.

9 Power Supply Recommendations

Follow these general guidelines when designing the power supply:

- 1. The power supply should be designed to provide the operating conditions outlined in the recommended operating conditions section in terms of DC voltage, AC noise, and start-up ramp time.
- 2. The SN75LVPE5421 does not require any special power supply filtering, such as ferrite beads, provided that the recommended operating conditions are met. Only standard supply decoupling is required. Typical supply decoupling consists of a 0.1 μ F capacitor per VCC pin, one 1.0 μ F bulk capacitor per device, and one 10 μ F bulk capacitor per power bus that delivers power to one or more devices. The local decoupling (0.1 μ F) capacitors must be connected as close to the VCC pins as possible and with minimal path to the device ground pad.

10 Layout

10.1 Layout Guidelines

The following guidelines should be followed when designing the layout:

- 1. Decoupling capacitors should be placed as close to the VCC pins as possible. Placing the decoupling capacitors directly underneath the device is recommended if the board design permits.
- 2. High-speed differential signals TXnP/TXnN and RXnP/RXnN should be tightly coupled, skew matched, and impedance controlled.
- 3. Vias should be avoided when possible on the high-speed differential signals. When vias must be used, take care to minimize the via stub, either by transitioning through most or all layers or by back drilling.
- 4. GND relief can be used (but is not required) beneath the high-speed differential signal pads to improve signal integrity by counteracting the pad capacitance.
- 5. GND vias should be placed directly beneath the device connecting the GND plane attached to the device to the GND planes on other layers. This has the added benefit of improving thermal conductivity from the device to the board.

10.2 Layout Example

图 10-1 shows SN75LVPE5421 layout example.

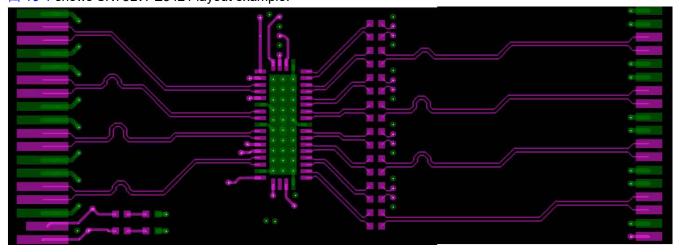


图 10-1. SN75LVPE5421 Layout Example

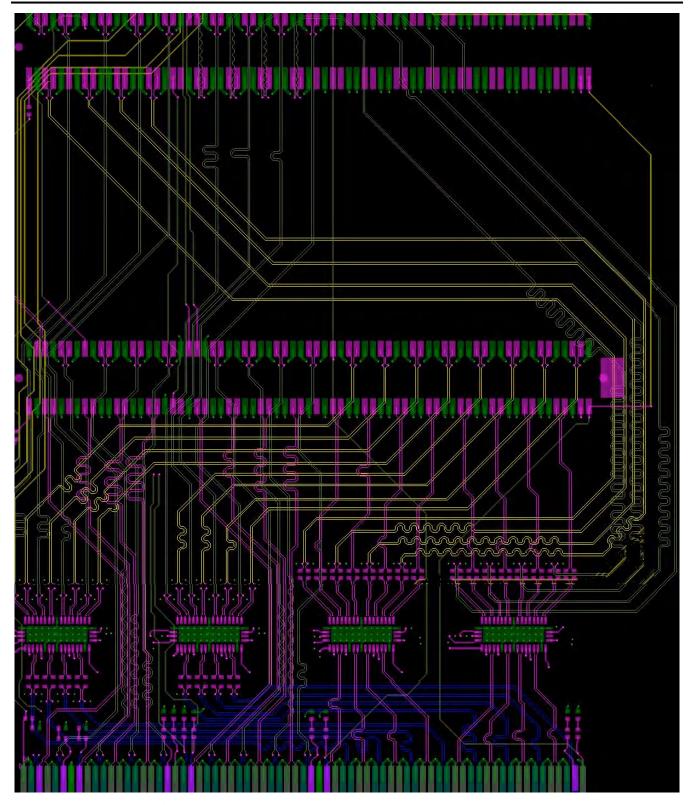


图 10-2. Layout Example for PCIe Lane Muxing Application

11 Device and Documentation Support

11.1 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

11.2 支持资源

TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

11.3 Trademarks

TI E2E™ is a trademark of Texas Instruments.

PCle® is a registered trademark of PCI-SIG.

所有商标均为其各自所有者的财产。

11.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.5 术语表

TI术语表本术语表列出并解释了术语、首字母缩略词和定义。

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

www.ti.com 27-May-2022

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN75LVPE5421RUAR	ACTIVE	WQFN	RUA	42	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	0 to 85	5PR421	Samples
SN75LVPE5421RUAT	ACTIVE	WQFN	RUA	42	250	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	0 to 85	5PR421	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

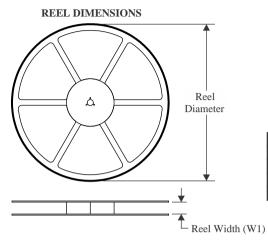
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

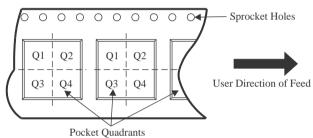
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE OPTION ADDENDUM

www.ti.com 27-May-2022

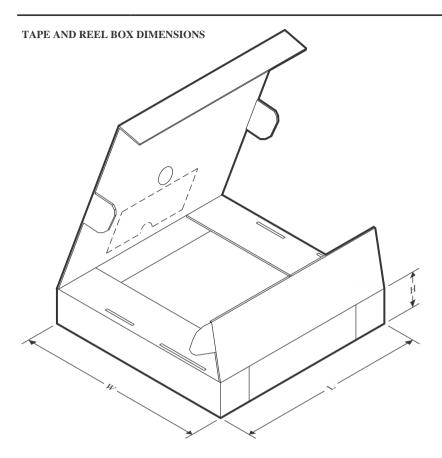
PACKAGE MATERIALS INFORMATION

www.ti.com 9-Aug-2022


TAPE AND REEL INFORMATION

TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

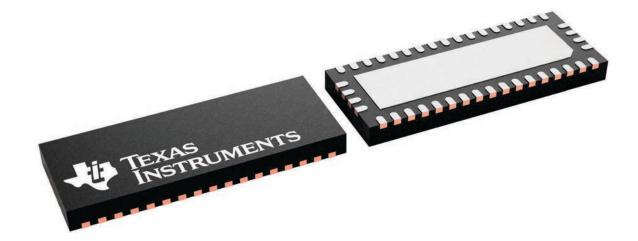
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

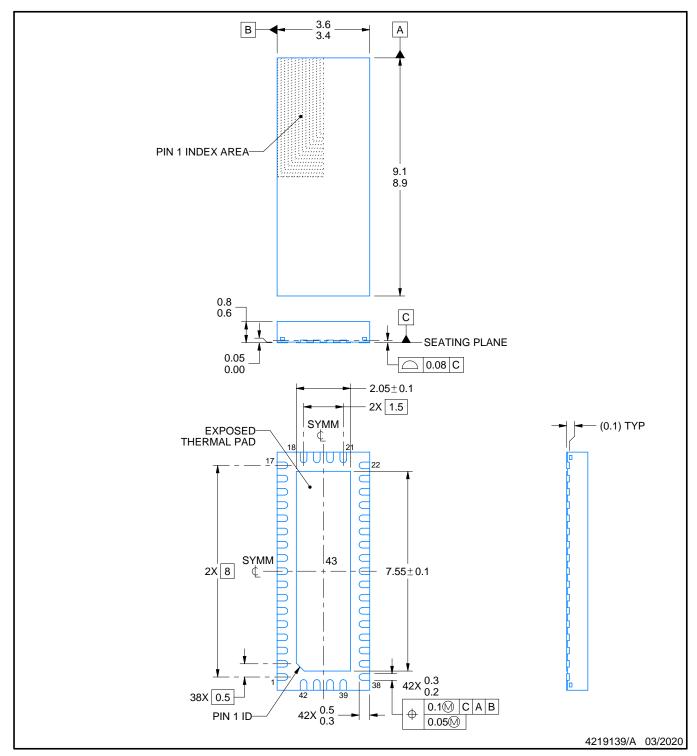
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN75LVPE5421RUAT	WQFN	RUA	42	250	180.0	16.4	3.8	9.3	1.0	8.0	16.0	Q1

www.ti.com 9-Aug-2022


*All dimensions are nominal

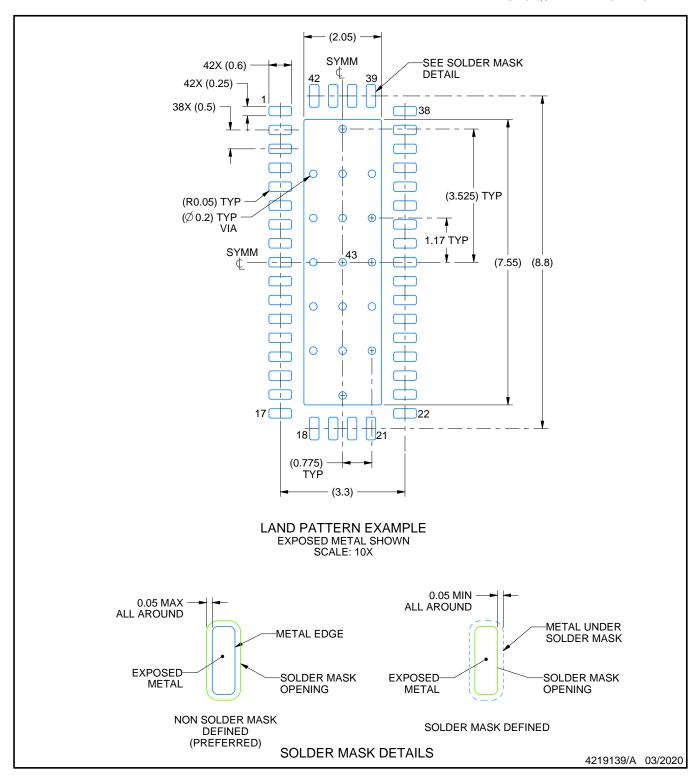
Ì	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
ı	SN75LVPE5421RUAT	WQFN	RUA	42	250	210.0	185.0	35.0	

9 x 3.5, 0.5 mm pitch


PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

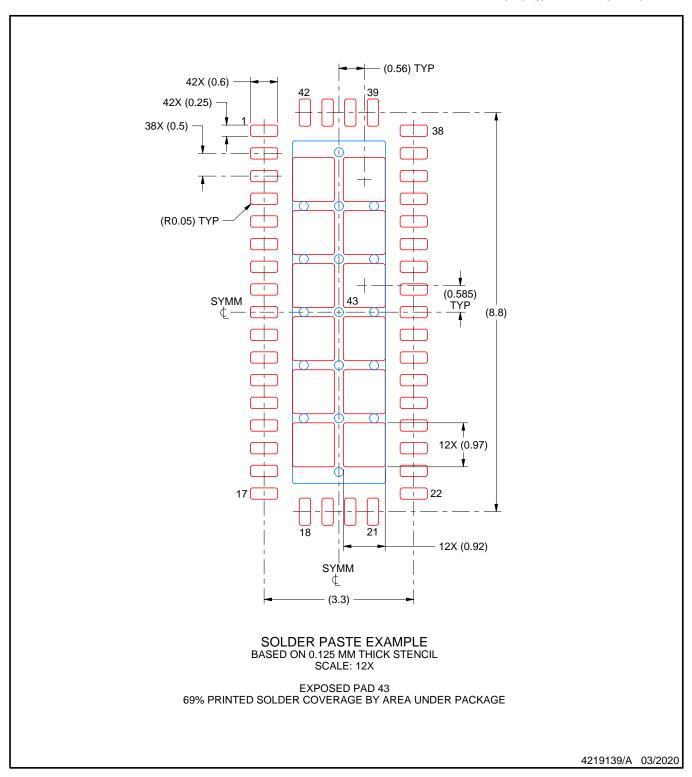
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Equalisers category:

Click to view products by Texas Instruments manufacturer:

Other Similar products are found below:

M22554G-12 M21424G-13 ISL54102CQZ ISL54106ACRZ DS560MB410ZAST SN75LVPE5421RUAR EQCO30T5.2

SN65LVCP1414RLJT GS12090-INE3 ADV3003ACPZ-R7 MAX3814CHJ+T EQCO125T40C1-I/8EX EQCO31X20C1-I/8EX

EQCO62R20.3 EQCO62T20.3 EQY-10-63+ EQY-5-63+ EQY-2-63+ EQY-4-63+ EQY-6-63+ EQY-3-63+ EQY-5-24+ EQY-0-63+

GS12090-INTE3 GS3440-INTE3 GS6042-INE3 GS2974ACNE3 GS3440-INE3 GS9074ACNE3 GS9074ACTE3 GS2974ACTE3

PTN3944EWY GS2993-INE3 SN75LVPE802RTJT NB7VQ1006MMNG GS1524-CKDE3 VSC7111XJW ISL54102ACQZ

PCA8561BHN/AY VSC7109XJW PTN3366BSMP GS3490-INE3 GS3490-INTE3 GS12141-INE3 GS12341-INE3 GS12190-INE3

GS12341-INTE3 GS12142-INTE3 GS12190-INTE3 GS3590-INE3