

Technical documentation

Support & പ്പ training

TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053 TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050 ZHCSAH6F - NOVEMBER 2012 - REVISED SEPTEMBER 2021

TMS320F2805x 实时微控制器

1 特性

- 高效 32 位 CPU (TMS320C28x)
 - 60MHz (16.67ns 周期时间)
 - 16 × 16 和 32 × 32 乘法和累加 (MAC) 运算
 - 16 × 16 双 MAC
 - 哈佛 (Harvard) 总线架构
 - 连动运算
 - 快速中断响应和处理
 - 统一存储器编程模型
 - 高效代码 (使用 C/C++ 和汇编语言)
- 可编程控制律加速器 (CLA)
 - 32 位浮点数学加速器
 - 独立于主 CPU 之外的代码执行
- 双区域安全模块
- 字节序:小端字节序
- 低器件和系统成本:
 - 3.3V 单电源
 - 无需电源排序
 - 集成型加电复位和欠压复位
 - 低功耗
 - 无模拟支持引脚
- 时钟:
 - 两个内部零引脚振荡器
 - 片上晶振振荡器和外部时钟输入
 - 看门狗计时器模块
 - 丢失时钟检测电路
- 多达 42 个具有输入滤波功能的独立可编程、多路 复用通用输入/输出 (GPIO) 引脚
- 支持 JTAG 边界扫描
 - IEEE 标准 1149.1-1990 标准测试访问端口和边 界扫描架构
- 可支持所有外设中断的外设中断扩展 (PIE) 模块
- 三个 32 位 CPU 计时器
- 每个 ePWM 模块中的独立 16 位计时器
- 片上存储器
 - 可提供闪存、SARAM、消息 RAM、OTP、CLA 数据 ROM、引导 ROM、安全 ROM
- 128 位安全密钥和锁
 - 保护安全内存块
 - 防止固件逆向工程
- 串行端口外设
 - 三个串行通信接口 (SCI) (通用异步接收器/发送 器 [UART]) 模块
 - 一个串行外设接口 (SPI) 模块
 - 一条内部集成电路 (I2C) 总线
 - 一条增强型控制器局域网络 (eCAN) 总线
- 增强型控制外设
 - 增强型脉宽调制器 (ePWM)

- 增强型捕捉 (eCAP) 模块
- 增强型正交编码器脉冲 (eQEP) 模块
- 模拟外设
 - 一个 12 位模数转换器 (ADC)
 - 一个用于振荡器补偿的片上温度传感器
 - 多达七个比较器,这些比较器具有多达三个集成 型数模转换器 (DAC)
 - 一个经缓冲的基准 DAC
 - 多达四个可编程增益放大器 (PGA)
 - 多达四个数字滤波器
- 高级调试特性
 - 分析和断点功能
 - 通过硬件进行实时调试
- 80 引脚 PN Low-Profile Quad Flatpack (LQFP)
- 温度选项
 - T: -40°C 至 105°C
 - S: -40°C 至 125°C
 - Q: 40°C 至 125°C 的环境温度范围 (通过针对汽车应用的 AEC Q100 认证)

2 应用

- 空调室外机
- 电梯门自动启闭装置驱动控制
- 逆变器和电机控制
- 交流驱动器控制模块
- 交流输入 BLDC 电机驱动器
- 直流输入 BLDC 电机驱动器

3 说明

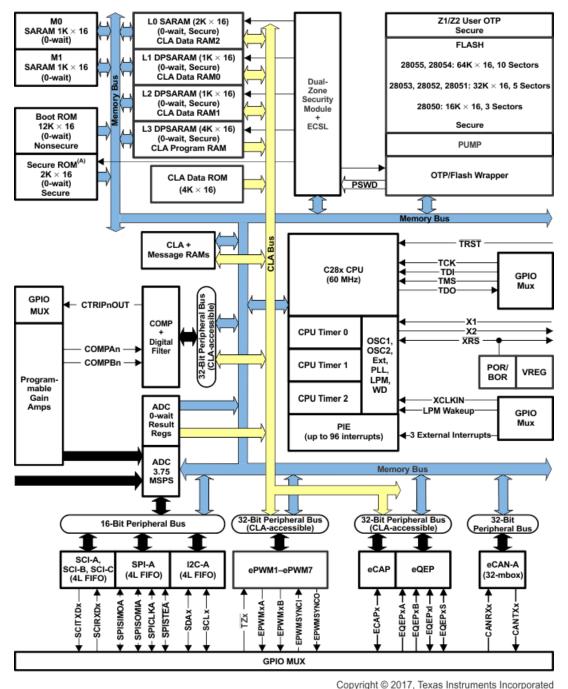
C2000™ 实时控制 MCU 针对处理、感应和驱动进行了优化,可提高实时控制应用(如工业电机驱动器、光伏逆 变器和数字电源、电动汽车和运输、电机控制以及感应和信号处理)的闭环性能。C2000 系列包括高级性能 MCU 和入门级性能 MCU。

F2805x 系列微控制器 (MCU) 为 C28x 内核以及与引脚较少的器件中高度集成的控制外设耦合的 CLA 供电。该系列器件的代码与基于 C28x 的旧版代码兼容,同时具有较高的模拟集成度。

一个内部稳压器实现了单电源轨运行。增设了具有 6 位内部基准的模拟比较器,并可通过与其直接连接来控制 PWM 输出。ADC 可在 0V 至 3.3V 的固定满量程范围内实施转换,支持 V_{REFHI}/V_{REFLO} 基准的比例运算。ADC 接 口已针对低开销和延迟进行了优化。

模拟前端 (AFE) 含有多达七个比较器以及多达三个集成 DAC、一个 V_{REFOUT} 缓冲 DAC、多达四个 PGA 以及多达四个数字滤波器。PGA 可以采用三种离散增益模式放大输入信号。AFE 外设的实际数量将取决于TMS320F2805x 器件数量。请参阅器件比较了解更多详细信息

要了解有关 C2000 MCU 的更多信息,请访问 C2000™ 实时控制 MCU 页面。


器件型号 ⁽¹⁾	器件信息 封装	封装尺寸
TMS320F28055PN	LQFP (80)	12.0mm × 12.0mm
TMS320F28054PN	LQFP (80)	12.0mm × 12.0mm
TMS320F28053PN	LQFP (80)	12.0mm × 12.0mm
TMS320F28052PN	LQFP (80)	12.0mm × 12.0mm
TMS320F28051PN	LQFP (80)	12.0mm × 12.0mm
TMS320F28050PN	LQFP (80)	12.0mm × 12.0mm

器件信息

(1) 如需这些器件的详细信息,请参阅机械、封装和可订购信息。

3.1 功能方框图

A. 在所有器件上存储安全复制代码函数。

B. 由于多路复用,所有外设引脚不能同时使用。

图 3-1. 功能方框图

Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053 TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050

Table of Contents

1	特性	1
	!应用	
3	;说明	2
	3.1 功能方框图	3
4	Revision History	4
5	5 Device Comparison	5
	5.1 Related Products	
6	Terminal Configuration and Functions	
	6.1 Pin Diagram	
_	6.2 Signal Descriptions	
7	' Specifications	
	7.1 Absolute Maximum Ratings	
	7.2 ESD Ratings - Commercial	
	7.3 ESD Ratings - Automotive	16
	7.4 Recommended Operating Conditions	17
	7.5 Power Consumption Summary	18
	7.6 Electrical Characteristics	21
	7.7 Thermal Resistance Characteristics for PN	
	Package	
	7.8 Thermal Design Considerations	22
	7.9 JTAG Debug Probe Connection Without Signal	
	Buffering for the MCU	23
	7.10 Parameter Information	
	7.11 Test Load Circuit	
	7.12 Power Sequencing	
	7.13 Clock Specifications	28

7.14 Flash Timing	31
8 Detailed Description	
8.1 Overview	
8.2 Memory Maps	
8.3 Register Map	
8.4 Device Emulation Registers	
8.5 VREG, BOR, POR	
8.6 System Control	
8.7 Low-power Modes Block	
8.8 Interrupts	
8.9 Peripherals	
9 Applications, Implementation, and Layout	
9.1 TI Reference Design	
10 Device and Documentation Support	
10.1 Getting Started	
10.2 Device and Development Support Tool	
Nomenclature	
10.3 Tools and Software	
10.4 Documentation Support	
10.5 支持资源	
10.6 Trademarks	
10.7 Electrostatic Discharge Caution	
10.8 术语表	
11 Mechanical, Packaging, and Orderable	
Information	147
11.1 Packaging Information	

4 Revision History

Changes from February 2, 2021 to September 13, 2021 (from Revision E (February 2021) to Revision F (September 2021))

•	表 5-1, Device Comparison: Changed "SCI" to "SCI/UART". Updated footnote about TMS320F2805xM at	nd
	TMS320F2805xF. Added device numbers in Temperature options section.	5
•	^{††} 6.2.1, Signal Descriptions: Updated DESCRIPTION of VREGENZ	8
•	节 7.2, ESD Ratings - Commercial: Updated device numbers	16
	节 7.3, ESD Ratings - Automotive: Updated device numbers	
	节 7.13.1.3, Internal Zero-Pin Oscillator (INTOSC1, INTOSC2) Characteristics: Updated footnote about	
	oscillator frequency	29
•	节 8.1.10, Security: Updated section	37
•	图 8-1, 28055 and 28054 Memory Map: Changed "Secure Zone + ECSL" to "Secure Zone"	45
•	图 8-2, 28053 and 28052 Memory Map: Changed "Secure Zone + ECSL" to "Secure Zone"	45
•	图 8-3, 28051 Memory Map: Changed "Secure Zone + ECSL" to "Secure Zone"	45
•	图 8-4, 28050 Memory Map: Changed "Secure Zone + ECSL" to "Secure Zone"	45
•	节 10.1, Getting Started: Updated reference page link	142
•	节 10.3, Tools and Software: Updated section	143

Page

5 Device Comparison

 $\frac{1}{8}$ 5-1 lists the features of the TMS320F2805x devices.

			表 5-1. Device	e Comparisor	ו		
FEATURE		28055 (60 MHz)	28054 28054-Q1 28054M ⁽¹⁾ 28054M-Q1 28054F ⁽¹⁾ 28054F-Q1 (60 MHz)	28053 (60 MHz)	28052 28052-Q1 28052M (1) 28052M-Q1 28052F (1) 28052F-Q1 (60 MHz)	28051 (60 MHz)	28050 (60 MHz)
Package type		80-pin PN LQFP	80-pin PN LQFP	80-pin PN LQFP	80-pin PN LQFP	80-pin PN LQFP	80-pin PN LQFP
Instruction cycle		16.67 ns	16.67 ns	16.67 ns	16.67 ns	16.67 ns	16.67 ns
CLA		Yes	No	Yes	No	No	No
On-chip flash (1	6-bit word)	64K	64K	32K	32K	32K	16K
On-chip SARAM	l (16-bit word)	10K	10K (28054) 8K (28054M) 8K (28054F)	10K	10K (28052) 8K (28052M) 8K (28052F)	8K	6K
Dual-zone secur SARAM, OTP, a blocks	ity for on-chip flash, nd secure ROM	Yes	Yes	Yes	Yes	Yes	Yes
Boot ROM (12K	× 16)	Yes	Yes	Yes	Yes	Yes	Yes
One-time progra (16-bit word)	mmable (OTP) ROM	1K	1К	1K	1К	1K	1K
ePWM channels	;	14	14	14	14	14	14
eCAP inputs		1	1	1	1	1	1
eQEP modules		1	1	1	1	1	1
Watchdog timer		Yes	Yes	Yes	Yes	Yes	Yes
	MSPS	3.75	3.75	3.75	3.75	2	2
	Conversion time	267 ns	267 ns	267 ns	267 ns	500 ns	500 ns
	Channels	16	16	16	16	16	16
12-Bit ADC	Temperature sensor	Yes	Yes	Yes	Yes	Yes	Yes
	Dual sample-and-hold	Yes	Yes	Yes	Yes	Yes	Yes
PGA (Gain $pprox$ 3,	6, or 11)	4	4	4	4	4	3
Fixed Gain Amp	lifier (Gain $pprox$ 3)	3	3	3	3	3	4
Comparators		7	7	7	7	7	6
Internal compara	ator reference DACs	3	3	3	3	3	2
Buffered referen	ce DAC	1	1	1	1	1	1
32-Bit CPU timers		3	3	3	3	3	3
12C		1	1	1	1	1	1
eCAN		1	1	1	1	1	1
SPI		1	1	1	1	1	1
SCI/UART		3	3	3	3	3	3
0-pin oscillators		2	2	2	2	2	2
I/O pins (shared) GPIO	42	42	42	42	42	42
External interrup	ots	3	3	3	3	3	3
Supply voltage (nominal)	3.3 V	3.3 V	3.3 V	3.3 V	3.3 V	3.3 V

表 5-1. Device Comparison

FE	FEATURE		28054 28054-Q1 28054M ⁽¹⁾ 28054M-Q1 28054F ⁽¹⁾ 28054F-Q1 (60 MHz)	28053 (60 MHz)	28052 28052-Q1 28052M(¹⁾ 28052M-Q1 28052F ⁽¹⁾ 28052F-Q1 (60 MHz)	28051 (60 MHz)	28050 (60 MHz)
	T: − 40°C to 105°C	28055	28054 28054M 28054F	28053	28052 28052M 28052F	28051	28050
Temperature options	S: - 40°C to 125°C	28055	28054 only	28053	28052 only	28051	28050
	Q: - 40°C to 125°C ⁽²⁾	-	28054-Q1 28054M-Q1 28054F-Q1	-	28052-Q1 28052M-Q1 28052F-Q1	-	-

表 5-1. Device Comparison (continued)

(1) TMS320F2805xF devices are InstaSPIN-FOC-enabled MCUs. TMS320F2805xM devices are InstaSPIN-MOTION-enabled MCUs. However, InstaSPIN-MOTION is no longer recommended for new designs and will not have application support. On these devices, TI has secured Zone1 and allocated RAML0 to Zone1. Because of this, Zone1 and RAML0 are not available for customer applications; only Zone2 is available. For more information, see ^{††} 10.4 for a list of InstaSPIN Technical Reference Manuals.

(2) The letter Q refers to AEC Q100 qualification for automotive applications.

5.1 Related Products

For information about similar products, see the following links:

TMS320F2802x Real-Time Microcontrollers

The F2802x series offers the lowest pin-count and Flash memory size options. InstaSPIN-FOC[™] versions are available.

TMS320F2803x Real-Time Microcontrollers

The F2803x series increases the pin-count and memory size options. The F2803x series also introduces the parallel control law accelerator (CLA) option.

TMS320F2805x Real-Time Microcontrollers

The F2805x series is similar to the F2803x series but adds on-chip programmable gain amplifiers (PGAs). InstaSPIN-FOC and InstaSPIN-MOTION[™] versions are available.

TMS320F2806x Real-Time Microcontrollers

The F2806x series is the first to include a floating-point unit (FPU). The F2806x series also increases the pincount, memory size options, and the quantity of peripherals. InstaSPIN-FOC[™] and InstaSPIN-MOTION[™] versions are available.

TMS320F2807x Real-Time Microcontrollers

The F2807x series offers the most performance, largest pin counts, flash memory sizes, and peripheral options. The F2807x series includes the latest generation of accelerators, ePWM peripherals, and analog technology.

TMS320F28004x Real-Time Microcontrollers

The F28004x series is a reduced version of the F2807x series with the latest generational enhancements. InstaSPIN-FOC and configurable logic block (CLB) versions are available.

6 Terminal Configuration and Functions

6.1 Pin Diagram

8 6-1 shows the 80-pin PN Low-Profile Quad Flatpack pin assignments.

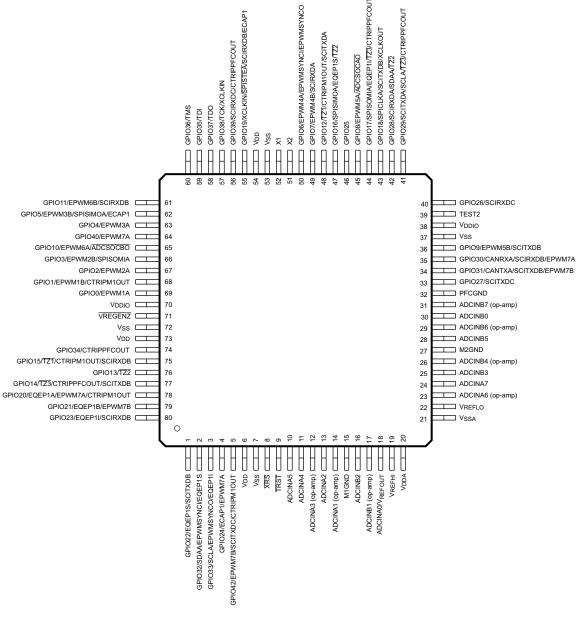


图 6-1. 2805x 80-Pin PN Low-Profile Quad Flatpack (Top View)

Copyright © 2021 Texas Instruments Incorporated

Submit Document Feedback 7

Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053 TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050

6.2 Signal Descriptions

节 6.2.1 describes the signals. With the exception of the JTAG pins, the GPIO function is the default at reset, unless otherwise mentioned. The peripheral signals that are listed under them are alternate functions. Some peripheral functions may not be available in all devices. See 表 5-1 for details. Inputs are not 5-V tolerant. All GPIO pins are I/O/Z and have an internal pullup (PU), which can be selectively enabled or disabled on a per-pin basis. This feature only applies to the GPIO pins. The pullups on the PWM pins are not enabled at reset, except as noted in 节 6.2.1. The pullups on other GPIO pins are enabled upon reset.

Note

When the on-chip VREG is used, the GPIO19, GPIO34, GPIO35, GPIO36, GPIO37, and GPIO38 pins could glitch during power up. This potential glitch will finish before the boot mode pins are read and will not affect boot behavior. If glitching is unacceptable in an application, 1.8 V could be supplied externally. Alternatively, adding a current-limiting resistor (for example, 470 Ω) in series with these pins and any external driver could be considered to limit the potential for degradation to the pin and/or external circuitry. There is no power-sequencing requirement when using an external 1.8-V supply. However, if the 3.3-V transistors in the level-shifting output buffers of the I/O pins are powered prior to the 1.8-V transistors, it is possible for the output buffers to turn on, causing a glitch to occur on the pin during power up. To avoid this behavior, power the V_{DD} pins prior to or simultaneously with the V_{DDIO} pins, ensuring that the V_{DD} pins have reached 0.7 V before the V_{DDIO} pins reach 0.7 V.

6.2.1 Signal Descriptions

TERMINAL				
NAME	PN PIN NO.	I/O/Z ⁽¹⁾	DESCRIPTION	
			JTAG	
TRST	9	I	JTAG test reset with internal pulldown (PD). TRST, when driven high, gives the scan system control of the operations of the device. If this signal is not connected or driven low, the device operates in its functional mode, and the test reset signals are ignored. NOTE: TRST is an active high test pin and must be maintained low at all times during normal device operation. An external pulldown resistor is required on this pin. The value of this resistor should be based on drive strength of the debugger pods applicable to the design. A 2.2-k Ω resistor generally offers adequate protection. Because the value of the resistor is application-specific, TI recommends that each target board be validated for proper operation of the debugger and the application. (\downarrow)	
тск	See GPIO38	I	See GPIO38. JTAG test clock with internal pullup. (†)	
тмѕ	See GPIO36	I	See GPIO36. JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK (\uparrow)	
TDI	See GPIO35	I	See GPIO35. JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register (instruction or data) on a rising edge of TCK. (†)	
TDO	See GPIO37	O/Z	See GPIO37. JTAG scan out, test data output (TDO). The contents of the selected register (instruction or data) are shifted out of TDO on the falling edge of TCK. (8 mA drive)	
			FLASH	
TEST2	39	I/O	Test Pin. Reserved for TI. Must be left unconnected.	

8 Submit Document Feedback

TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053 TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050

ZHCSAH6F - NOVEMBER 2012 - REVISED SEPTEMBER 2021

TERMINAL									
NAME	PN PIN NO.	I/O/Z ⁽¹⁾	DESCRIPTION						
	CLOCK								
XCLKOUT	See GPIO18	O/Z	See GPIO18. Output clock derived from SYSCLKOUT. XCLKOUT is either the same frequency, one-half the frequency, or one-fourth the frequency of SYSCLKOUT. The value of XCLKOUT is controlled by bits 1:0 (XCLKOUTDIV) in the XCLK register. At reset, XCLKOUT = SYSCLKOUT/4. The XCLKOUT signal can be turned off by setting XCLKOUTDIV to 3. The mux control for GPIO18 must also be set to XCLKOUT for this signal to propogate to the pin.						
XCLKIN	See GPIO19 and GPIO38	I	See GPIO19 and GPIO38. External oscillator input. Pin source for the clock is controlled by the XCLKINSEL bit in the XCLK register, GPIO38 is the default selection. This pin feeds a clock from an external 3.3-V oscillator. In this case, the X1 pin, if available, must be tied to GND and the on-chip crystal oscillator must be disabled through bit 14 in the CLKCTL register. If a crystal/resonator is used, the XCLKIN path must be disabled by bit 13 in the CLKCTL register. NOTE: Designs that use the GPIO38/TCK/XCLKIN pin to supply an external clock for normal device operation may need to incorporate some hooks to disable this path during debug using the JTAG connector. This action is to prevent contention with the TCK signal, which is active during JTAG debug sessions. The zero-pin internal oscillators may be used during this time to clock the device.						
X1	52	I	On-chip 1.8-V crystal-oscillator input. To use this oscillator, a quartz crystal or a ceramic resonator must be connected across X1 and X2. In this case, the XCLKIN path must be disabled by bit 13 in the CLKCTL register. If this pin is not used, this pin must be tied to GND. (I)						
X2	51	0	On-chip crystal-oscillator output. A quartz crystal or a ceramic resonator must be connected across X1 and X2. If X2 is not used, X2 must be left unconnected. (O)						
		1	RESET						
XRS	8	I/OD	Device Reset (in) and Watchdog Reset (out). These devices have a built-in power-on reset (POR) and brownout reset (BOR) circuitry. During a power-on or brownout condition, this pin is driven low by the device. An external circuit may also drive this pin to assert a device reset. This pin is also driven low by the MCU when a watchdog reset occurs. During watchdog reset, the XRS pin is driven low for the watchdog reset duration of 512 OSCCLK cycles. A resistor with a value from 2.2 k Ω to 10 k Ω should be placed between XRS and V _{DDIO} . If a capacitor is placed between XRS and V _{SS} for noise filtering, it should be 100 nF or smaller. These values will allow the watchdog to properly drive the XRS pin to V _{OL} within 512 OSCCLK cycles when the watchdog reset is asserted. Regardless of the source, a device reset causes the device to terminate execution. The program counter points to the address contained at the location 0x3F FFC0. When reset is deactivated, execution begins at the location designated by the program counter. The output buffer of this pin is an open-drain with an internal pullup. (†) If this pin is driven by an external device, it should be done using an open-drain device.						

TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053 TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050 ZHCSAH6F - NOVEMBER 2012 - REVISED SEPTEMBER 2021

TERMINAL					
NAME	PN PIN NO.	I/O/Z ⁽¹⁾	DESCRIPTION		
			ADC, COMPARATOR, ANALOG I/O		
ADCINA7	24	I	ADC Group A, Channel 7 input		
ADCINA6 (op-amp)	23	I	ADC Group A, Channel 6 input		
ADCINA5	10	I	ADC Group A, Channel 5 input		
ADCINA4	11	I	ADC Group A, Channel 4 input		
ADCINA3 (op-amp)	12	I	ADC Group A, Channel 3 input		
ADCINA2	13	I	ADC Group A, Channel 2 input		
ADCINA1 (op-amp)	14	I	ADC Group A, Channel 1 input		
ADCINA0	18	1	ADC Group A, Channel 0 input		
V _{REFOUT}	10	I	Voltage Reference out from buffered DAC		
V _{REFHI}	19	I	ADC External Reference – used when in ADC external reference mode and used as V_{REFOUT} reference		
ADCINB7 (op-amp)	31	I	ADC Group B, Channel 7 input		
ADCINB6 (op-amp)	29	I	ADC Group B, Channel 6 input		
ADCINB5	28	I	ADC Group B, Channel 5 input		
ADCINB4 (op-amp)	26	I	ADC Group B, Channel 4 input		
ADCINB3	25	I	ADC Group B, Channel 3 input		
ADCINB2	16	I	ADC Group B, Channel 2 input		
ADCINB1 (op-amp)	17	I	ADC Group B, Channel 1 input		
ADCINB0	30	I	ADC Group B, Channel 0 input		
V _{REFLO}	22	I	ADC Low Reference (always tied to ground)		
	·		CPU AND I/O POWER		
V _{DDA}	20		Analog Power Pin. Tie with a 2.2- μ F capacitor (typical) close to the pin.		
V _{SSA}	21		Analog Ground Pin		
	6				
V _{DD}	54		CPU and Logic Digital Power Pins. When using internal VREG, place one 1.2-µF capacitor between each V _{DD} pin and ground. Higher value capacitors may be used.		
	73				
	38		Digital I/O Buffers and Flash Memory Power Pin. Single supply source when VREG is enabled.		
V _{DDIO}	70		Place a decoupling capacitor on each pin. The exact value should be determined by the system voltage regulation solution.		
	7	-			
V _{SS}	37	-	Digital Ground Pins		
00	53	-			
	72				
M1GND	15		Ground pin for amplifier (channels A1, A3, B1)		
M2GND	27		Ground pin for amplifier (channels A6, B4, B6)		
PFCGND	32		Ground pin for amplifier (channel B7)		

10 Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053 TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050

TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053 TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050 ZHCSAH6F - NOVEMBER 2012 - REVISED SEPTEMBER 2021

NAMEPN PIN NO.I/O/Z (1)DESCRIPTIONVOLTAGE REGULATOR CONTROL SIGNALVREGENZ71IInternal voltage regulator (VREG) enable with internal pulldown. Tie directly to V _{SS} (low) to enable the internal 1.8-V VREG. Tie directly to V _{DDIO} (high) to disable the VREG and use an external 1.8-V supply.GPIO AND PERIPHERAL SIGNALS (2)GPIO0I/O/ZGeneral-purpose input/output 0EPWM1A690Enhanced PWM1 Output AReserved-ReservedGPIO1I/O/ZGeneral-purpose input/output 1EPWM1B680Enhanced PWM1 Output BReserved-ReservedCTRIPM10UT0CTRIPM1 CTRIPxx outputGPIO2I/O/ZGeneral-purpose input/output 2EPWM2A670Enhanced PWM2 Output A	TERMINAL	
VREGENZ 71 I Internal voltage regulator (VREG) enable with internal pulldown. Tie directly to V _{SS} (low) to enable the internal 1.8-V VREG. Tie directly to V _{DDIO} (high) to disable the VREG and use an external 1.8-V supply. GPIO0 IVO/Z General-purpose input/output 0 EPWM1A 69 0 Enhanced PWM1 Output A Reserved - Reserved - GPIO1 I/O/Z General-purpose input/output 1 EPWM1B 68 0 Enhanced PWM1 Output 1 Reserved - Reserved - GPIO2 I/O/Z General-purpose input/output 1 EPWM1B 68 0 Enhanced PWM1 Output B Reserved - Reserved - GPIO2 I/O/Z General-purpose input/output 2 EPWM2A O Enhanced PWM2 Output 4	NAME	
VREGENZ 71 I enable the internal 1.8-V VREG. Tie directly to V _{DDIO} (high) to disable the VREG and use an external 1.8-V supply. GPIO AND PERIPHERAL SIGNALS ⁽²⁾ GPIO0 I/O/Z General-purpose input/output 0 EPWM1A 69 0 Enhanced PWM1 Output A Reserved - Reserved - GPIO1 I/O/Z General-purpose input/output 1 EPWM1B 68 0 Enhanced PWM1 Output B Reserved - Reserved - CTRIPM10UT 0 Enhanced PWM1 Output B Reserved - Reserved - GPIO2 I/O/Z General-purpose input/output 2 EPWM2A 0 Enhanced PWM2 Output A		
GPI00 I/O/Z General-purpose input/output 0 EPWM1A 69 0 Enhanced PWM1 Output A Reserved - Reserved - Reserved - Reserved - GPI01 I/O/Z General-purpose input/output 1 - EPWM1B 68 I/O/Z General-purpose input/output 1 Reserved - Reserved - CTRIPM1OUT 0 Enhanced PWM1 Output B GPI02 I/O/Z General-purpose input/output 2 EPWM2A 0 Enhanced PWM2 Output A	VREGENZ	
EPWM1A 69 0 Enhanced PWM1 Output A Reserved - Reserved Reserved - Reserved GPI01 I/O/Z General-purpose input/output 1 EPWM1B 68 0 Enhanced PWM1 Output B Reserved - Reserved CTRIPM10UT 0 CTRIPM1 CTRIPxx output GPI02 I/O/Z General-purpose input/output 2 EPWM2A 0 Enhanced PWM2 Output A		
Reserved 69 - Reserved Reserved - Reserved GPI01 I/O/Z General-purpose input/output 1 EPWM1B 68 0 Enhanced PWM1 Output B Reserved - Reserved CTRIPM1OUT 0 CTRIPM1 CTRIPxx output GPI02 I/O/Z General-purpose input/output 2 EPWM2A 0 Enhanced PWM2 Output A	GPIO0	
Reserved - Reserved Reserved - Reserved GPI01 I/O/Z General-purpose input/output 1 EPWM1B 68 0 Enhanced PWM1 Output B Reserved - Reserved CTRIPM1OUT 0 CTRIPM1 CTRIPxx output GPI02 I/O/Z General-purpose input/output 2 EPWM2A 0 Enhanced PWM2 Output A	EPWM1A	
GPI01 I/O/Z General-purpose input/output 1 EPWM1B 68 0 Enhanced PWM1 Output B Reserved - Reserved CTRIPM1OUT 0 CTRIPM1 CTRIPxx output GPI02 I/O/Z General-purpose input/output 2 EPWM2A 0 Enhanced PWM2 Output A	Reserved	
EPWM1B 68 O Enhanced PWM1 Output B Reserved - Reserved CTRIPM1OUT O CTRIPM1 CTRIPxx output GPIO2 I/O/Z General-purpose input/output 2 EPWM2A O Enhanced PWM2 Output A	Reserved	
Reserved 68 - Reserved CTRIPM1OUT O CTRIPM1 CTRIPxx output GPIO2 I/O/Z General-purpose input/output 2 EPWM2A O Enhanced PWM2 Output A	GPIO1	
Reserved - Reserved CTRIPM1OUT O CTRIPM1 CTRIPxx output GPIO2 I/O/Z General-purpose input/output 2 EPWM2A O Enhanced PWM2 Output A	EPWM1B	
GPIO2 I/O/Z General-purpose input/output 2 EPWM2A O Enhanced PWM2 Output A	Reserved	
EPWM2A O Enhanced PWM2 Output A	CTRIPM1OUT	
EPWM2A O Enhanced PWM2 Output A	GPIO2	
	EPWM2A	
Reserved – Reserved	Reserved	
Reserved - Reserved	Reserved	
GPIO3 I/O/Z General-purpose input/output 3	GPIO3	
EPWM2B O Enhanced PWM2 Output B	EPWM2B	
SPISOMIA I/O SPI-A slave out, master in	SPISOMIA	
Reserved - Reserved	Reserved	
GPI04 I/O/Z General-purpose input/output 4	GPIO4	
EPWM3A O Enhanced PWM3 output A	EPWM3A	
Reserved 63 - Reserved	Reserved	
Reserved - Reserved	Reserved	
GPI05 I/O/Z General-purpose input/output 5	GPIO5	
EPWM3B O Enhanced PWM3 output B	EPWM3B	
SPISIMOA 62 I/O SPI-A slave in, master out	SPISIMOA	
ECAP1 I/O Enhanced Capture input/output 1	ECAP1	
GPIO6 I/O/Z General-purpose input/output 6	GPIO6	
EPWM4A O Enhanced PWM4 output A	EPWM4A	
50 I External ePWM sync pulse input	EPWMSYNCI	
EPWMSYNCO O External ePWM sync pulse output	EPWMSYNCO	
GPI07 I/O/Z General-purpose input/output 7	GPIO7	
EPWM4B O Enhanced PWM4 output B	EPWM4B	
SCIRXDA 49 I SCI-A receive data	SCIRXDA	
Reserved - Reserved	Reserved	
GPI08 I/O/Z General-purpose input/output 8	GPIO8	
EPWM5A O Enhanced PWM5 output A	EPWM5A	
Reserved 45 - Reserved	Reserved	
ADCSOCAO O ADC start-of-conversion A	ADCSOCAO	
GPIO9 I/O/Z General-purpose input/output 9	GPIO9	
EPWM5B O Enhanced PWM5 output B	EPWM5B	
SCITXDB 36 O SCI-B transmit data	SCITXDB	
Reserved - Reserved	Reserved	

TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053 TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050 ZHCSAH6F - NOVEMBER 2012 - REVISED SEPTEMBER 2021

TERMINAL				
NAME	PN PIN NO.	I/O/Z ⁽¹⁾	DESCRIPTION	
GPIO10		I/O/Z	General-purpose input/output 10	
EPWM6A	65	0	Enhanced PWM6 output A	
Reserved	00	-	Reserved	
ADCSOCBO		0	ADC start-of-conversion B	
GPIO11		I/O/Z	General-purpose input/output 11	
EPWM6B	61	0	Enhanced PWM6 output B	
SCIRXDB	01	I	SCI-B receive data	
Reserved		-	Reserved	
GPIO12		I/O/Z	General-purpose input/output 12	
TZ1		I	Trip Zone input 1	
CTRIPM1OUT	48	0	CTRIPM1 CTRIPxx output	
SCITXDA		0	SCI-A transmit data	
Reserved		-	Reserved	
GPIO13		I/O/Z	General-purpose input/output 13	
TZ2	76	I	Trip zone input 2	
Reserved	70	_	Reserved	
Reserved		-	Reserved	
GPIO14		I/O/Z	General-purpose input/output 14	
TZ3		I	Trip zone input 3	
CTRIPPFCOUT	77	0	CTRIPPFC output	
SCITXDB		0	SCI-B transmit data	
Reserved		-	Reserved	
GPIO15		I/O/Z	General-purpose input/output 15	
TZ1		I	Trip zone input 1	
CTRIPM1OUT	75	0	CTRIPM1 CTRIPxx output	
SCIRXDB		I	SCI-B receive data	
Reserved		-	Reserved	
GPIO16		I/O/Z	General-purpose input/output 16	
SPISIMOA	47	I/O	SPI-A slave in, master out	
EQEP1S	47	I/O	Enhanced QEP1 strobe	
TZ2		I	Trip Zone input 2	
GPIO17		I/O/Z	General-purpose input/output 17	
SPISOMIA		I/O	SPI-A slave out, master in	
EQEP1I	44	I/O	Enhanced QEP1 index	
TZ3		I	Trip zone input 3	
CTRIPPFCOUT		0	CTRIPPFC output	
GPIO18		I/O/Z	General-purpose input/output 18	
SPICLKA		I/O	SPI-A clock input/output	
SCITXDB		0	SCI-B transmit data	
XCLKOUT	43	O/Z	Output clock derived from SYSCLKOUT. XCLKOUT is either the same frequency, one-half the frequency, or one-fourth the frequency of SYSCLKOUT. The value of XCLKOUT is controlled by bits 1:0 (XCLKOUTDIV) in the XCLK register. At reset, XCLKOUT = SYSCLKOUT/4. The XCLKOUT signal can be turned off by setting XCLKOUTDIV to 3. The mux control for GPIO18 must also be set to XCLKOUT for this signal to propogate to the pin.	

12 Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053 TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050

TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053 TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050

ZHCSAH6F - NOVEMBER 2012 - REVISED SEPTEMBER 2021

TERMINAL				
NAME	PN PIN NO.	I/O/Z ⁽¹⁾	DESCRIPTION	
GPIO19		I/O/Z	General-purpose input/output 19	
XCLKIN	55	1	External Oscillator Input. The path from this pin to the clock block is not gated by the mux function of this pin. Care must be taken not to enable this path for clocking if this path is being used for the other periperhal functions	
SPISTEA		I/O	SPI-A slave transmit enable input/output	
SCIRXDB		I	SCI-B receive data	
ECAP1		I/O	Enhanced Capture input/output 1	
GPIO20		I/O/Z	General-purpose input/output 20. Internal pullup enabled by default.	
EQEP1A	78	I	Enhanced QEP1 input A	
EPWM7A	10	0	Enhanced PWM7 output A	
CTRIPM1OUT		0	CTRIPM1 CTRIPxx output	
GPIO21		I/O/Z	General-purpose input/output 21. Internal pullup enabled by default.	
EQEP1B	79	I	Enhanced QEP1 input B	
EPWM7B	79	0	Enhanced PWM7 output B	
Reserved		-	Reserved	
GPIO22		I/O/Z	General-purpose input/output 22	
EQEP1S	4	I/O	Enhanced QEP1 strobe	
Reserved	1	-	Reserved	
SCITXDB		0	SCI-B transmit data	
GPIO23		I/O/Z	General-purpose input/output 23	
EQEP1I		I/O	Enhanced QEP1 index	
Reserved	80	-	Reserved	
SCIRXDB		I	SCI-B receive data	
GPIO24		I/O/Z	General-purpose input/output 24. Internal pullup enabled by default.	
ECAP1	4	I/O	Enhanced Capture input/output 1	
EPWM7A	4	0	Enhanced PWM7 output A	
Reserved		-	Reserved	
GPIO25		I/O/Z	General-purpose input/output 25	
Reserved	40	-	Reserved	
Reserved	46	-	Reserved	
Reserved		-	Reserved	
GPIO26		I/O/Z	General-purpose input/output 26	
Reserved	40	-	Reserved	
SCIRXDC	40	I	SCI-C receive data	
Reserved		-	Reserved	
GPIO27		I/O/Z	General-purpose input/output 27	
Reserved	22	-	Reserved	
SCITXDC	33	0	SCI-C transmit data	
Reserved		-	Reserved	
GPIO28		I/O/Z	General-purpose input/output 28	
SCIRXDA	40	I	SCI-A receive data	
SDAA	42	I/OD	I2C data open-drain bidirectional port	
TZ2		I	Trip zone input 2	

TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053 TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050 ZHCSAH6F - NOVEMBER 2012 - REVISED SEPTEMBER 2021

NAMEPNN.0.PO/2L'ConstructionGP/029PNN.0.PNN.0.General-purpose input/output 29SCITADAPA10012Cokk open-drain bidirectional portT2310012Cokk open-drain bidirectional portT2310012Cokk open-drain bidirectional portT2310012Cokk open-drain bidirectional portT2311CONTREPFC outputGP/030PA11SCI-A transmit dataSCI-A transmit dataSCIRXDB3511GP/031PA10GP/031PA10GP/031PA10GP/031PA00CAN transmitGeneral-purpose input/output 31. Internal pullup enabled by default.CANTAXPA00GP/031PA10012GP/031PA10012GP/031PA10012GP/032PA10012GP/033PA10012GP/034PA10012GP/035PA10012GP/034PA1002GP/034PA1002GP/034PA1002GP/034PA1002GP/034PA1002GP/034PA1002GP/034PA1002GP/034PA1002GP/034PA1002GP/034GP1002GP/034GP1002GP/034GP1002GP/034GP1002GP/034GP	TERMINAL			
SCITXDA 41 0 SCI.A transmit data SCLA 10 10 100 ic lock open-drain bidirectional port T3 0 CTRIPPFCOUT 0 CTRIPPFC output CPU030 1 CAN receive 1 SCI.A transmit data CANRXA 35 1 CAN receive 1 SCI.B receive data CPWM7A 0 Enhanced PWM7 output A 1 CAN receive GPU031 0 CAN transmit data 1 CAN receive SCITXDB 34 0 SCI.B transmit data CPU031 0 CAN transmit data CPU032 0 CAN transmit data CPU031 0 CAN transmit data CPU032 10 Cata copen-drain bidirectional port CPU033 1 CA receive data CPU034 1 Cata copen-drain bidirectional port CPU035 1 Cata copen-drain bidirectional port CPU036 1 CAC cock open-drain bidirectional port CPU037 1 CAC cock open-drain bidirectional port CPU038 1 CAC cock open-drain bidirectional port CPU039 1 CAC cock open-drain bidirectional port CPU031 1 CAC cock open-drain bid	NAME		I/O/Z ⁽¹⁾	DESCRIPTION
SCLA41I/OI/C clock open-drain bidirectional portT231Tip zone input 3CTRIPPFCOUT0CTRIPPFC output 3GP/0301CAN receiveSCIRXDB351SCIRXDB361SCIRXDB361SCIRXDB361SCIRXDB361SCIRXDB361SCIRXDB361SCIRXDB340GP/0311CAN receiveCANTXA340CRIXDB0Enhanced PWM7 output 4GP/0321CAN transmitSCIRXDB0Enhanced PWM7 output 31. Internal pultup enabled by default.CANTXA340ScIR transmit dataGP/0321Enhanced PWM7 output 32SDA2100I/C data open-drain bidirectional portGP/0331I/OZGeneral-Purpose input/Output 33SCLA31/ODI/C clock open-drain bidirectional portGP/0341I/OZGeneral-Purpose input/Output 33SCLA31/ODI/C clock open-drain bidirectional portGP/0341I/OZGeneral-Purpose input/Output 34GP/0351I/OZGeneral-Purpose input/Output 35GCLA74-ReservedGP/0351I/OZGeneral-Purpose input/Output 35TDI1I/OZGeneral-Purpose input/Output 36TDI1I/OZGeneral-Purpose input/Output 36 <t< td=""><td>GPIO29</td><td></td><td>I/O/Z</td><td>General-purpose input/output 29</td></t<>	GPIO29		I/O/Z	General-purpose input/output 29
TZ3 I Trip zone input 3 CTRIPPFCOUT O CTRIPPFCoutu GP/030 V/0/2 General-purpose input/output 30. Internal pullup enabled by default. CANRXA 35 I SCI-B receive SCIRXDB 35 I SCI-B receive data FWM7A 0 Enhanced PWM7 output A GP/031 General-purpose input/output 31. Internal pullup enabled by default. CANTXA 34 O General-purpose input/output 31. Internal pullup enabled by default. CANTXA 34 O General-purpose input/output 32. SOITXDB V/0/Z General-purpose input/output 32 SDAA 2 I/0/D I2C data open-drain bidirectional port EPWM78 1 Enhanced PWM external synch pulse output GP/033 1/0 I2C dock open-drain bidirectional port EPWMSYNCI 1 Enhanced PWM external synch pulse output GP/034 74 I/0/Z General-Purpose input/Output 33 SCLA 7 I/0/Z General-Purpose input/Output 34 Reserved 74 Enhanced PWM external synch pulse output GP/034 74 I/0/Z General-Purpose input/Output 35 TI I/0 Enhanced PWM PW I/0 GP/	SCITXDA		0	SCI-A transmit data
CTRIPPFCOUTVOCTRIPPFC outputGP/030 CANRXA ANDA1CAN receive scienceCANRXA CANRXAA1CAN receive scienceSCIRXDE EPWM7A1SCIB receive dataEPWM7A0Enhanced PWM7 output AGP/031 CANTXA CANTXAA0GP/031 COA1GP/032 EPWM7B10/02General-purpose input/output 31. Internal pullup enabled by default.GP/031 COA1GP/032 EPWM57NCI1VI/02GP/033 EPWM57NCI1VI/02GP/034 COA10/02GP/035 CO1VI/02GP/036 CO1VI/02GP/037 CO2General-Purpose input/Output 33GCLA EPWM5YNCI1Enhanced DEP1 strobeGP/034 CO2General-Purpose input/Output 33GCLA CO3VI/02General-Purpose input/Output 34GP/034 CO2General-Purpose input/Output 34Reserved74 COReservedReservedGP/034 CRIPFCOUT74ReservedGP/03574 COReservedGP/03674 COReservedGP/037 CRIPFCOUT1/02General-Purpose input/Output 35TDI74 COCRIPFFCoutputGP/037 CRIPFCOUT1/02General-Purpose input/Output 35TDI74 COReservedReserved74 COReservedReserved74 CO	SCLA	SCLA 41 73		I2C clock open-drain bidirectional port
GP/030 VIO/Z General-purpose input/output 30. Internal pullup enabled by default. CANRXA 35 1 CAN receive SCIRXDB 35 1 SCI-B receive data EPWM7A 0 Enhanced PWM7 output A GP/031 0 Enhanced PWM7 output 31. Internal pullup enabled by default. CANTXA 34 0 CAN transmit SCITXDB 34 0 CAN transmit SCITXDB 34 0 Enhanced PWM7 output 31. Internal pullup enabled by default. CANTXA 34 0 CAN transmit General-purpose input/output 31. Internal pullup enabled by default. CANTXA 34 0 Enhanced PWM7 output B Enhanced PWM7 output 32. SDAA 2 I/O/Z General-purpose input/Output 33. Enhanced PWM external sync pulse output EOEP1S I/O Enhanced DEP1 index Enhanced PWM external sync pulse output GP/033 7 Reserved - Reserved GP/034 7 Reserved - Reserved CTRIPPFCoUT O	TZ3			Trip zone input 3
CANRXA 35 I CAN receive SCIRXDB 1 SCI-B receive data EPWM7A 0 Enhanced PWM7 output A GPI031 I/02 General-purpose input/output 31. Internal pullup enabled by default. CANTXA 34 0 SCI-B transmit data SCITXDB 0 SCI-B transmit data PPWM7B 0 SCI-B transmit data GPI031 0 SCI-B transmit data EPWM7ND 10/02 General-purpose input/output 32 SDAA 2 I/02 General-Purpose input/Output 33 SCLA 3 I/02 General-Purpose input/Output 33 SCLA 3 I/02 General-Purpose input/Output 34 CAN transmit 10 Enhanced QEP1 Index GPI034 74 - Reserved CTRIPPFCOUT 0 CTRIPPFCO output GPI035 74 - Reserved Reserved - Reserved - GPI036 1 JAC test data input (TM) with internal pullu	CTRIPPFCOUT		0	CTRIPPFC output
SCIRXDB35ISCI-B receive dataEPWM7A0Enhanced PWM7 output AGPI03140General-purpose input/output 31. Internal pullup enabled by default.CANTXA340SCI-B transmit dataEPWM7B0SCI-B transmit dataEPWM7B0SCI-B transmit dataEPWM7D1Enhanced PWM7 output BGPI0321Enhanced PWM7 output BGPI0311Enhanced PWM external sync pulse inputEOEP1S1/0DI2 Cata open-dain bidirectional portEOEP1S1/0DI2 Colcok open-drain bidirectional portEOEP1S1/0DI2 Colcok open-drain bidirectional portEOEP111/0DI2 Colcok open-drain bidirectional portEOEP111/0DC TRIPPFC outputGPI0331JTAC best data input (TD) with internal pullup. TDI is clocked into the selected register (instruction or data) on a rising edge of TCKGPI0361JTAC best data input (TD) with internal pullup. TDI is clocked into the selected register (instruction or data) on a rising edge of TCKGPI0362ReservedGPI0371JTAC best data input (TD) with internal pullup. This serial control input is clocked into the r	GPIO30		I/O/Z	General-purpose input/output 30. Internal pullup enabled by default.
SCIRXDBISCI-B receive dataEPWM7A0Enhanced PWM7 output ACANTXA3440CAN transmitSCITXDB0SCI-B transmit dataEPWM7B0SCI-B transmit dataGP0310SCI-B transmit dataGP0322IVOZGP0332IVOZCECEP1SIVOZGeneral-purpose input/output 32SOLA2IVOZGP0331Enhanced PWM external sync pulse inputGP0331Enhanced PWM external sync pulse inputGP0331IVOZGEP134IVOZGeneral-Purpose Input/Output 33SCLA3IVOZGEP134IVOZGeneral-Purpose Input/Output 33SCLA3IVOZGEP134IVOZGeneral-Purpose Input/Output 34GP03474General-Purpose Input/Output 34GP103574ReservedGP103674General-Purpose Input/Output 35TDIIVOZGeneral-Purpose Input/Output 35TDI1JTAC test data input (TD) with internal pullup. TDI is clocked into the selected register (Instruction or data) on a rising edge of TCK.Reserved6IVOZGeneral-Purpose Input/Output 36TDI1JTAC test mode select (TMS) with internal pullup. TDI is clocked into the selected register (Instruction or data) on a rising edge of TCK.Reserved6IReservedGP1036IJTAC test-mode select (TMS) with internal pullup. This serial control input is clocked into th	CANRXA	25	I	CAN receive
GP/031 CANTXA SCITXDB 34 I/O/Z General-purpose input/output 31. Internal pullup enabled by default. CANTXA SCITXDB 34 0 CAN transmit GANTXA SCI-B transmit data EPWM7B 0 Enhanced PWM7 output B GP/032 I/O/Z General-purpose input/output 32. SDAA 2 I/O/Z General-purpose input/output 32. SDAA 1 Enhanced PWM external sync pulse input EQEP1S I/O/Z General-Purpose input/output 33. SCLA 3 I/O/Z General-Purpose input/output 34. Reserved 74 - Reserved GP/034 74 - Reserved GP/035 I/I/Z General-Purpose input/output 35. TDI I/I/Z General-Purpose input/output 36. TNS	SCIRXDB	35	I	SCI-B receive data
CANTXA SCITXDB340CAN transmitSCITXDB340SCI-B transmit dataEPWM7B0Enhanced PWM7 output BGPI0321002General-purpose input/output 32SDAA10I2C data open-drain bidirectional portEPWMSYNCI210ECEP1S1002General-Purpose input/Output 33SCLA10Enhanced QEP1 strobeGPI0331002CC clock open-drain bidirectional portSCLA1Enhanced QEP1 strobeGPI0341002CC clock open-drain bidirectional portEQEP11100I2C clock open-drain bidirectional portEQEP111002Enhanced QEP1 indexGPI034Reserved0Reserved74ReservedGPI035ReservedCTRIPPEC outputGPI036Instruction or data) on a rising edge of TCK.Reserved59-Reserved-Rese	EPWM7A			Enhanced PWM7 output A
SCITXDB34 A0SCI-B transmit dataEPWMY7B0Enhanced PWM7 output BGPI0321I/OZGeneral-purpose input/output 32SDAA2I/ODI2C data open-drain bidirectional portEQEP1S1Enhanced PWM external sync pulse inputEQEP1S1/OZGeneral-Purpose input/Output 33SCLA3I/OZGeneral-Purpose Input/Output 33SCLA30Enhanced QEP1 indexGPI03341/OZGeneral-Purpose Input/Output 33SCLA3I/OZGeneral-Purpose Input/Output 34GDEP111/OEnhanced QEP1 indexGPI03474-ReservedGPI0351/OZGeneral-Purpose Input/Output 34Reserved74-ReservedGPI0351I/OZGeneral-Purpose Input/Output 34GPI03674-ReservedGPI0371JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register (instruction or data) on a rising edge of TCK.Reserved-ReservedGPI0361JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK.Reserved-ReservedGPI0371JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK. (B mA drive)Reserved-ReservedGPI0371JTAG test-mode select (TMS) with internal pullup. This	GPIO31		I/O/Z	General-purpose input/output 31. Internal pullup enabled by default.
SCITXDBOSCIB transmit dataEPWIM7B0SCIB transmit dataEPWIM7B0Enhanced PWM7 output BGP/0321/0012C data open-drain bidirectional portEPWIMSYNCI21Enhanced QEP1 strobeGP/0331/0012C data open-drain bidirectional portEQEP151/00Enhanced QEP1 strobeGP/0331/0012C clock open-drain bidirectional portSCLA1Enhanced QEP1 strobeGP/0331/0012C clock open-drain bidirectional portEQEP111/00Enhanced QEP1 indexGP/03474ReservedReserved74ReservedGP103511/00ZGP103611/07ZGeneral-Purpose Input/Output 35TDI1JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register (instruction or data) on a rising edge of TCKReserved-ReservedGP10361JTAG test-mode select(TMS) with internal pullup. This serial control input is clocked into the rAP controller on the rising edge of TCK.Reserved-ReservedGP10361JTAG test-mode select(TMS) with internal pullup. This serial control input is clocked into the rAP controller on the rising edge of TCK.Reserved-ReservedGP10371JTAG test-mode select(TMS) with internal pullup. This serial control input is clocked into the 	CANTXA		0	CAN transmit
GP/032 I/0/Z General-purpose inplu/output 32 SDAA 2 I/OD I2C data open-drain bidirectional port EPWMSYNCI I Enhanced PWM external sync pulse input EQEP1S I/O Enhanced QEP1 strobe GP/033 I/OZ General-Purpose Input/Output 33 SCLA 3 I/OD I2C clock open-drain bidirectional port EPWMSYNC0 1 Enhanced QEP1 index GP/034 I/OZ General-Purpose Input/Output 34 Reserved 6 Enhanced QEP1 index GP/034 74 Reserved Reserved 74 Reserved GPI035 1 JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register (instruction or data) on a rising edge of TCK Reserved - Reserved GPI036 1 JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register (instruction or data) on a rising edge of TCK Reserved - Reserved GPI036 1 JTAG test data input (TDI) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK.	SCITXDB	34	0	SCI-B transmit data
SDAA EPWMSYNCI2I/OD II2C data open-drain bidirectional portEPWMSYNCI1Enhanced QEP1 strobeGPI033 SCLA1I/O/ZGeneral-Purpose Input/Output 33SCLA EPWMSYNC030Enhanced QEP1 indexGPI034 EQEP111/OEnhanced QEP1 indexGPI034 Reserved74-ReservedGPI034 Reserved74-ReservedGPI03574-ReservedGPI036 Reserved74-ReservedGPI037 TDI74-ReservedSeserved CTRIPPFCourt1U/O/ZGeneral-Purpose Input/Output 35TDI1U/O/ZGeneral-Purpose Input/Output 35TDI1U/O/ZGeneral-Purpose Input/Output 35TDI1U/O/ZGeneral-Purpose Input/Output 35TDI1U/O/ZGeneral-Purpose Input/Output 35TDI1U/O/ZGeneral-Purpose Input/Output 36TMS59-ReservedGPI036 TMS1U/O/ZGPI037 TDO60-Reserved-ReservedGPI037 TDO0/ZGeneral-Purpose Input/Output 37TDO0/ZU/Z General-Purpose Input/Output 37TDO0/Z </td <td>EPWM7B</td> <td></td> <td>0</td> <td>Enhanced PWM7 output B</td>	EPWM7B		0	Enhanced PWM7 output B
EPWMSYNCI 2 1 Enhanced PWM external sync pulse input EQEP1S I/O Enhanced QEP1 strobe GP/033 3 1/OZ General-Purpose Input/Output 33 SCLA 3 I/OD I2C clock open-drain bidirectional port EPWMSYNCO 0 Enhanced QEP1 index Enhanced QEP1 index GP/034 74 Reserved Reserved Reserved 74 Reserved Reserved GPI035 71 I/OZ General-Purpose Input/Output 34 Reserved 74 Reserved Reserved GPI035 71 I/OZ General-Purpose Input/Output 35 TDI 0 CTRIPPFC output To GPI036 7 Reserved Reserved Reserved 59 - Reserved Reserved 1 JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register (instruction or data) on a rising edge of TCK Reserved - Reserved - GPI036 1 JTAG test-mode select (TMS) with internal pullu	GPIO32		I/O/Z	General-purpose input/output 32
EPVMNSYNCIIEnhanced PWM external sync pulse inputEQEP1SI/OInhanced QEP1 strobeGPI033Inhanced QEP1 strobeGPI034International portEVMNSYNC0Image: Color open-drain bidirectional portEQEP11I/OEnhanced QEP1 indexGPI034International portEQEP11I/OEnhanced QEP1 indexGPI034International portReservedInternational portGPI034International portReservedInternational portGPI035International portGPI036International portGPI037International portGPI036International portGPI036International portGPI036International portGPI036International portGPI036International portGPI037International port <td>SDAA</td> <td></td> <td>I/OD</td> <td>I2C data open-drain bidirectional port</td>	SDAA		I/OD	I2C data open-drain bidirectional port
CPU033 CPU034I/O/ZGeneral-Purpose Input/Output 33SCLA EPWMSYNC03I/O/ZGeneral-Purpose Input/Output 33EQEP111/OEnhanced PWM external synch pulse outputEQEP111/OEnhanced QEP1 indexGPI034 Reserved74-Reserved70Ceneral-Purpose Input/Output 34Reserved74-ReservedGPI0351J/O/ZGeneral-Purpose Input/Output 35TDI0CTRIPPFC outputGeneral-Purpose Input/Output 35TDI1JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register (instruction or data) on a rising edge of TCKReserved59-ReservedReserved-ReservedGPI036_ReservedGPI0371JTAG test data input (TDI) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK.Reserved60-ReservedGPI0371JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK.Reserved-ReservedGPI037-ReservedGPI037-ReservedGPI037-ReservedFS8-ReservedReserved-ReservedGPI037-ReservedGPI037-ReservedGPI037-ReservedGPI037-ReservedGPI037- <td>EPWMSYNCI</td> <td>2</td> <td>I</td> <td>Enhanced PWM external sync pulse input</td>	EPWMSYNCI	2	I	Enhanced PWM external sync pulse input
SCLA EPWMSYNCO1/ODI2C clock open-drain bidirectional portEPWMSYNCO-Enhanced PWM external synch pulse outputEQEP11I/OEnhanced QEP1 indexGPI034-ReservedGPI034-ReservedReserved-ReservedCTRIPPFCOUTOCTRIPPFC outputGPI035-I/O/ZGPI036-I/O/ZGPI037-ReservedCTRIPPFCOUT-ReservedGPI036-ReservedCTRIPPFCOUT-ReservedGPI036-ReservedReserved-ReservedReserved-ReservedReserved-ReservedGPI036-ReservedGPI036-ReservedTMS1/O/ZGeneral-Purpose Input/Output 36TMS1/O/ZGeneral-Purpose Input/Output 36TMS1/O/ZGeneral-Purpose Input/Output 36TMS1/O/ZGeneral-Purpose Input/Output 36Reserved-ReservedReserved-ReservedReserved-ReservedGPI037-ReservedGPI037I/O/ZGeneral-Purpose Input/Output 37TDO-ReservedGPI037-ReservedReserved-ReservedGPI037-ReservedReserved-ReservedGPI037-ReservedReserved-Reserved <tr< td=""><td>EQEP1S</td><td></td><td>I/O</td><td>Enhanced QEP1 strobe</td></tr<>	EQEP1S		I/O	Enhanced QEP1 strobe
EPWMSYNC030Enhanced PWM external synch pulse outputEQEP11I/OEnhanced QEP1 indexGPI034I/OGeneral-Purpose Input/Output 34Reserved74-ReservedCTRIPPFCOUTOCTRIPPFC outputGPI035I/O/ZGeneral-Purpose Input/Output 35TDII/O/ZGeneral-Purpose Input/Output 35TDIIJTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register (instruction or data) on a rising edge of TCKReserved59-ReservedReserved-ReservedGPI036IJTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register (instruction or data) on a rising edge of TCKReserved-ReservedReserved-ReservedGPI036IIJTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK.Reserved60-ReservedReserved-ReservedReserved-ReservedGPI037I/O/ZGeneral-Purpose Input/Output 37TDO58-ReservedReserved-ReservedReserved-ReservedGPI037I/O/ZJTAG scan out, test data output (TDO). The contents of the selected register (instruction or data) are shifted out of TDO on the falling edge of TCK (8 mA drive)Reserved-ReservedReserved-ReservedGPI037<	GPIO33		I/O/Z	General-Purpose Input/Output 33
EPWMSYNC0 3 0 Enhanced PWM external synch pulse output EQEP11 I/O Enhanced QEP1 index GPI034 74 - Reserved GPI035 74 - Reserved CTRIPPFCOUT O CTRIPPFC output 35 GPI035 74 I/O/Z General-Purpose Input/Output 35 TDI 74 General-Purpose Input/Output 35 TDI 74 Reserved Reserved - Reserved GPI036 1 JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register (instruction or data) on a rising edge of TCK Reserved - Reserved Reserved - Reserved GPI036 1 JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK. Reserved - Reserved Reserved - Reserved GPI037 1 JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK.	SCLA		I/OD	I2C clock open-drain bidirectional port
EQEP11I/OEnhanced QEP1 indexGPI03474I/O/ZGeneral-Purpose Input/Output 34Reserved-ReservedReserved-ReservedCTRIPPFCOUTOCTRIPPFC outputGPI0357IJTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register (instruction or data) on a rising edge of TCKReserved-ReservedReserved-ReservedGPI0367ReservedReserved-ReservedReserved-ReservedGPI0367ReservedReserved-ReservedGPI0367ReservedReserved-ReservedGPI0361JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK.Reserved-ReservedReserved-ReservedReserved-ReservedReserved-ReservedGPI0377General-Purpose Input/Output 37TDO780/ZGeneral-Purpose Input/Output 37O/ZJTAG scan out, test data output (TDO). The contents of the selected register (instruction or data) are shifted out of TDO on the falling edge of TCK (8 mA drive)Reserved-ReservedGPI037-ReservedReserved-Reserved-Reserved-Reserved-Reserved-Reserved <t< td=""><td>EPWMSYNCO</td><td>3</td><td>0</td><td></td></t<>	EPWMSYNCO	3	0	
Reserved Reserved74-Reserved ReservedCTRIPPFCOUTOCTRIPPFC outputGPI035 TDITAG servedI/O/ZGeneral-Purpose Input/Output 35TDITAG servedIJTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register (instruction or data) on a rising edge of TCKReserved59-ReservedReserved-ReservedGPI036 TMSI/O/ZGeneral-Purpose Input/Output 36TMSIJTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK.Reserved60-ReservedReserved-ReservedReserved-ReservedReserved-ReservedGPI037 TDOJ/O/ZGeneral-Purpose Input/Output 37TDO58-ReservedReserved-ReservedReserved-ReservedReserved-ReservedReserved-ReservedReserved-ReservedReserved-ReservedReserved-ReservedReserved-ReservedReserved-ReservedReserved-ReservedReserved-ReservedGPI037 TDO-ReservedReserved-ReservedReserved-ReservedReserved-ReservedReserved <td>EQEP1I</td> <td></td> <td></td> <td></td>	EQEP1I			
Reserved Reserved74-Reserved ReservedCTRIPPFCOUTOCTRIPPFC outputGPI035 TDITAG servedI/O/ZGeneral-Purpose Input/Output 35TDITAG servedIJTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register (instruction or data) on a rising edge of TCKReserved59-ReservedReserved-ReservedGPI036 TMSI/O/ZGeneral-Purpose Input/Output 36TMSIJTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK.Reserved60-ReservedReserved-ReservedReserved-ReservedReserved-ReservedGPI037 TDOJ/O/ZGeneral-Purpose Input/Output 37TDO58-ReservedReserved-ReservedReserved-ReservedReserved-ReservedReserved-ReservedReserved-ReservedReserved-ReservedReserved-ReservedReserved-ReservedReserved-ReservedReserved-ReservedReserved-ReservedGPI037 TDO-ReservedReserved-ReservedReserved-ReservedReserved-ReservedReserved <td>GPIO34</td> <td></td> <td>I/O/Z</td> <td>General-Purpose Input/Output 34</td>	GPIO34		I/O/Z	General-Purpose Input/Output 34
Reserved74 CTRIPPFCOUT74 0-ReservedGPI035II/O/ZGeneral-Purpose Input/Output 35TDIIJTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register (instruction or data) on a rising edge of TCKReserved59-ReservedReserved-ReservedReserved-ReservedGPI036IJTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the rAP controller on the rising edge of TCK.Reserved60IJTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK.Reserved60-ReservedReserved-ReservedGPI037IJTAG sear out, test data output (TDO). The contents of the selected register (instruction or data) are shifted out of TDO on the falling edge of TCK (8 mA drive)Reserved58-ReservedReserved-ReservedReserved-ReservedBeserved-ReservedReserved-ReservedReserved-ReservedReserved-ReservedBeserved-ReservedReserved-ReservedBeserved-ReservedBeserved-ReservedBeserved-ReservedBeserved-ReservedBeserved-ReservedBeserved-Reserved<	Reserved		_	
CTRIPPFCOUT0CTRIPPFC outputGPI035		74	_	
GPI035 I/O/Z General-Purpose Input/Output 35 TDI 1 JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register (instruction or data) on a rising edge of TCK Reserved 59 - Reserved Reserved - Reserved GPI036 - Reserved GPI037 1 JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK. Reserved - Reserved GPI037 Reserved - GPI037 Reserved O/Z GPI037 O/Z General-Purpose Input/Output 37 TDO - Reserved S8 - Reserved Reserved - Reserved GPI037 - Reserved Reserved - Reserved Reserved - Reser			0	
TDIJFAG test data input (TDI) with internal pullup. TDI is clocked into the selected register (instruction or data) on a rising edge of TCKReserved-ReservedReserved-ReservedGPI036ReservedI/O/ZGeneral-Purpose Input/Output 36TMS1JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK.Reserved-ReservedReserved-ReservedReserved-ReservedReserved-ReservedGPI037I/O/ZGeneral-Purpose Input/Output 37TDOJTAG scan out, test data output (TDO). The contents of the selected register (instruction or data) are shifted out of TDO on the falling edge of TCK (8 mA drive)Reserved-ReservedReserved-ReservedGPI037J/AG scan out, test data output (TDO). The contents of the selected register (instruction or data) are shifted out of TDO on the falling edge of TCK (8 mA drive)Reserved-ReservedReserved-ReservedReserved-ReservedStata are shifted out of TDO on the falling edge of TCK (8 mA drive)Reserved-Reserved-Reserved-Reserved-Reserved-Reserved-Reserved-Reserved-Reserved-Reserved-Reserved-Reserved-Reserved <tr< td=""><td></td><td></td><td>-</td><td></td></tr<>			-	
Reserved59ReservedReservedReservedReservedReservedGPI036			I	JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register
Reserved-ReservedGPI036IGeneral-Purpose Input/Output 36TMSIJTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK.Reserved-ReservedReserved-ReservedReserved-ReservedGPI037IJ/O/ZTDO58I/O/ZReserved-General-Purpose Input/Output 37ReservedO/ZJTAG scan out, test data output (TDO). The contents of the selected register (instruction or data) are shifted out of TDO on the falling edge of TCK (8 mA drive)Reserved-ReservedReserved-Reserved	Reserved	59	_	
GPIO36I/O/ZGeneral-Purpose Input/Output 36TMSIJTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK.Reserved-ReservedReserved-ReservedReserved-ReservedGPIO37I/O/ZGeneral-Purpose Input/Output 37TDO58-General-Purpose Input/Output 37Reserved-ReservedReserved-ReservedReserved-ReservedGPIO37I/O/ZJTAG scan out, test data output (TDO). The contents of the selected register (instruction or data) are shifted out of TDO on the falling edge of TCK (8 mA drive)Reserved-ReservedGPIO-Reserved	Reserved		_	Reserved
GPIO36I/O/ZGeneral-Purpose Input/Output 36TMSIJTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK.Reserved-ReservedReserved-ReservedReserved-ReservedGPIO37I/O/ZGeneral-Purpose Input/Output 37TDO58-General-Purpose Input/Output 37Reserved-ReservedReserved-ReservedReserved-ReservedGPIO37I/O/ZJTAG scan out, test data output (TDO). The contents of the selected register (instruction or data) are shifted out of TDO on the falling edge of TCK (8 mA drive)Reserved-ReservedGPIO-Reserved			_	
TMSIJTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK.Reserved-ReservedReserved-ReservedGPI037I/O/ZGeneral-Purpose Input/Output 37TDO58-ReservedReserved-ReservedReserved-ReservedReserved-ReservedGPI037I/O/ZGeneral-Purpose Input/Output 37TDO-ReservedReserved-ReservedReserved-ReservedReserved-ReservedReserved-<			I/O/Z	
Reserved60-ReservedReserved-ReservedReserved-ReservedGPI037I/O/ZGeneral-Purpose Input/Output 37TDOO/ZJTAG scan out, test data output (TDO). The contents of the selected register (instruction or data) are shifted out of TDO on the falling edge of TCK (8 mA drive)Reserved58-ReservedReserved-ReservedReserved			I	JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the
Reserved	Reserved	60	_	
Reserved-ReservedGPI037I/O/ZGeneral-Purpose Input/Output 37TDOO/ZJTAG scan out, test data output (TDO). The contents of the selected register (instruction or data) are shifted out of TDO on the falling edge of TCK (8 mA drive)Reserved58-ReservedReserved-ReservedReserved-Reserved			Reserved	
GPIO37 I/O/Z General-Purpose Input/Output 37 TDO O/Z JTAG scan out, test data output (TDO). The contents of the selected register (instruction or data) are shifted out of TDO on the falling edge of TCK (8 mA drive) Reserved 58 - Reserved Reserved - Reserved Reserved			_	Reserved
TDO O/Z JTAG scan out, test data output (TDO). The contents of the selected register (instruction or data) are shifted out of TDO on the falling edge of TCK (8 mA drive) Reserved 58 - Reserved Reserved - Reserved -	GPIO37 I/O/Z General-Purpose Input/Output 37			
Reserved ⁵⁸ - Reserved Reserved - Reserved				JTAG scan out, test data output (TDO). The contents of the selected register (instruction or
Reserved - Reserved	Reserved	58	-	
			-	Reserved
	Reserved		_	Reserved

14 Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053 TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050

TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053 TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050

ZHCSAH6F - NOVEMBER 2012 - REVISED SEPTEMBER 2021

TERMINAL			
NAME	PN PIN NO.	I/O/Z ⁽¹⁾	DESCRIPTION
GPIO38		I/O/Z	General-Purpose Input/Output 38
XCLKIN		I	External Oscillator Input. The path from this pin to the clock block is not gated by the mux function of this pin. Care must be taken to not enable this path for clocking if this path is being used for the other functions.
тск	57	I	JTAG test clock with internal pullup
Reserved	erved -		Reserved
Reserved			Reserved
Reserved		-	Reserved
GPIO39	GPIO39 I/O/Z		General-Purpose Input/Output 39
Reserved	56	-	Reserved
SCIRXDC	50	I	SCI-C receive data
CTRIPPFCOUT		0	CTRIPPFC output
GPIO40		I/O/Z	General-Purpose Input/Output 40. Internal pullup enabled by default.
EPWM7A	64	0	Enhanced PWM7 output A
Reserved	04	-	Reserved
Reserved		-	Reserved
GPIO42		I/O/Z	General-Purpose Input/Output 42. Internal pullup enabled by default.
EPWM7B	EPWM7B O		Enhanced PWM7 output B
SCITXDC	5	0	SCI-C transmit data
CTRIPM1OUT		0	CTRIPM1 CTRIPxx output

I = Input, O = Output, Z = High Impedance, OD = Open Drain, ↑ = Pullup, ↓ = Pulldown (1)

The GPIO function (shown in bold italics) is the default at reset. The peripheral signals that are listed under them are alternate (2) functions. For JTAG pins that have the GPIO functionality multiplexed, the input path to the GPIO block is always valid. The output path from the GPIO block and the path to the JTAG block from a pin is enabled or disabled based on the condition of the TRST signal. For details, see the System Control and Interrupts chapter of the TMS320x2805x Real-Time Microcontrollers Technical Reference Manual.

Copyright © 2021 Texas Instruments Incorporated

Submit Document Feedback 15

7 Specifications

Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under the *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to V_{SS} , unless otherwise noted.

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
Supply voltage	V_{DDIO} (I/O and flash) with respect to V_{SS}	- 0.3	4.6	V
Supply voltage	V_{DD} with respect to V_{SS}	- 0.3	2.5	V
Analog voltage	V _{DDA} with respect to V _{SSA}	- 0.3	4.6	V
la se de se la se s	V _{IN} (3.3 V)	- 0.3	4.6	
Input voltage	V _{IN} (X1)	- 0.3	2.5	V
Output voltage	Vo	- 0.3	4.6	V
	Digital input (per pin), I _{IK} (V _{IN} < V _{SS} or V _{IN} > V _{DDIO}) ⁽¹⁾	- 20	20	
Input clamp current	Analog input (per pin), I _{IKANALOG} (V _{IN} < V _{SSA} or V _{IN} > V _{DDA})	- 20	20	mA
	Total for all inputs, $I_{IKTOTAL}$ ($V_{IN} < V_{SS}/V_{SSA}$ or $V_{IN} > V_{DDIO}/V_{DDA}$)	- 20	20	
Output clamp current	I_{OK} (V _O < 0 or V _O > V _{DDIO})	- 20	20	mA
Junction temperature ⁽²⁾	TJ	- 40	150	°C
Storage temperature ⁽²⁾	T _{stg}	- 65	150	°C

(1) Continuous clamp current per pin is ±2 mA.

(2) Long-term high-temperature storage or extended use at maximum temperature conditions may result in a reduction of overall device life. For additional information, see the Semiconductor and IC Package Thermal Metrics Application Report.

7.2 ESD Ratings - Commercial

			VALUE	UNIT		
	TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053, TMS320F28052, TMS320F28052M, TMS320F28051, TMS320F28050 in 80-pin PN package					
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000			
V _(ESD)	Electrostatic discharge (ESD)	Charged-device model (CDM), per JEDEC specification JESD22- C101 or ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±500	V		

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 ESD Ratings - Automotive

				VALUE	UNIT
	⁻ 28054-Q1, TMS320F28054M-C PN package	21, TMS320F28054F-Q1, TMS320F2	8052-Q1, TMS320F28052M-Q1, TM	S320F28052	F-Q1
		Human body model (HBM), per AEC Q100-002 ⁽¹⁾	All pins	±2000	
V _(ESD)	Electrostatic discharge	Charmed device medal (CDM)	All pins	±500	V
		Charged device model (CDM), per AEC Q100-011	Corner pins on 80-pin PN: 1, 20, 21, 40, 41, 60, 61, 80	±750	

(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

7.4 Recommended Operating Conditions

		MIN	NOM	MAX	UNIT	
Device supply voltage, I/O, V _{DDIO}		2.97	3.3	3.63	V	
Device supply voltage CPU, V_{DD} (When internal VREG is disabled and 1.8 V is supplied externally)		1.71	1.8	1.995	V	
Supply ground, V _{SS}			0		V	
Analog supply voltage, V _{DDA}		2.97	3.3	3.63	V	
Analog ground, V _{SSA}			0		V	
Device clock frequency (system clock)		2		60	MHz	
High-level input voltage, V _{IH} (3.3 V)		2		V _{DDIO} + 0.3	V	
Low-level input voltage, V _{IL} (3.3 V)		V _{SS} - 0.3		0.8	V	
	All GPIO pins			- 4	···· A	
evice clock frequency (system clock) igh-level input voltage, V _{IH} (3.3 V)	Group 2 ⁽¹⁾			- 8	mA 3	
	All GPIO pins			4		
Low-level output sink current, $V_{OL} = V_{OL(MAX)}$, I_{OL}	Group 2 ⁽¹⁾			8	mA	
	T version	- 40		105		
Junction temperature, T _{.I}	S version	- 40		125	°C	
	Q version (AEC Q100 qualification)	- 40	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0		

(1) Group 2 pins are as follows: GPIO16, GPIO17, GPIO18, GPIO28, GPIO29, GPIO30, GPIO31, GPIO36, GPIO37

7.5 Power Consumption Summary

节 7.5.1 lists the current consumption at 60-MHz SYSCLKOUT.

7.5.1 TMS320F2805x Current Consumption at 60-MHz SYSCLKOUT

		,	VREG ENAB	LED			v	REG DISAB	LED		
MODE	TEST CONDITIONS	I _{DDIO} (1)	I _{DDA}	(2)	I _{DD}		I _{DDIC}	(1)	I _{DDA}	(2)
		TYP ⁽³⁾	MAX	TYP ⁽³⁾	MAX	TYP ⁽³⁾	MAX	TYP ⁽³⁾	MAX	TYP ⁽³⁾	MAX
	The following peripheral clocks are enabled:										
	• ePWM1, ePWM2, ePWM3,										
	ePWM4, ePWM5, ePWM6,										
	ePWM7										
	• eCAP1										
	• eQEP1										
	• eCAN-A										
	• CLA										
	• SCI-A, SCI-B, SCI-C			40 mA 60 mA							
	• SPI-A					85 mA ⁽⁷⁾ 1		14 mA	25 mA	40 mA	
Operational (flash)	• ADC	95 mA ⁽⁷⁾	132 mA		60 mA		110 mA				60 mA
	• I2C-A										
	COMPA1, COMPA3,										
	COMPB1, COMPB7										
	CPU-Timer 0,										
	CPU-Timer 1,										
	CPU-Timer 2										
	All PWM pins are toggled at 60 kHz. All I/O pins are left unconnected. ⁽⁴⁾										
	Code is running out of flash with 2 wait-states. XCLKOUT is turned off.										
IDLE	Flash is powered down. XCLKOUT is turned off. All peripheral clocks are turned off.	14 mA	27 mA	15 µ A	25 µ A	14 mA	27 mA	120 µ A	450 µ A	15 µ A	25 µ A
STANDBY	Flash is powered down. Peripheral clocks are off.	9 mA	15 mA	15 µ A	25 µ A	9 mA	15 mA	120 µ A	450 µ A	15 µ A	25 µ A
HALT	Flash is powered down. Peripheral clocks are off. Input clock is disabled. ⁽⁵⁾	300 µ A		15 µ A	25 µ A	50 µ A		24 µ A		15 µ A	25 µ A

(1) I_{DDIO} current is dependent on the electrical loading on the I/O pins.

(2) To realize the I_{DDA} currents shown for IDLE, STANDBY, and HALT, clock to the ADC module must be turned off explicitly by writing to the PCLKCR0 register.

(3) The TYP numbers are applicable over room temperature and nominal voltage.

(4) The following is done in a loop:

- · Data is continuously transmitted out of SPI-A, SCI-A, SCI-B, SCI-C, eCAN-A, and I2C-A ports.
- The hardware multiplier is exercised.
- Watchdog is reset.
- ADC is performing continuous conversion.
- GPIO17 is toggled.
- (5) If a quartz crystal or ceramic resonator is used as the clock source, the HALT mode shuts down the on-chip crystal oscillator.
- (6) CLA is continuously performing polynomial calculations.
- (7) For F2805x devices that do not have CLA, subtract the I_{DD} current number for CLA (see 表 7-1) from the I_{DD} (VREG disabled)/I_{DDIO} (VREG enabled) current numbers listed in 节 7.5.1 for operational mode.

Note

The peripheral-I/O multiplexing implemented in the device prevents simultaneous use of all available peripherals because more than one peripheral function may share an I/O pin. It is, however, possible to turn on the clocks to all the peripherals at the same time, although such a configuration is not useful. If the clocks to all the peripherals are turned on at the same time, the current drawn by the device will be more than the numbers specified in the current consumption tables.

7.5.2 Reducing Current Consumption

The 2805x devices incorporate a method to reduce the device current consumption. Because each peripheral unit has an individual clock-enable bit, significant reduction in current consumption can be achieved by turning off the clock to any peripheral module that is not used in a given application. Furthermore, any one of the three low-power modes could be taken advantage of to reduce the current consumption even further. 表 7-1 indicates the typical reduction in current consumption achieved by turning off the clocks.

PERIPHERAL MODULE ⁽¹⁾ ⁽²⁾	I _{DD} CURRENT REDUCTION (mA)				
ADC	2 ⁽³⁾				
I2C	3				
ePWM	2				
eCAP	2				
eQEP	2				
SCI	2				
SPI	2				
COMP/DAC	1				
PGA	2				
CPU-TIMER	1				
Internal zero-pin oscillator	0.5				
CAN	2.5				
CLA	20				

表 7-1. Typical Current Consumption by Various Peripherals (at 60 MHz)

- All peripheral clocks (except CPU Timer clock) are disabled upon reset. Writing to or reading from peripheral registers is possible only after the peripheral clocks are turned on.
- (2) For peripherals with multiple instances, the current quoted is per module. For example, the 2 mA value quoted for ePWM is for one ePWM module.
- (3) This number represents the current drawn by the digital portion of the ADC module. Turning off the clock to the ADC module results in the elimination of the current drawn by the analog portion of the ADC (I_{DDA}) as well.

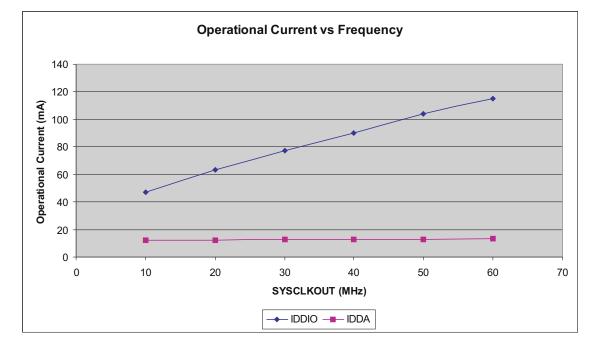
Note

I_{DDIO} current consumption is reduced by 15 mA (typical) when XCLKOUT is turned off.

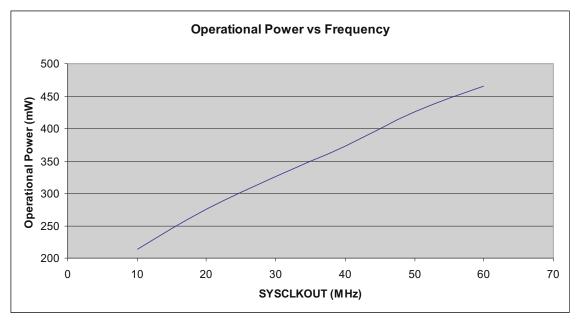
Note

The baseline I_{DD} current (current when the core is executing a dummy loop with no peripherals enabled) is 40 mA, typical. To arrive at the I_{DD} current for a given application, the current-drawn by the peripherals (enabled by that application) must be added to the baseline I_{DD} current.

Copyright © 2021 Texas Instruments Incorporated


Submit Document Feedback 19

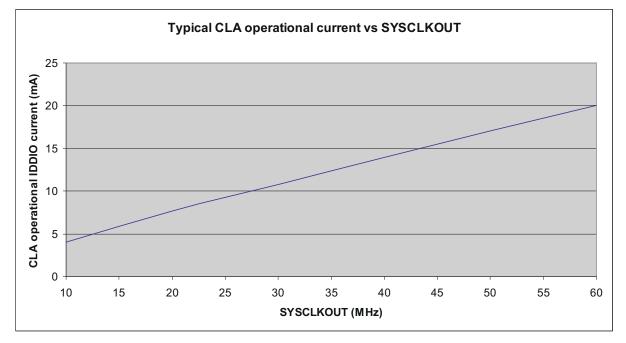
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053 TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050


Following are other methods to reduce power consumption further:

- The flash module may be powered down if code is run off SARAM. This method results in a current reduction
 of 18 mA (typical) in the V_{DD} rail and 13 mA (typical) in the V_{DDIO} rail.
- Savings in I_{DDIO} may be realized by disabling the pullups on pins that assume an output function.
- To realize the lowest V_{DDA} current consumption in a low-power mode, see the respective analog chapter of the *TMS320x2805x Real-Time Microcontrollers Technical Reference Manual* to ensure each module is powered down as well.
- Power savings can be achieved by powering down the flash. This must be done by code running off RAM (not flash).

7.5.3 Current Consumption Graphs (VREG Enabled)

图 7-1. Typical Operational Current Versus Frequency (F2805x)



20 Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28052 TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050

图 7-3. Typical CLA Operational Current Versus SYSCLKOUT

7.6 Electrical Characteristics

over recommended operating conditions (unless otherwise noted)

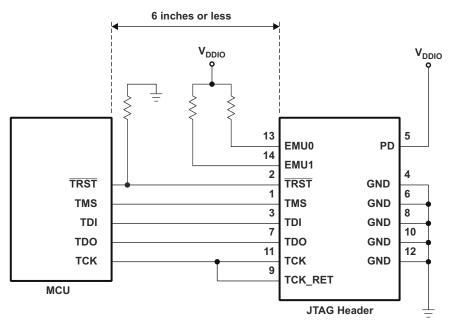
	PARAME	TER ⁽¹⁾	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
V		aut voltogo	I _{OH} = I _{OH} MAX	_H = I _{OH} MAX		2.4		v
V _{OH}	High-level outp	out voltage	I _{OH} = 50 μ A		V _{DDIO} - 0.2			v
V _{OL}	Low-level outp	ut voltage	I _{OL} = I _{OL} MAX				0.4	V
		Pin with pullup		All GPIO pins	- 80	- 140	- 205	
I _{IL}	Input current	enabled	V _{DDIO} = 3.3 V, V _{IN} = 0 V	XRS pin	- 230	- 300	- 375	μA
	(low level)	Pin with pullup disabled	V _{DDIO} = 3.3 V, V _{IN} = 0 V				±2	PA
	Input current	Pin with pulldown disabled	V_{DDIO} = 3.3 V, V_{IN} = V_{DDIO}				±2	
IIH	(high level)	Pin with pulldown enabled	V_{DDIO} = 3.3 V, V_{IN} = V_{DDIO}		28	50		μA
I _{OZ}	Output current disabled	, pullup or pulldown	$V_{O} = V_{DDIO} \text{ or } 0 \text{ V}$				±2	μA
CI	Input capacita	nce				2		pF
	V _{DDIO} BOR trip	o point	Falling V _{DDIO}			2.78		V
	V _{DDIO} BOR hysteresis Supervisor reset release delay time Time after BOR/POR/OVR events				35		mV	
				event is removed to \overline{XRS}	400		800	μs
	VREG V _{DD} ou	tput	Internal VREG on			1.9		V

(1) When the on-chip VREG is used, its output is monitored by the POR/BOR circuit, which will reset the device should the core voltage (V_{DD}) go out of range.

7.7 Thermal Resistance Characteristics for PN Package

		°C/W ⁽¹⁾	AIR FLOW (Ifm) ⁽²⁾
R ⊕ _{JC}	Junction-to-case thermal resistance	14.2	0
R⊕ _{JB}	Junction-to-board thermal resistance	21.9	0
		49.9	0
R [©] JA	Junction-to-free air thermal resistance	38.3	150
(High k PCB)	Junction-to-nee all thermal resistance	36.7	250
		34.4	500
		0.8	0
Dei	Junction-to-package top	1.18	150
Psi _{JT}	Junction-to-package top	1.34	250
		1.62	500
		21.6	0
Dei	Junction-to-board	20.7	150
Psi _{JB}	Junction-to-board	20.5	250
		20.1	500

(1) These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [R
^o JC] value, which is based on a JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/ JEDEC standards:


- JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions Natural Convection (Still Air)
- JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
- JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
- JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
- (2) Ifm = linear feet per minute

7.8 Thermal Design Considerations

Based on the end application design and operational profile, the I_{DD} and I_{DDIO} currents could vary. Systems that exceed the recommended maximum power dissipation in the end product may require additional thermal enhancements. Ambient temperature (T_A) varies with the end application and product design. The critical factor that affects reliability and functionality is T_J, the junction temperature, not the ambient temperature. Hence, care should be taken to keep T_J within the specified limits. T_{case} should be measured to estimate the operating junction temperature T_J. T_{case} is normally measured at the center of the package top-side surface. The *Semiconductor and IC Package Thermal Metrics Application Report* helps to understand the thermal metrics and definitions.

7.9 JTAG Debug Probe Connection Without Signal Buffering for the MCU

8774 shows the connection between the MCU and JTAG header for a single-processor configuration. If the distance between the JTAG header and the MCU is greater than 6 inches, the emulation signals must be buffered. If the distance is less than 6 inches, buffering is typically not needed. 8774 shows the simpler, no-buffering situation. For the pullup and pulldown resistor values, see 1662.

A. See 8-42 for JTAG/GPIO multiplexing.

图 7-4. JTAG Debug Probe Connection Without Signal Buffering for the MCU

Note

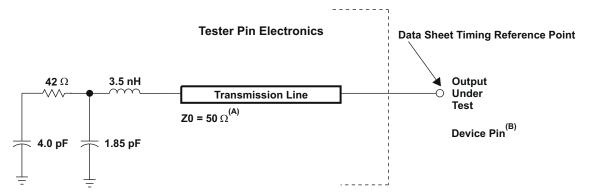
The 2805x devices do not have EMU0/EMU1 pins. For designs that have a JTAG Header onboard, the EMU0/EMU1 pins on the header must be tied to V_{DDIO} through a 4.7-k Ω (typical) resistor.

7.10 Parameter Information

7.10.1 Timing Parameter Symbology

Timing parameter symbols used are created in accordance with JEDEC Standard 100. To shorten the symbols, some of the pin names and other related terminology have been abbreviated as follows:

Lowercase meanings:	subscripts and their	Letters and meanings:	symbols and their
а	access time	Н	High
С	cycle time (period)	L	Low
d	delay time	V	Valid
f	fall time	Х	Unknown, changing, or don't care level
h	hold time	Z	High impedance
r	rise time		
su	setup time		
t	transition time		
V	valid time		
w	pulse duration (width)		


7.10.2 General Notes on Timing Parameters

All output signals from the 28x devices (including XCLKOUT) are derived from an internal clock such that all output transitions for a given half-cycle occur with a minimum of skewing relative to each other.

The signal combinations shown in the following timing diagrams may not necessarily represent actual cycles. For actual cycle examples, see the appropriate cycle description section of this document.

7.11 Test Load Circuit

This test load circuit is used to measure all switching characteristics provided in this document.

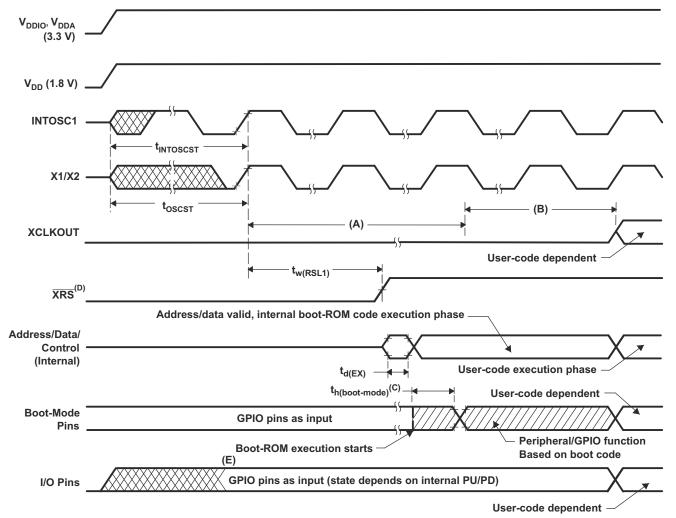

- A. Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin.
- B. The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer) from the data sheet timing.

图 7-5. 3.3-V Test Load Circuit

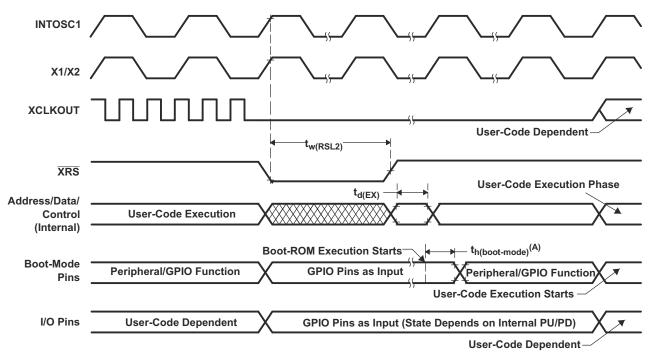
7.12 Power Sequencing

There is no power sequencing requirement needed to ensure the device is in the proper state after reset or to prevent the I/Os from glitching during power up or power down (GPIO19, GPIO34 to GPIO38 do not have glitch-free I/Os). No voltage larger than a diode drop (0.7 V) above V_{DDIO} should be applied to any digital pin (for analog pins, this value is 0.7 V above V_{DDA}) before powering up the device. Voltages applied to pins on an unpowered device can bias internal p-n junctions in unintended ways and produce unpredictable results.

- A. Upon power up, SYSCLKOUT is OSCCLK/4. Because the XCLKOUTDIV bits in the XCLK register come up with a reset state of 0, SYSCLKOUT is further divided by 4 before SYSCLKOUT appears at XCLKOUT. XCLKOUT = OSCCLK/16 during this phase.
- B. Boot ROM configures the DIVSEL bits for /1 operation. XCLKOUT = OSCCLK/4 during this phase. XCLKOUT will not be visible at the pin until explicitly configured by user code.
- C. After reset, the boot ROM code samples Boot Mode pins. Based on the status of the Boot Mode pin, the boot code branches to destination memory or boot code function. If boot ROM code executes after power-on conditions (in debugger environment), the boot code execution time is based on the current SYSCLKOUT speed. The SYSCLKOUT will be based on user environment and could be with or without PLL enabled.
- D. Using the \overline{XRS} pin is optional due to the on-chip POR circuitry.
- E. The internal pullup or pulldown will take effect when BOR is driven high.

图 7-6. Power-on Reset

7.12.1 Reset (XRS) Timing Requirements


		MIN MAX	UNIT
t _{h(boot-mode)} H	Hold time for boot-mode pins	1000t _{c(SCO)}	cycles
t _{w(RSL2)} F	Pulse duration, XRS low on warm reset	32t _{c(OSCCLK)}	cycles

7.12.2 Reset (XRS) Switching Characteristics

over recommended operating conditions (unless otherwise noted)

	PARAMETER	MIN	TYP	MAX	UNIT
t _{w(RSL1)}	Pulse duration, XRS driven by device		600		μs
t _{w(WDRS)}	Pulse duration, reset pulse generated by watchdog		512t _{c(OSCCLK)}		
t _{d(EX)}	Delay time, address/data valid after XRS high		32t _{c(OSCCLK)}		cycles
t _{INTOSCST}	Start-up time, internal zero-pin oscillator		3		μ S
t _{OSCST} (1)	On-chip crystal-oscillator start-up time	1	10		ms

(1) Dependent on crystal/resonator and board design.

A. After reset, the Boot ROM code samples BOOT Mode pins. Based on the status of the Boot Mode pin, the boot code branches to destination memory or boot code function. If Boot ROM code executes after power-on conditions (in debugger environment), the Boot code execution time is based on the current SYSCLKOUT speed. The SYSCLKOUT will be based on user environment and could be with or without PLL enabled.

图 7-7. Warm Reset

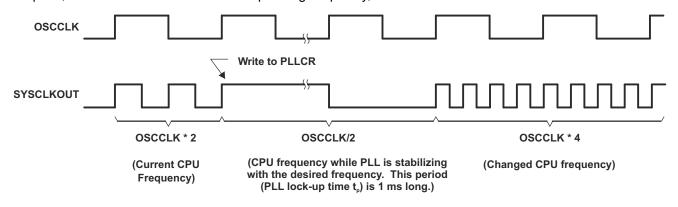


图 7-8. Example of Effect of Writing Into PLLCR Register

7.13 Clock Specifications

7.13.1 Device Clock Table

This section provides the timing requirements and switching characteristics for the various clock options available on the 2805x MCUs. \ddagger 7.13.1.1 lists the cycle times of various clocks.

7.13.1.1 2805x Clock Table and Nomenclature (60-MHz Devices)

		MIN	NOM	MAX	UNIT
SYSCLKOUT	t _{c(SCO)} , Cycle time	16.67		500	ns
	Frequency	2		60	MHz
LSPCLK ⁽¹⁾	t _{c(LCO)} , Cycle time	16.67	66.67 ⁽²⁾		ns
	Frequency		15 ⁽²⁾	60	MHz
ADC clock	t _{c(ADCCLK)} , Cycle time	16.67			ns
	Frequency			60	MHz

(1) Lower LSPCLK will reduce device power consumption.

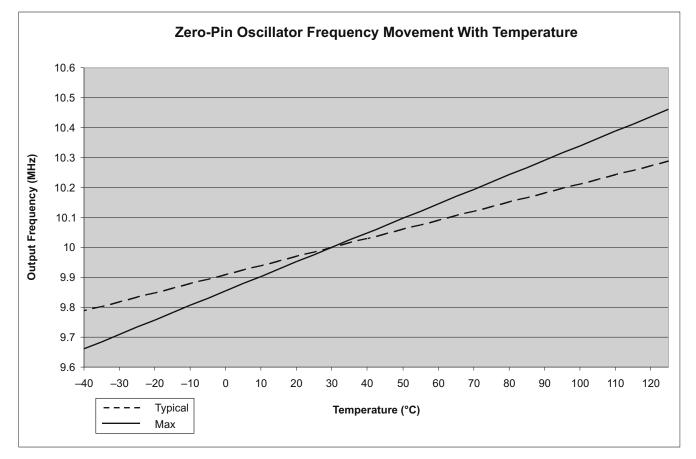
(2) This value is the default reset value if SYSCLKOUT = 60 MHz.

7.13.1.2 Device Clocking Requirements/Characteristics

		MIN	NOM MAX	UNIT
On-chip oscillator (X1/X2 pins)	t _{c(OSC)} , Cycle time	50	200	ns
(Crystal/Resonator)	Frequency	5	20	MHz
External oscillator/clock source	t _{c(Cl)} , Cycle time (C8)	33.3	200	ns
(XCLKIN pin) — PLL Enabled	Frequency	5	30	MHz
External oscillator/clock source	t _{c(Cl)} , Cycle time (C8)	33.33	250	ns
(XCLKIN pin) — PLL Disabled	Frequency	4	30	MHz
Limp mode SYSCLKOUT (with /2 enabled)	Frequency range		1 to 5	MHz
XCLKOUT	t _{c(XCO)} , Cycle time (C1)	66.67	2000	ns
AGENOOT	Frequency	0.5	15	MHz
PLL lock time ⁽¹⁾	tp		1	ms

(1) The PLLLOCKPRD register must be updated based on the number of OSCCLK cycles. If the zero-pin internal oscillators (10 MHz) are used as the clock source, then the PLLLOCKPRD register must be written with a value of 10,000 (minimum).

7.13.1.3 Internal Zero-Pin Oscillator (INTOSC1, INTOSC2) Characteristics


PARAMETER		MIN TY	P MAX	UNIT
Internal zero-pin oscillator 1 (INTOSC1) at 30°C ^{(1) (2)}	Frequency	10.00	0	MHz
Internal zero-pin oscillator 2 (INTOSC2) at 30°C ^{(1) (2)}	Frequency	10.00	0	MHz
Accuracy using oscillator compensation ^{(1) (2)}		±10	%	
Step size (coarse trim)		5	5	kHz
Step size (fine trim)		1	4	kHz
Temperature drift ⁽³⁾		3.0	3 4.85	kHz/°C
Voltage (V _{DD}) drift ⁽³⁾		17	5	Hz/mV

(1) Oscillator frequency will vary over temperature, see 🕅 7-9. To compensate for oscillator temperature drift, see the Oscillator Compensation Guide and C2000Ware for C2000 MCUs.

(2) Frequency range is ensured only when VREG is enabled, $\overline{VREGENZ} = V_{SS}$.

(3) Output frequency of the internal oscillators follows the direction of both the temperature gradient and voltage (V_{DD}) gradient. For example:

- An increase in temperature causes the output frequency to increase according to the temperature coefficient.
- A decrease in voltage (V_{DD}) causes the output frequency to decrease according to the voltage coefficient.

图 7-9. Zero-Pin Oscillator Frequency Movement With Temperature

Copyright © 2021 Texas Instruments Incorporated

Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053 TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050

7.13.2 Clock Requirements and Characteristics

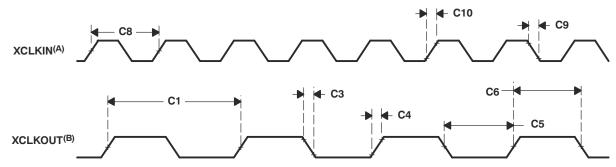
7.13.2.1 XCLKIN Timing Requirements - PLL Enabled

NO.		MIN	MAX	UNIT
C9	t _{f(CI)} Fall time, XCLKIN		6	ns
C10	t _{r(CI)} Rise time, XCLKIN		6	ns
C11	$t_{w(CIL)}$ Pulse duration, XCLKIN low as a percentage of $t_{c(OSCCLK)}$	45%	55%	
C12	$t_{w(CIH)}$ Pulse duration, XCLKIN high as a percentage of $t_{c(OSCCLK)}$	45%	55%	

7.13.2.2 XCLKIN Timing Requirements - PLL Disabled

NO.				MIN	MAX	UNIT
C9	t _{f(CI)}	Fall time, XCLKIN	Up to 20 MHz		6	20
			20 MHz to 30 MHz		2	ns
C10	t _{r(CI)}	Rise time, XCLKIN	Up to 20 MHz		6	
			20 MHz to 30 MHz		2	ns
C11	t _{w(CIL)} Pulse duration, XCLKIN low as a percentage of t _{c(OSCCLK)}		45%	55%		
C12	t _{w(CIH)}	t _{w(CIH)} Pulse duration, XCLKIN high as a percentage of t _{c(OSCCLK)}		45%	55%	

The possible configuration modes are shown in $\frac{1}{8}$ 8-21.


7.13.2.3 XCLKOUT Switching Characteristics (PLL Bypassed or Enabled)

over recommended operating conditions (unless otherwise noted)

NO.	PARAMETER ⁽¹⁾	MIN	MAX	UNIT
C3	t _{f(XCO)} Fall time, XCLKOUT		5	ns
C4	t _{r(XCO)} Rise time, XCLKOUT		5	ns
C5	t _{w(XCOL)} Pulse duration, XCLKOUT low	H - 2 ⁽²⁾	H + 2 ⁽²⁾	ns
C6	t _{w(XCOH)} Pulse duration, XCLKOUT high	H - 2 ⁽²⁾	H + 2 ⁽²⁾	ns

(1) A load of 40 pF is assumed for these parameters.

(2) $H = 0.5t_{c(XCO)}$

- A. The relationship of XCLKIN to XCLKOUT depends on the divide factor chosen. The waveform relationship shown is intended to illustrate the timing parameters only and may differ based on actual configuration.
- B. XCLKOUT configured to reflect SYSCLKOUT.

图 7-10. Clock Timing

7.14 Flash Timing

7.14.1 Flash/OTP Endurance for T Temperature Material

		ERASE/PROGRAM TEMPERATURE ⁽¹⁾	MIN	ТҮР	МАХ	UNIT
N _f	Flash endurance for the array (write/erase cycles)	0°C to 105°C (ambient)	20000	50000		cycles
N _{OTP}	OTP endurance for the array (write cycles)	0°C to 30°C (ambient)			1	write

(1) Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.

7.14.2 Flash/OTP Endurance for S Temperature Material

		ERASE/PROGRAM TEMPERATURE ⁽¹⁾	MIN	TYP	МАХ	UNIT
N _f	Flash endurance for the array (write/erase cycles)	0°C to 125°C (ambient)	20000	50000		cycles
N _{OTP}	OTP endurance for the array (write cycles)	0°C to 30°C (ambient)			1	write

(1) Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.

7.14.3 Flash/OTP Endurance for Q Temperature Material

		ERASE/PROGRAM TEMPERATURE ⁽¹⁾	MIN	ТҮР	МАХ	UNIT
N _f	Flash endurance for the array (write/erase cycles)	- 40°C to 125°C (ambient)	20000	50000		cycles
N _{OTP}	OTP endurance for the array (write cycles)	- 40°C to 30°C (ambient)			1	write

(1) Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.

7.14.4 Flash Parameters at 60-MHz SYSCLKOUT

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT	
Program Time ⁽³⁾	8K Sector			250	2000 ⁽²⁾	ms	
	4K Sector			125	2000 ⁽²⁾	ms	
	16-Bit Word			50		μ s	
Erase Time ⁽¹⁾	8K Sector			2	12 ⁽²⁾	s	
	4K Sector			2	12 <mark>(2)</mark>	S	
I _{DDP} ⁽⁴⁾	V _{DD} current consumption during Erase/Program cycle	VREG disabled		80			
I _{DDIOP} ⁽⁴⁾	V _{DDIO} current consumption during Erase/Program cycle			60		— mA	
I _{DDIOP} ⁽⁴⁾	$V_{\mbox{\scriptsize DDIO}}$ current consumption during Erase/Program cycle	VREG enabled		120		mA	

- (1) The on-chip flash memory is in an erased state when the device is shipped from TI. As such, erasing the flash memory is not required prior to programming, when programming the device for the first time. However, the erase operation is needed on all subsequent programming operations.
- (2) Maximum flash parameter mentioned are for the first 100 program and erase cycles.
- (3) Program time is at the maximum device frequency. The programming time indicated in this table is applicable only when all the required code/data is available in the device RAM, ready for programming. Program time includes overhead of the flash state machine but does not include the time to transfer the following into RAM:
 - the code that uses flash API to program the flash
 - the Flash API itself
 - Flash data to be programmed
- (4) Typical parameters as seen at room temperature including function call overhead, with all peripherals off. It is important to maintain a stable power supply during the entire flash programming process. It is conceivable that device current consumption during flash programming could be higher than normal operating conditions. The power supply used should ensure V_{MIN} on the supply rails at all times, as specified in the Recommended Operating Conditions of the data sheet. Any brown-out or interruption to power during erasing/programming could potentially corrupt the password locations and lock the device permanently. Powering a target board (during flash programming) through the USB port is not recommended, as the port may be unable to respond to the power demands placed during the programming process.

7.14.5 Flash/OTP Access Timing

	PARAMETER	MIN	MAX	UNIT
t _{a(fp)}	Paged flash access time	40		ns
t _{a(fr)}	Random flash access time	40		ns
t _{a(OTP)}	OTP access time	60		ns

7.14.6 Flash Data Retention Duration

	PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
t _{retention}	Data retention duration	T _J = 55°C	15	years

表 7-2. Minimum Required Flash/OTP Wait-States at Different Frequencies

SYSCLKOUT (MHz)	SYSCLKOUT (ns)	PAGE WAIT-STATE ⁽¹⁾	RANDOM WAIT-STATE ⁽¹⁾	OTP WAIT-STATE
60	16.67	2	2	3
55	18.18	2	2	3
50	20	1	1	2
45	22.22	1	1	2
40	25	1	1	2
35	28.57	1	1	2
30	33.33	1	1	1

(1) Page and random wait-state must be \geq 1.

The equations to compute the Flash page wait-state and random wait-state in $\frac{1}{8}$ 7-2 are as follows:

Flash Page Wait State =
$$\left[\left(\frac{t_{a(f \bullet p)}}{t_{c(SCO)}} \right) - 1 \right]$$
 round up to the next highest integer
Flash Random Wait State = $\left[\left(\frac{t_{a(f \cdot r)}}{t_{c(SCO)}} \right) - 1 \right]$ round up to the next highest integer, or 1, whichever is larger

The equation to compute the OTP wait-state in $\frac{1}{2}$ 7-2 is as follows:

OTP Wait State =
$$\left[\left(\frac{t_{a(OTP)}}{t_{c(SCO)}}\right) - 1\right]$$
 round up to the next highest integer, or 1, whichever is larger

8 Detailed Description

8.1 Overview

8.1.1 CPU

The 2805x (C28x) family is a member of the TMS320C2000[™] MCU platform. The C28x-based controllers have the same 32-bit fixed-point architecture as existing C28x MCUs. Each C28x-based controller, including the 2805x device, is a very efficient C/C++ engine, enabling users to develop not only their system control software in a high-level language, but also enabling development of math algorithms using C/C++. The device is as efficient at MCU math tasks as it is at system control tasks. This efficiency removes the need for a second processor in many systems. The 32 × 32-bit MAC 64-bit processing capabilities enable the controller to handle higher numerical resolution problems efficiently. Add to this feature the fast interrupt response with automatic context save of critical registers, resulting in a device that can service many asynchronous events with minimal latency. The device has an 8-level-deep protected pipeline with pipelined memory accesses. This pipelining enables the device to execute at high speeds without resorting to expensive high-speed memories. Special branch-look-ahead hardware minimizes the latency for conditional discontinuities. Special store conditional operations further improve performance.

8.1.2 Control Law Accelerator

The C28x CLA is a single-precision (32-bit) floating-point unit that extends the capabilities of the C28x CPU by adding parallel processing. The CLA is an independent processor with its own bus structure, fetch mechanism, and pipeline. Eight individual CLA tasks, or routines, can be specified. Each task is started by software or a peripheral such as the ADC, ePWM, eCAP, eQEP, or CPU-Timer 0. The CLA executes one task at a time to completion. When a task completes the main CPU is notified by an interrupt to the PIE and the CLA automatically begins the next highest-priority pending task. The CLA can directly access the ADC Result registers, ePWM, eCAP, eQEP, and the Comparator and DAC registers. Dedicated message RAMs provide a method to pass additional data between the main CPU and the CLA.

8.1.3 Memory Bus (Harvard Bus Architecture)

As with many MCU-type devices, multiple buses are used to move data between the memories and peripherals and the CPU. The memory bus architecture contains a program read bus, data read bus, and data write bus. The program read bus consists of 22 address lines and 32 data lines. The data read and write buses consist of 32 address lines and 32 data lines each. The 32-bit-wide data buses enable single cycle 32-bit operations. The multiple bus architecture, commonly termed *Harvard Bus*, enables the C28x to fetch an instruction, read a data value and write a data value in a single cycle. All peripherals and memories attached to the memory bus prioritize memory accesses. Generally, the priority of memory bus accesses can be summarized as follows:

Highest:	Data Writes	(Simultaneous data and program writes cannot occur on the memory bus.)
	Program Writes	(Simultaneous data and program writes cannot occur on the memory bus.)
	Data Reads	
	Program Reads	(Simultaneous program reads and fetches cannot occur on the memory bus.)
Lowest:	Fetches	(Simultaneous program reads and fetches cannot occur on the memory bus.)

34 Submit Document Feedback

8.1.4 Peripheral Bus

To enable migration of peripherals between various Texas Instruments (TI) MCU family of devices, the devices adopt a peripheral bus standard for peripheral interconnect. The peripheral bus bridge multiplexes the various buses that make up the processor Memory Bus into a single bus consisting of 16 address lines and 16 or 32 data lines and associated control signals. Three versions of the peripheral bus are supported. One version supports only 16-bit accesses (called peripheral frame 2). Another version supports both 16- and 32-bit accesses (called peripheral frame 1). The third version supports CLA access and both 16- and 32-bit accesses (called peripheral frame 3).

8.1.5 Real-Time JTAG and Analysis

The devices implement the standard IEEE 1149.1 (IEEE Standard 1149.1-1990 Standard Test Access Port and Boundary Scan Architecture) JTAG interface for in-circuit based debug. Additionally, the devices support realtime mode of operation allowing modification of the contents of memory, peripheral, and register locations while the processor is running and executing code and servicing interrupts. The user can also single step through non-time-critical code while enabling time-critical interrupts to be serviced without interference. The device implements the real-time mode in hardware within the CPU. This feature is unique to the 28x family of devices, and requires no software monitor. Additionally, special analysis hardware is provided that allows setting of hardware breakpoint or data/address watch-points and generating various user-selectable break events when a match occurs.

8.1.6 Flash

The F28055 and F28054 devices contain $64K \times 16$ of embedded flash memory, segregated into six $8K \times 16$ sectors and four $4K \times 16$ sectors. The F28053, F28052, and F28051 devices contain $32K \times 16$ of embedded flash memory, segregated into three $8K \times 16$ sectors and two $4K \times 16$ sectors. The F28050 device contains $16K \times 16$ of embedded flash memory, segregated into one $8K \times 16$ sector and two $4K \times 16$ sectors. The f28050 device contains $16K \times 16$ of embedded flash memory, segregated into one $8K \times 16$ sector and two $4K \times 16$ sectors. The devices also contain a single $1K \times 16$ of OTP memory at address range 0x3D 7800 to 0x3D 78FF. The user can individually erase, program, and validate a flash sector while leaving other sectors untouched. However, it is not possible to use one sector of the flash or the OTP to execute flash algorithms that erase or program other sectors. Special memory pipelining is provided to enable the flash module to achieve higher performance. The flash/OTP is mapped to both program and data space; therefore, the flash/OTP can be used to execute code or store data information.

Note

The Flash and OTP wait-states can be configured by the application. This feature allows applications running at slower frequencies to configure the flash to use fewer wait-states.

Flash effective performance can be improved by enabling the flash pipeline mode in the Flash options register. With this mode enabled, effective performance of linear code execution will be much faster than the raw performance indicated by the wait-state configuration alone. The exact performance gain when using the flash pipeline mode is application-dependent.

For more information on the flash options, Flash wait-state, and OTP wait-state registers, see the System Control and Interrupts chapter of the *TMS320x2805x Real-Time Microcontrollers Technical Reference Manual*.

8.1.7 M0, M1 SARAMs

All devices contain these two blocks of single access memory, each $1K \times 16$ in size. The stack pointer points to the beginning of block M1 on reset. The M0 and M1 blocks, like all other memory blocks on C28x devices, are mapped to both program and data space. Hence, the user can use M0 and M1 to execute code or for data variables. The partitioning is performed within the linker. The C28x device presents a unified memory map to the programmer, which makes for easier programming in high-level languages.

8.1.8 L0 SARAM, and L1, L2, and L3 DPSARAMs

The device contains up to $8K \times 16$ of single-access RAM. To ascertain the exact size for a given device, see the device-specific memory map figures in $\ddagger 8.2$. This block is mapped to both program and data space. Block L0 is 2K in size and is dual mapped to both program and data space. Blocks L1 and L2 are both 1K in size, and together with L0, are shared with the CLA which can use these blocks for its data space. Block L3 is 4K in size and is shared with the CLA which can use this block for its program space. DPSARAM refers to the dual-port configuration of these blocks.

8.1.9 Boot ROM

The Boot ROM is factory-programmed with boot-loading software. Boot-mode signals are provided to tell the bootloader software what boot mode to use on power up. The user can select to boot normally or to download new software from an external connection or to select boot software that is programmed in the internal flash/ ROM. The Boot ROM also contains standard tables, such as SIN/COS waveforms, for use in math-related algorithms. $\frac{1}{8}$ 8-1 provides the boot mode selection.

MODE	GPIO37/TDO	GPIO34/COMP2OUT/ COMP3OUT	TRST	MODE	
3	1	1	0	GetMode	
2	1	0	0	Wait (see 节 8.1.10 for description)	
1	0	1	0	SCI	
0	0	0	0	Parallel IO	
EMU	х	Х	1	Emulation Boot	

表 8-1. Boot Mode Selection

8.1.9.1 Emulation Boot

When the JTAG debug probe is connected, the GPIO37/TDO pin cannot be used for boot mode selection. In this case, the boot ROM detects that a JTAG debug probe is connected and uses the contents of two reserved SARAM locations in the PIE vector table to determine the boot mode. If the content of either location is invalid, then the *Wait* boot option is used. All boot mode options can be accessed in emulation boot.

8.1.9.2 GetMode

The default behavior of the *GetMode* option is to boot to flash. This behavior can be changed to another boot option by programming two locations in the OTP. If the content of either OTP location is invalid, then boot to flash is used. One of the following loaders can be specified: SCI, SPI, I2C, CAN, or OTP.

8.1.9.3 Peripheral Pins Used by the Bootloader

 $\frac{1}{2}$ 8-2 lists the GPIO pins that are used by each peripheral bootloader. See the GPIO mux table to see if these conflict with any of the peripherals you want to use in your application.

BOOTLOADER	PERIPHERAL LOADER PINS
SCI	SCIRXDA (GPIO28) SCITXDA (GPIO29)
Parallel Boot	Data (GPIO31,30,5:0) 28x Control (GPIO26) Host Control (GPIO27)
SPI	SPISIMOA (GPIO16) SPISOMIA (GPIO17) SPICLKA (GPIO18) SPISTEA (GPIO19)
I2C	SDAA (GPIO28) SCLA (GPIO29)
CAN	CANRXA (GPIO30) CANTXA (GPIO31)

韦	8-2	Peripheral	Bootload	Dine
ᅏ	0-2.	Peripheral	Doolload	PINS

8.1.10 Security

Zx LINK POINTER VALUE	ADDRESS OFFSET FOR ZONE-SELECT
32' bxx111111111111111111111111111111111	0x10
32' bxx11111111111111111111111111111111	0x20
32' bxx1111111111111111111111111111111	0x30
32' bxx111111111111111111111111111111	0x40
32' bxx11111111111111111111111111110xxx	0x50
32' bxx11111111111111111111111110xxxx	0x60
32' bxx1111111111111111111111110xxxxx	0x70
32' bxx111111111111111111111110xxxxxx	0x80
32' bxx11111111111111111111110xxxxxx	0x90
32' bxx1111111111111111111110xxxxxxx	0xa0
32' bxx11111111111111111110xxxxxxxx	0xb0
32' bxx1111111111111111110xxxxxxxxx	0xc0
32' bxx111111111111111110xxxxxxxxxx	0xd0
32' bxx11111111111111110xxxxxxxxxxx	0xe0
32' bxx1111111111111110xxxxxxxxxxxx	0xf0
32' bxx111111111111110xxxxxxxxxxxxxx	0x100

表 8-3. Location of Zone-Select Block Based on Link Pointer

Zx LINK POINTER VALUE	ADDRESS OFFSET FOR ZONE-SELECT
32' bxx11111111111110xxxxxxxxxxxxxxx	0x110
32' bxx1111111111110xxxxxxxxxxxxxxx	0x120
32' bxx111111111110xxxxxxxxxxxxxxxxx	0x130
32' bxx11111111110xxxxxxxxxxxxxxxxx	0x140
32' bxx1111111110xxxxxxxxxxxxxxxxxx	0x150
32' bxx111111110xxxxxxxxxxxxxxxxxxx	0x160
32' bxx11111110xxxxxxxxxxxxxxxxxxxx	0x170
32' bxx11111110xxxxxxxxxxxxxxxxxxxxx	0x180
32' bxx1111110xxxxxxxxxxxxxxxxxxxxxx	0x190
32' bxx111110xxxxxxxxxxxxxxxxxxxxxxxx	0x1a0
32' bxx11110xxxxxxxxxxxxxxxxxxxxxx	0x1b0
32' bxx1110xxxxxxxxxxxxxxxxxxxxxxxxx	0x1c0
32' bxx110xxxxxxxxxxxxxxxxxxxxxxxxxx	0x1d0
32' bxx10xxxxxxxxxxxxxxxxxxxxxxxxxxx	0x1e0
32' bxx0xxxxxxxxxxxxxxxxxxxxxxxx	0x1f0

表 8-3. Location of Zone-Select Block Based on Link Pointer (continued)

表 8-4. Zone-Select Block Organization in USER-OTP

16-BIT ADDRESS OFFSET (WITH RESPECT TO OFFSET OF ZONE- SELECT)	CONTENT	
0x0	Zx-EXEONLYRAM	
0x1		
0x2	Zx-EXEONLYSECT	
0x3	ZX-EXEONETSECT	
0x4	Zx-GRABRAM	
0x5		
0x6	Zx-GRABSECT	
0x7		
0x8	Zx-CSMPSWD0	
0x9	Zx-CSMPSWD0	
0xa	Zx-CSMPSWD1	
0xb	ZX-CSMPSWD1	
Охс	Zx-CSMPSWD2	
0xd		
0xe		
0xf	- Zx-CSMPSWD3	
	1	

The Dual Code Security Module (DCSM) is used to protect the flash/OTP/Lx SARAM blocks/CLA/Secure ROM content. Individual flash sectors and SARAM blocks can be attached to any of the secure zone at start-up time. Secure ROM and the CLA are always attached to Z1. Resources attached to (owned by) one zone do not have any access to code running in the other zone when it is secured. Individual flash sectors, as well as SARAM blocks, can be further protected by enabling the EXEONLY protection. EXEONLY flash sectors or SARAM blocks do not have READ/WRITE access. Only code execution is allowed from such memory blocks.

The security feature prevents unauthorized users from examining memory contents through the JTAG port, executing code from external memory, or trying to boot load an undesirable software that would export the secure memory contents. To enable access to the secure blocks of a particular zone, the user must write a 128-

bit value in the CSMKEY registers of the zone; this value must match the values stored in the password locations in USER-OTP. If the 128 bits of the password locations in USER-OTP of a particular zone are all 1s (unprogrammed), then the security for that zone gets UNLOCKED as soon as a dummy read is done to the password locations in USER-OTP (the value in the CSMKEY register becomes "Don' t care" in this case).

In addition to the DCSM, the Emulation Code Security Logic (ECSL) has been implemented for each zone to prevent unauthorized users from stepping through secure code. A halt inside secure code will trip the ECSL and break the emulation connection. To allow emulation of secure code while maintaining DCSM protection against secure memory reads, the user must write the lower 64 bits of the USER-OTP password into the CSMKEY register of the zone to disable the ECSL. Dummy reads of all 128 bits of the password for that particular zone in USER-OTP must still be performed. If the lower 64 bits of the password locations of a particular zone are all zeros, then the ECSL for that zone gets disabled as soon as a dummy read is done to the password locations in USER-OTP (the value in the CSMKEY register becomes "Don' t care" in this case).

When power is applied to a secure device that is connected to a JTAG debug probe, the CPU will start executing and may execute an instruction that performs an access to a protected area. If this happens, the ECSL will trip and cause the JTAG circuitry to be deactivated. Under this condition, a host (such as a computer running CCS or flash programming software) would not be able to establish connection with the device. The solution is to use the *Wait* boot option. In this mode, the device loops around a software breakpoint to allow a JTAG debug probe to be connected without tripping security. The user can then exit this mode once the JTAG debug probe is connected by using one of the emulation boot options as described in the Boot ROM chapter of the *TMS320x2805x Real-Time Microcontrollers Technical Reference Manual*. The 2805x devices do not support hardware wait-in-reset mode.

Note

If reprogramming of a secure device via JTAG may be needed in future, it is important to design the board in such a way that the device could be put in *Wait* boot mode upon power-up (when reprogramming is warranted). Otherwise, ECSL may deactivate the JTAG circuitry and prevent connection to the device, as mentioned earlier. If reconfiguring the device for *Wait* boot mode in the field is not practical, some mechanism must be implemented in the firmware to detect when a firmware update is warranted. Code could then branch to the desired bootloader in the boot ROM. It could also branch to the *Wait* boot mode, at which point the JTAG debug probe could be connected, device unsecured and programming accomplished through JTAG itself.

To prevent reverse-engineering of the code in secure zone, unauthorized users are prevented from looking at the CPU registers in the CCS Expressions Window. The values in the Expressions Window for all of these registers, except for PC and some status bits, display false values when code is running from a secure zone. This feature gets disabled if the zone is unlocked.

Note

- The USER-OTP contains security-related settings for their respective zone. Execution is not allowed from the USER-OTP; therefore, the user should not keep any code/data in this region.
- The 128-bit password must not be programmed to zeros. Doing so would permanently lock the device.
- The user must try not to write into the CPU registers through the debugger watch window when code is running/halted from/inside secure zone. This may corrupt the execution of the actual program.

Dual Code Security Module Disclaimer

THE DUAL CODE SECURITY MODULE (DCSM) INCLUDED ON THIS DEVICE WAS DESIGNED TO PASSWORD PROTECT THE DATA STORED IN THE ASSOCIATED MEMORY (EITHER ROM OR FLASH) AND IS WARRANTED BY TEXAS INSTRUMENTS (TI), IN ACCORDANCE WITH ITS STANDARD TERMS AND CONDITIONS, TO CONFORM TO TI'S PUBLISHED SPECIFICATIONS FOR THE WARRANTY PERIOD APPLICABLE FOR THIS DEVICE.

TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE DCSM CANNOT BE COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE ASSOCIATED MEMORY CANNOT BE ACCESSED THROUGH OTHER MEANS. MOREOVER, EXCEPT AS SET FORTH ABOVE, TI MAKES NO WARRANTIES OR REPRESENTATIONS CONCERNING THE DCSM OR OPERATION OF THIS DEVICE, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INDIRECT, INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING IN ANY WAY OUT OF YOUR USE OF THE DCSM OR THIS DEVICE, WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO LOSS OF DATA, LOSS OF GOODWILL, LOSS OF USE OR INTERRUPTION OF BUSINESS OR OTHER ECONOMIC LOSS.

8.1.11 Peripheral Interrupt Expansion Block

The PIE block serves to multiplex numerous interrupt sources into a smaller set of interrupt inputs. The PIE block can support up to 96 peripheral interrupts. On the F2805x devices, 54 of the possible 96 interrupts are used by peripherals. The 96 interrupts are grouped into blocks of 8 and each group is fed into 1 of 12 CPU interrupt lines (INT1 to INT12). Each of the 96 interrupts is supported by its own vector stored in a dedicated RAM block that can be overwritten by the user. The vector is automatically fetched by the CPU on servicing the interrupt. Eight CPU clock cycles are needed to fetch the vector and save critical CPU registers. Hence the CPU can quickly respond to interrupt events. Prioritization of interrupts is controlled in hardware and software. Each individual interrupt can be enabled or disabled within the PIE block.

8.1.12 External Interrupts (XINT1 to XINT3)

The devices support three masked external interrupts (XINT1 to XINT3). Each of the interrupts can be selected for negative, positive, or both negative and positive edge triggering and can also be enabled or disabled. These interrupts also contain a 16-bit free running up counter, which is reset to zero when a valid interrupt edge is detected. This counter can be used to accurately time-stamp the interrupt. There are no dedicated pins for the external interrupts. XINT1, XINT2, and XINT3 interrupts can accept inputs from the GPIO0 to GPIO31 pins.

8.1.13 Internal Zero-Pin Oscillators, Oscillator, and PLL

The device can be clocked by either of the two internal zero-pin oscillators, an external oscillator, or by a crystal attached to the on-chip oscillator circuit. A PLL is provided supporting up to 12 input-clock-scaling ratios. The PLL ratios can be changed on-the-fly in software, enabling the user to scale back on operating frequency if lower power operation is desired. See \ddagger 7.13 for timing details. The PLL block can be set in bypass mode.

8.1.14 Watchdog

Each device contains two watchdogs: CPU-watchdog that monitors the core and NMI-watchdog that is a missing clock-detect circuit. The user software must regularly reset the CPU-watchdog counter within a certain time frame; otherwise, the CPU-watchdog generates a reset to the processor. The CPU-watchdog can be disabled if necessary. The NMI-watchdog engages only in case of a clock failure and can either generate an interrupt or a device reset.

8.1.15 Peripheral Clocking

The clocks to each individual peripheral can be enabled or disabled to reduce power consumption when a peripheral is not in use. Additionally, the system clock to the serial ports (except I2C) can be scaled relative to the CPU clock.

8.1.16 Low-power Modes

The devices are full-static CMOS devices. Three low-power modes are provided:

- IDLE: Place CPU in low-power mode. Peripheral clocks may be turned off selectively and only those peripherals that must function during IDLE are left operating. An enabled interrupt from an active peripheral or the watchdog timer will wake the processor from IDLE mode.
- STANDBY: Turns off clock to CPU and peripherals. This mode leaves the oscillator and PLL functional. An external interrupt event will wake the processor and the peripherals. Execution begins on the next valid cycle after detection of the interrupt event
- HALT: This mode basically shuts down the device and places the device in the lowest possible power consumption mode. If the internal zero-pin oscillators are used as the clock source, the HALT mode turns them off, by default. To keep these oscillators from shutting down, the INTOSCnHALTI bits in CLKCTL register may be used. The zero-pin oscillators may thus be used to clock the CPU-watchdog in this mode. If the on-chip crystal oscillator is used as the clock source, the crystal oscillator is shut down in this mode. A reset or an external signal (through a GPIO pin) or the CPU-watchdog can wake the device from this mode.

The CPU clock (OSCCLK) and WDCLK should be from the same clock source before trying to put the device into HALT or STANDBY.

8.1.17 Peripheral Frames 0, 1, 2, 3 (PFn)

The device segregates peripherals into four sections. The mapping of peripherals is as follows:

PF0:	PIE:	PIE Interrupt Enable and Control Registers Plus PIE Vector Table
	Flash:	Flash Waitstate Registers
	Timers:	CPU-Timers 0, 1, 2 Registers
	DCSM:	Dual Zone Security Module Registers
	ADC:	ADC Result Registers
	CLA	CLA Registers and Message RAMs
PF1:	GPIO:	GPIO MUX Configuration and Control Registers
	eCAN:	eCAN Configuration and Control Registers
	eCAP:	eCAP Module and Registers
	eQEP:	eQEP Module and Registers
PF2:	SYS:	System Control Registers
	SCI:	SCI Control and RX/TX Registers
	SPI:	SPI Control and RX/TX Registers
	ADC:	ADC Status, Control, and Configuration Registers
	I2C:	I2C Module and Registers
	XINT:	External Interrupt Registers
PF3:	ePWM:	ePWM Module and Registers
	AFE:	Comparator Modules, Digital Filters, and PGA Control Registers
	eCAP:	eCAP Module and Registers
	eQEP:	eQEP Module and Registers
	ADC:	ADC Status, Control, and Configuration Registers
	ADC:	ADC Result Registers
	DAC:	DAC Control Registers

8.1.18 General-Purpose Input/Output Multiplexer

Most of the peripheral signals are multiplexed with GPIO signals. This muxing enables the user to use a pin as GPIO if the peripheral signal or function is not used. On reset, GPIO pins are configured as inputs. The user can individually program each pin for GPIO mode or peripheral signal mode. For specific inputs, the user can also select the number of input qualification cycles. This selection is to filter unwanted noise glitches. The GPIO signals can also be used to bring the device out of specific low-power modes.

8.1.19 32-Bit CPU-Timers (0, 1, 2)

CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock prescaling. The timers have a 32-bit count-down register, which generates an interrupt when the counter reaches zero. The counter is decremented at the CPU clock speed divided by the prescale value setting. When the counter reaches zero, the counter is automatically reloaded with a 32-bit period value.

CPU-Timer 0 is for general use and is connected to the PIE block. CPU-Timer 1 is also for general use and can be connected to INT13 of the CPU. CPU-Timer 2 is reserved for DSP/BIOS[™]. CPU-Timer 2 is connected to INT14 of the CPU. If DSP/BIOS is not being used, CPU-Timer 2 is available for general use.

CPU-Timer 2 can be clocked by any one of the following:

- SYSCLKOUT (default)
- Internal zero-pin oscillator 1 (INTOSC1)
- Internal zero-pin oscillator 2 (INTSOC2)
- External clock source

8.1.20 Control Peripherals

The devices support the following peripherals that are used for embedded control and communication:

ePWM:	The ePWM peripheral supports independent/complementary PWM generation, adjustable dead-band generation for leading/trailing edges, latched/cycle-by-cycle trip mechanism. The type 1 module found on 2805x devices also supports increased dead-band resolution, enhanced SOC and interrupt generation, and advanced triggering including trip functions based on comparator outputs.
eCAP:	The eCAP peripheral uses a 32-bit time base and registers up to four programmable events in continuous/one-shot capture modes. This peripheral can also be configured to generate an auxiliary PWM signal.
eQEP:	The eQEP peripheral uses a 32-bit position counter, supports low-speed measurement using capture unit and high-speed measurement using a 32-bit unit timer. This peripheral has a watchdog timer to detect motor stall and input error detection logic to identify simultaneous edge transition in QEP signals.
ADC:	The ADC block is a 12-bit converter. The ADC has up to 16 single-ended channels pinned out, depending on the device. The ADC also contains two sample-and-hold units for simultaneous sampling. Some ADC channels also have PGAs, which can amplify the input signal by 3, 6, or 11.
Comparator and Digital Filter Subsystems:	Each comparator block consists of one analog comparator along with an internal 6-bit reference for supplying one input of the comparator. The comparator output signal filtering is achieved using the digital filter present on each input line and qualifies the output of the COMP/DAC subsystem. The filtered or unfiltered output of the COMP/DAC subsystem can be configured to be an input to the Digital Compare submodule of the ePWM peripheral. There is also a configurable option to bring the output of the COMP/DAC subsystem onto the GPIOs.

8.1.21 Serial Port Peripherals

The devices support the following serial communication peripherals:

SPI:	The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream of programmed length (1 to 16 bits) to be shifted into and out of the device at a programmable bit-transfer rate. Normally, the SPI is used for communications between the MCU and external peripherals or another processor. Typical applications include external I/O or peripheral expansion through devices such as shift registers, display drivers, and ADCs. Multi-device communications are supported by the master/slave operation of the SPI. The SPI contains a 4-level receive and transmit FIFO for reducing interrupt servicing overhead.
SCI:	The SCI is a 2-wire asynchronous serial port, commonly known as UART. The SCI contains a 4-level receive and transmit FIFO for reducing interrupt servicing overhead.
I2C:	The I2C module provides an interface between an MCU and other devices compliant with Philips Semiconductors Inter-IC bus (I ² C-bus) specification version 2.1 and connected by way of an I ² C-bus. External components attached to this 2-wire serial bus can transmit and receive up to 8-bit data to and from the MCU through the I2C module. The I2C contains a 4-level receive and transmit FIFO for reducing interrupt servicing overhead.

eCAN: The eCAN is the enhanced version of the CAN peripheral. The eCAN supports 32 mailboxes, time-stamping of messages, and is compliant with ISO 11898-1 (CAN 2.0B).

8.2 Memory Maps

In 图 8-1, 图 8-2, 图 8-3, and 图 8-4, the following apply:

- Memory blocks are not to scale.
- Peripheral Frame 0, Peripheral Frame 1, Peripheral Frame 2, and Peripheral Frame 3 memory maps are restricted to data memory only. A user program cannot access these memory maps in program space.
- *Protected* means the order of Write-followed-by-Read operations is preserved rather than the pipeline order.
- Certain memory ranges are EALLOW protected against spurious writes after configuration.

Data SpaceProg Space0x00 0000M0 Vector RAM (Enabled if VMAP = 0)0x00 0040M0 SARAM (1K × 16, 0-Wait)0x00 0040M1 SARAM (1K × 16, 0-Wait)0x00 00500Peripheral Frame 00x00 00500Peripheral Frame 00x00 01400CLA Registers0x00 01400CLA-to-CPU Message RAM0x00 01500Peripheral Frame 00x00 01500Peripheral Frame 00x00 01600Peripheral Frame 10x00 0100Peripheral Frame 10x00 6400Peripheral Frame 10x00 6400Peripheral Frame 10x00 7000Peripheral Frame 20x00 8000L1 DPSARAM (2K × 16)0x00 8000L1 DPSARAM (1K × 16)0x00 8000L1 DPSARAM (1K × 16)0x00 8000L2 DPSARAM (1K × 16)0x00 8000L3 DPSARAM (4K × 16)0x00 8000L3 DPSARAM (4K × 16)0x00 8000CLA Data ROM (4K × 16)0x00 7000Reserved0x00 8000CLA Data ROM (4K × 16)0x00 7000Reserved0x00 8000L3 DPSARAM (4K × 16)0x00 7000Reserved0x00 8000L3 DPSARAM (4K × 16)0x00 7000Reserved0x00 7000Reserved0x00 8000CLA Data ROM (4K × 16)0x00 7000Reserved0x00 7000Reserved0x00 7000Reserved<			
0x00 0040 M0 SARAM (IK × 16, 0-Wait) 0x00 0400 M1 SARAM (IK × 16, 0-Wait) 0x00 0800 Peripheral Frame 0 0x00 0100 PIE Vector - RAM (256 × 16) (Enabled if VMAP = 1, ENPIE = 1) 0x00 0E00 Peripheral Frame 0 0x00 1400 CLA Registers 0x00 1500 CPU-to-CLA Message RAM 0x00 1500 0x00 0200 Reserved 0x00 0200 Reserved 0x00 0400 Peripheral Frame 0 0x00 0200 Reserved 0x00 0600 Peripheral Frame 1 (1.5K × 16, Protected) 0x00 6400 Peripheral Frame 2 (4K × 16, Protected) 0x00 7000 Peripheral Frame 2 (4K × 16, Protected) 0x00 8800 L1 DPSARAM (2K × 16) (0-Wait, 21 or 22 Secure Zone, CLA Data RAM 0) 0x00 8800 L2 DPSARAM (1K × 16) (0-Wait, 21 or 22 Secure Zone, CLA Data RAM 1) 0x00 9000 L3 DPSARAM (4K × 16) (0-Wait, 21 or 22 Secure Zone, CLA Prog RAM) 0x00 7000 Reserved 0x3D 7800 User OTP, Zone 2 Passwords (512 × 16) 0x3D 7600 Calibration Data 0x3D 7FCB Configuration Data 0x3D 7FC0 Reserved </td <td></td> <td>Data Space</td> <td>Prog Space</td>		Data Space	Prog Space
Intermedia Intermedia 0x00 0400 MI SARAM (1K × 16, 0-Wait) 0x00 0000 Peripheral Frame 0 0x00 0000 PIE Vector - RAM (256 × 16) (Enabled if VMAP = 1, ENPIE = 1) 0x00 0E00 Peripheral Frame 0 0x00 01480 CLA-to-CPU Message RAM 0x00 0500 Peripheral Frame 0 0x00 0500 CPU-to-CLA Message RAM 0x00 0500 Peripheral Frame 1 (1K × 16, Protected) 0x00 6000 Peripheral Frame 1 (1.5K × 16, Protected) 0x00 6000 Peripheral Frame 1 (1.5K × 16, Protected) 0x00 7000 Peripheral Frame 2 (4K × 16, Protected) 0x00 8000 L0 DPSARAM (2K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 2) 0x00 8000 L1 DPSARAM (1K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 1) 0x00 8000 L2 DPSARAM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 1) 0x00 8000 L3 DPSARAM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 1) 0x00 7000 Reserved 0x00 7000 Reserved 0x00 7000 CLA Data ROM (4K × 16) 0x00 8000 L3 DPSARAM (1K × 16) 0x00 7000 Reserved		M0 Vector RAM (Ei	nabled if VMAP = 0)
In the Anton (IK \times 16, 6-Mail)0x00 0800Peripheral Frame 00x00 0E00Peripheral Frame 00x00 0E00Peripheral Frame 00x00 1400CLA Registers0x00 1400CLA-to-CPU Message RAM0x00 1500CPU-to-CLA Message RAM0x00 1500Peripheral Frame 1(1K × 16, Protected)Reserved0x00 6400Peripheral Frame 1(1.5K × 16, Protected)Reserved0x00 8000L0 DPSARAM (2K × 16)0x00 8000L1 DPSARAM (1K × 16)0x00 8000L1 DPSARAM (1K × 16)0x00 8000L2 DPSARAM (1K × 16)0x00 8000L3 DPSARAM (K × 16)0x00 8000L3 DPSARAM (K × 16)0x00 8000CLA Data RAM 1)0x00 9000L3 DPSARAM (K × 16)0x00 7000Reserved0x30 7800User OTP, Zone 2 Passwords (512 × 16)0x31 7800User OTP, Zone 1 Passwords (512 × 16)0x32 7700Reserved0x32 7800Sectors, Dual Secure Zone)0x35 7800Zone 1 Secure Copy Code ROM0x36 8800Zone 2 Secure Copy Code ROM0x37 8800Zone 2 Secure Copy Code ROM0x37 8800Reserved0x37 8800Reserved0x37 8800Reserved0x36 8800Reserved0x37 8800Reserved <td></td> <td>M0 SARAM (1</td> <td>K × 16, 0-Wait)</td>		M0 SARAM (1	K × 16, 0-Wait)
Not of the inpletent number of the problem of the inpletent number of the inpletent of the inpletent number of the inpletent of the		M1 SARAM (1	K × 16, 0-Wait)
PIE Vector - RAM (256 \times 16) (Enabled if VMAP = 1, ENPIE = 1)Reserved0x00 0E00Peripheral Frame 0 0x00 1400CLA Registers0x00 1400CLA-to-CPU Message RAM 0x00 1500CPU-to-CLA Message RAM 0x00 15800x00 1580Peripheral Frame 00x00 0000Reserved0x00 0000Peripheral Frame 1 (1K \times 16, Protected)0x00 6000Peripheral Frame 3 (1.5K \times 16, Protected)0x00 6000Peripheral Frame 1 (1.5K \times 16, Protected)0x00 6000Peripheral Frame 2 (4K \times 16, Protected)0x00 8000L0 DPSARAM (2K \times 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 2)0x00 8000L1 DPSARAM (1K \times 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 1)0x00 8000L2 DPSARAM (4K \times 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 1)0x00 8000L3 DPSARAM (4K \times 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM)0x00 7000Reserved0x00 7000Reserved0x00 7000CLA Data ROM (4K \times 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM)0x00 7000CLA Data ROM (4K \times 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM)0x00 7000Reserved0x3D 7800User OTP, Zone 1 Passwords (512 \times 16) 0x3D 7A000x3D 7FF0Reserved0x3D 7FF0Reserved0x3D 7FF0Reserved0x3F 8000Zone 1 Secure Copy Code ROM (1K \times 16) 0x3F 80000x3F 8000Zone 2 Secure Copy Code ROM (1K \times 16)0x3F 8800Reserved0x3F 8800Reserved0x3F 8800		Peripheral Frame 0	
0x00 0E00 Peripheral Frame 0 0x00 1400 CLA Registers 0x00 1400 CLA-to-CPU Message RAM 0x00 1500 CPU-to-CLA Message RAM 0x00 000 Reserved 0x00 000 Reserved 0x00 6000 Peripheral Frame 1 (1K × 16, Protected) 0x00 6400 Peripheral Frame 1 (1.5K × 16, Protected) 0x00 6400 Peripheral Frame 2 (4K × 16, Protected) 0x00 8000 L0 DPSARAM (2K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 2) 0x00 8000 L1 DPSARAM (1K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 0) 0x00 8000 L2 DPSARAM (1K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 1) 0x00 8000 L3 DPSARAM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 1) 0x00 8000 L3 DPSARAM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 1) 0x00 8000 CLA Data ROM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 1) 0x00 7000 Reserved 0x00 7000 CLA Data ROM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 1) 0x00 7000 Reserved 0x30 7800 User OTP, Zone 2 Passwords (512 × 16) 0x3D 7FC0 Reserved 0	0x00 0D00	(256 × 16) (Enabled if VMAP = 1,	Received
Deck Registers0x00 1480CLA-to-CPU Message RAM (CPU-to-CLA Message RAM 0x00 15000x00 1500CPU-to-CLA Message RAM 0x00 15000x00 000Reserved0x00 6000Peripheral Frame 1 (1K × 16, Protected)0x00 6400Peripheral Frame 3 (1.5K × 16, Protected)0x00 6400Peripheral Frame 1 (1.5K × 16, Protected)0x00 7000Peripheral Frame 2 ((4K × 16, Protected))0x00 8000L0 DPSARAM (2K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 2)0x00 8000L1 DPSARAM (1K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 0)0x00 8000L2 DPSARAM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 1)0x00 9000L3 DPSARAM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM)0x00 7000Reserved0x00 7000CLA Data ROM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM)0x00 7000Reserved0x00 7000Reserved0x00 7000Reserved0x00 7000Reserved0x00 7000Reserved0x00 7000Reserved0x00 7000Reserved0x00 7000Reserved0x30 7800User OTP, Zone 1 Passwords (512 × 16) 0x3D 7C000x30 7FCBConfiguration Data0x30 7FCBConfiguration Data0x327 F7FFReserved0x38 8000FLASH (64K × 16, 10 Sectors, Dual Secure Zone) (Z1/Z2 User-Selectable Security Zone Per Sector)0x37 8400Zone 1 Secure Copy Code ROM (1K × 16)0x37 8400Zone 2 Secure Copy Code ROM (1K × 16) <t< td=""><td>0x00 0E00</td><td>Peripheral Frame 0</td><td>Reserved</td></t<>	0x00 0E00	Peripheral Frame 0	Reserved
0x00 1500CPU-to-CLA Message RAM Peripheral Frame 0 $0x00 2000$ Reserved $0x00 6000$ Peripheral Frame 1 (1K × 16, Protected)Reserved $0x00 6400$ Peripheral Frame 1 (1.5K × 16, Protected)Reserved $0x00 6A00$ Peripheral Frame 1 (1.5K × 16, Protected)Reserved $0x00 8000$ L0 DPSARAM (2K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 2) $0x00 8000$ L1 DPSARAM (1K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 0) $0x00 8000$ L2 DPSARAM (1K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 1) $0x00 8000$ L3 DPSARAM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM) $0x00 9000$ L3 DPSARAM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM) $0x00 4000$ Reserved $0x00 7000$ Reserved $0x00 7000$ CLA Data ROM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM) $0x00 7000$ Reserved $0x30 7800$ User OTP, Zone 2 Passwords (512 × 16) (0x3D 7A00 $0x3D 7E00$ Calibration Data $0x3D 7FCB$ Configuration Data $0x3D 7FF0$ Reserved $0x3F 7FFF$ (64K × 16, 10 Sectors, Dual Secure Zone) (Z1/Z2 User-Selectable Security Zone Per Sector) $0x3F 8400$ Zone 1 Secure Copy Code ROM (1K × 16) $0x3F 8400$ Reserved $0x3F FEFC0$ Boot ROM (12K × 16, 0-Wait) (X3F FEFC0	0x00 1400	CLA Registers	
0x00 1580Peripheral Frame 00x00 2000Reserved0x00 6000Peripheral Frame 1 (1K × 16, Protected)0x00 6400Peripheral Frame 3 (1.5K × 16, Protected)0x00 6A00Peripheral Frame 2 (4K × 16, Protected)0x00 7000Peripheral Frame 2 (4K × 16, Protected)0x00 8800L0 DPSARAM (2K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 2)0x00 8800L1 DPSARAM (1K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 0)0x00 8000L2 DPSARAM (1K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 1)0x00 8000L3 DPSARAM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 1)0x00 9000L3 DPSARAM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM)0x00 7000Reserved0x00 7000Reserved0x00 7000CLA Data ROM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM)0x00 7000Reserved0x00 7000Reserved0x00 7000Reserved0x00 7000Reserved0x30 7800User OTP, Zone 1 Passwords (512 × 16) 0x3D 7FC00x32 7FC0Reserved0x32 7FF0Reserved0x32 7FF0Reserved0x35 8000FLASH (64K × 16, 10 Sectors, Dual Secure Zone) (Z1/Z2 User-Selectable Security Zone Per Sector)0x37 8400Zone 1 Secure Copy Code ROM (1K × 16)0x37 8400Zone 2 Secure Copy Code ROM (1K × 16)0x37 FEFC0Boot ROM (12K × 16, 0-Wait) (XXF EFC0	0x00 1480	CLA-to-CPU Message RAM	
0x00 2000Reserved0x00 6000Peripheral Frame 1 (1K × 16, Protected)0x00 6400Peripheral Frame 3 (1.5K × 16, Protected)0x00 6A00Peripheral Frame 1 (1.5K × 16, Protected)0x00 7000Peripheral Frame 2 (4K × 16, Protected)0x00 8000L0 DPSARAM (2K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 2)0x00 8800L1 DPSARAM (1K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 0)0x00 8000L2 DPSARAM (1K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 1)0x00 8000L3 DPSARAM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 1)0x00 9000L3 DPSARAM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 1)0x00 4000Reserved0x00 7000CLA Data ROM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM)0x00 7000CLA Data ROM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 1)0x00 7000CLA Data ROM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM)0x00 7000CLA Data ROM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM)0x00 7000CLA Data ROM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM)0x30 7800User OTP, Zone 2 Passwords (512 × 16) (0x3D 7A000x3D 7E00Calibration Data0x3D 7FCBConfiguration Data0x3F 7FFFReserved0x3F 8000Zone 1 Secure Copy Code ROM (1K × 16)0x3F 8400Zone 2 Secure Copy Code ROM (1K × 16)0x3F 8400Reserved0x3F 8800Reserved0x3F 8800Reserved	0x00 1500	CPU-to-CLA Message RAM	
Reserved0x00 6000Peripheral Frame 1 (1K × 16, Protected)0x00 6400Peripheral Frame 3 (1.5K × 16, Protected)0x00 6A00Peripheral Frame 1 (1.5K × 16, Protected)0x00 7000Peripheral Frame 2 (4K × 16, Protected)0x00 8000L0 DPSARAM (2K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 2)0x00 8800L1 DPSARAM (1K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 0)0x00 8000L2 DPSARAM (1K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 1)0x00 8000L2 DPSARAM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 1)0x00 9000L3 DPSARAM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM)0x00 4000Reserved0x00 7000CLA Data ROM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM)0x00 7000Reserved0x01 0000Reserved0x3D 7600CLA Data ROM (4K × 16) (0-Wait, Z1 or Z2 Passwords (512 × 16) 0x3D 7C000x3D 7FCBConfiguration Data (X3D 7FCB0x3D 7FCBConfiguration Data (21/Z2 User-Selectable Security Zone Per Sector)0x3F 8000Zone 1 Secure Copy Code ROM (1K × 16)0x3F 8000Zone 1 Secure Copy Code ROM (1K × 16)0x3F 8800Reserved0x3F 8800Reserved0x3F 8800Reserved0x3F 8800Reserved0x3F FEC0Soctors, Dual Secure Zone)0x3F FEC0Soctors, Dual Secure Zone)	0x00 1580	Peripheral Frame 0	
Peripheral Frame 1 (1K × 16, Protected)0x00 6400Peripheral Frame 3 (1.5K × 16, Protected)0x00 7000Peripheral Frame 1 (1.5K × 16, Protected)0x00 7000Peripheral Frame 2 (4K × 16, Protected)0x00 8000L0 DPSARAM (2K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 2)0x00 8800L1 DPSARAM (1K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 0)0x00 8000L2 DPSARAM (1K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 1)0x00 9000L3 DPSARAM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM)0x00 4000Reserved0x00 7000CLA Data ROM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM)0x00 7000Reserved0x30 7800User OTP, Zone 2 Passwords (512 × 16) 0x3D 7C000x3D 7FCBConfiguration Data0x3D 7FCBConfiguration Data0x3D 7FF0Reserved0x3D 7FF0Reserved0x3F 8000Zone 1 Secure Copy Code ROM (1K × 16)0x3F 8400Zone 2 Secure Copy Code ROM (1K × 16)0x3F 8800Reserved0x3F 8800Reserved	0x00 2000	Rese	erved
Peripheral Frame 3 (1.5K × 16, Protected) Reserved 0x00 6A00 Peripheral Frame 1 (1.5K × 16, Protected) Reserved 0x00 8000 L0 DPSARAM (2K × 16) (0-Wait, 21 or 22 Secure Zone, CLA Data RAM 2) 0x00 8800 0x00 8800 L1 DPSARAM (1K × 16) (0-Wait, 21 or 22 Secure Zone, CLA Data RAM 0) 0x00 8000 0x00 8000 L1 DPSARAM (1K × 16) (0-Wait, 21 or 22 Secure Zone, CLA Data RAM 0) 0x00 8000 0x00 8000 L2 DPSARAM (1K × 16) (0-Wait, 21 or 22 Secure Zone, CLA Data RAM 1) 0x00 9000 0x00 8000 L3 DPSARAM (4K × 16) (0-Wait, 21 or 22 Secure Zone, CLA Prog RAM) 0x00 000 0x00 7000 Reserved 0x00 7000 0x00 7000 Reserved 0x3D 7600 0x3D 7800 User OTP, Zone 2 Passwords (512 × 16) 0x3D 77C00 Reserved 0x3D 7FC8 Configuration Data 0x3D 7FC9 Reserved 0x3F 7FFF Reserved 0x3F 7FFF Cone 1 Secure Copy Code ROM (1K × 16) 0x3F 8400 Zone 2 Secure Copy Code ROM (1K × 16) 0x3F 8800 Reserved 0x3F 8800 Reserved 0x3F 7000 Boot ROM (12K × 16, 0-Wait)	0x00 6000		
0x00 6A00 Peripheral Frame 1 (1.5K × 16, Protected) 0x00 7000 Peripheral Frame 2 (4K × 16, Protected) 0x00 8000 L0 DPSARAM (2K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 2) 0x00 8800 L1 DPSARAM (1K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 0) 0x00 8000 L2 DPSARAM (1K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 1) 0x00 9000 L3 DPSARAM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM) 0x00 4000 Reserved 0x00 7000 Reserved 0x00 7000 Reserved 0x3D 7800 User OTP, Zone 2 Passwords (512 × 16) 0x3D 7600 Reserved 0x3D 7600 Calibration Data 0x3D 7FCB Configuration Data 0x3D 7FF0 Reserved 0x3E 8000 FLASH (64K × 16, 10 Sectors, Dual Secure Zone) (Z1/Z2 User-Selectable Security Zone Per Sector) 0x3F 8400 Zone 1 Secure Copy Code ROM (1K × 16) 0x3F 8800 Reserved	0x00 6400		
Peripineral Frame 2 (4K × 16, Protected)0x00 8000L0 DPSARAM (2K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 2)0x00 8800L1 DPSARAM (1K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 0)0x00 8C00L2 DPSARAM (1K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 1)0x00 9000L3 DPSARAM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM)0x00 A000Reserved0x00 F000CLA Data ROM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM)0x00 A000Reserved0x30 7800User OTP, Zone 2 Passwords (512 × 16) 0x3D 7A000x3D 7800User OTP, Zone 1 Passwords (512 × 16) 0x3D 7C000x3D 7FC0Reserved0x3D 7FC8Configuration Data0x3D 7FF0Reserved0x3F 8800FLASH (64K × 16, 10 Sectors, Dual Secure Zone) (Z1/Z2 User-Selectable Security Zone Per Sector)0x3F 8400Zone 1 Secure Copy Code ROM (1K × 16)0x3F 8800Reserved0x3F 8800Reserved	0x00 6A00		Reserved
LU DPSARAM (2K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 2) 0x00 8800 L1 DPSARAM (1K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 0) 0x00 8C00 L2 DPSARAM (1K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 1) 0x00 9000 L3 DPSARAM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM) 0x00 4000 Reserved 0x00 F000 CLA Data ROM (4K × 16) 0x01 0000 Reserved 0x3D 7800 User OTP, Zone 2 Passwords (512 × 16) 0x3D 7800 User OTP, Zone 1 Passwords (512 × 16) 0x3D 7E00 Calibration Data 0x3D 7FC0 Reserved 0x3D 7FF0 Reserved 0x3D 7FF0 Configuration Data 0x3E 8000 FLASH (64K × 16, 10 Sectors, Dual Secure Zone) (Z1/Z2 User-Selectable Security Zone Per Sector) 0x3F 7FFF Zone 1 Secure Copy Code ROM (1K × 16) 0x3F 8400 Zone 2 Secure Copy Code ROM (1K × 16) 0x3F 8800 Reserved <	0x00 7000		
L1 DPSARAM (1K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 0)0x00 8C00L2 DPSARAM (1K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 1)0x00 9000L3 DPSARAM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM)0x00 A000Reserved0x00 F000CLA Data ROM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM)0x00 F000CLA Data ROM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM)0x00 F000CLA Data ROM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM)0x30 7000Reserved0x3D 7800User OTP, Zone 2 Passwords (512 × 16) (0x3D 7C00)0x3D 7FC0Reserved0x3D 7FC0Calibration Data0x3D 7FC0Reserved0x3E 8000FLASH (64K × 16, 10 Sectors, Dual Secure Zone) (Z1/Z2 User-Selectable Security Zone Per Sector)0x3F 7FFFZone 1 Secure Copy Code ROM (1K × 16)0x3F 8400Zone 2 Secure Copy Code ROM (1K × 16)0x3F 8800Reserved0x3F 7D00Boot ROM (12K × 16, 0-Wait) (21K × 16, 0-Wait)	0x00 8000		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x00 8800	L1 DPSARAM (1K × 16)	
LS DPSARAM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM) $0x00 F000$ Reserved $0x00 F000$ CLA Data ROM (4K × 16) $0x01 0000$ Reserved $0x3D 7800$ User OTP, Zone 2 Passwords (512 × 16) $0x3D 7A00$ User OTP, Zone 1 Passwords (512 × 16) $0x3D 7C00$ Reserved $0x3D 7FC0$ Calibration Data $0x3D 7FCB$ Configuration Data $0x3D 7FF0$ Reserved $0x3E 8000$ FLASH (64K × 16, 10 Sectors, Dual Secure Zone) (Z1/Z2 User-Selectable Security Zone Per Sector) $0x3F 8400$ Zone 1 Secure Copy Code ROM (1K × 16) $0x3F 8800$ Reserved $0x3F 8800$ Reserved $0x3F 8800$ Boot ROM (12K × 16, 0-Wait) 0x3F FEC0	0x00 8C00		
Reserved $0x00 F000$ CLA Data ROM (4K × 16) $0x01 0000$ Reserved $0x3D 7800$ User OTP, Zone 2 Passwords (512 × 16) $0x3D 7A00$ User OTP, Zone 1 Passwords (512 × 16) $0x3D 7C00$ Reserved $0x3D 7E00$ Calibration Data $0x3D 7FCB$ Configuration Data $0x3D 7FF0$ Reserved $0x3E 8000$ FLASH (64K × 16, 10 Sectors, Dual Secure Zone) (Z1/Z2 User-Selectable Security Zone Per Sector) $0x3F 8400$ Zone 1 Secure Copy Code ROM (1K × 16) $0x3F 8800$ Reserved $0x3F 8800$ Boot ROM (12K × 16, 0-Wait) 0 x3F FEC0			
Ox01 0000 Reserved 0x3D 7800 User OTP, Zone 2 Passwords (512 × 16) 0x3D 7A00 User OTP, Zone 1 Passwords (512 × 16) 0x3D 7C00 Reserved 0x3D 7C00 Reserved 0x3D 7C00 Reserved 0x3D 7FC0 Calibration Data 0x3D 7FCB Configuration Data 0x3D 7FF0 Reserved 0x3E 8000 FLASH (64K × 16, 10 Sectors, Dual Secure Zone) (Z1/Z2 User-Selectable Security Zone Per Sector) 0x3F 7FFF Zone 1 Secure Copy Code ROM (1K × 16) 0x3F 8400 Zone 2 Secure Copy Code ROM (1K × 16) 0x3F 8800 Reserved 0x3F 8800 Reserved 0x3F 8800 Reserved 0x3F 7500 Boot ROM (12K × 16, 0-Wait)		Rese	erved
Reserved0x3D 7800User OTP, Zone 2 Passwords (512 × 16)0x3D 7A00User OTP, Zone 1 Passwords (512 × 16)0x3D 7C00Reserved0x3D 7E00Calibration Data0x3D 7FCBConfiguration Data0x3D 7FF0Reserved0x3E 8000FLASH (64K × 16, 10 Sectors, Dual Secure Zone) (Z1/Z2 User-Selectable Security Zone Per Sector)0x3F 7FFFZone 1 Secure Copy Code ROM (1K × 16)0x3F 8400Zone 2 Secure Copy Code ROM (1K × 16)0x3F 8800Reserved0x3F 7500Sone 2 Secure Copy Code ROM (1K × 16)0x3F 8800Reserved0x3F 8800Reserved		CLA Data R	OM (4K × 16)
Ox3D 7A00User OTF, Zone 2 Passwords (512 × 16)0x3D 7A00User OTP, Zone 1 Passwords (512 × 16)0x3D 7C00Reserved0x3D 7F00Calibration Data0x3D 7FCBConfiguration Data0x3D 7FF0Reserved0x3E 8000FLASH (64K × 16, 10 Sectors, Dual Secure Zone) (Z1/Z2 User-Selectable Security Zone Per Sector)0x3F 7FFFZone 1 Secure Copy Code ROM (1K × 16)0x3F 8400Zone 2 Secure Copy Code ROM (1K × 16)0x3F 8800Reserved0x3F 8800Boot ROM (12K × 16, 0-Wait) 0x3F FEC0	0x01 0000	Rese	erved
0x3D 7C00 Reserved 0x3D 7C00 Reserved 0x3D 7F00 Calibration Data 0x3D 7FCB Configuration Data 0x3D 7FF0 Reserved 0x3E 8000 FLASH (64K × 16, 10 Sectors, Dual Secure Zone) (Z1/Z2 User-Selectable Security Zone Per Sector) 0x3F 7FFF Zone 1 Secure Copy Code ROM (1K × 16) 0x3F 8400 Zone 2 Secure Copy Code ROM (1K × 16) 0x3F 8800 Reserved 0x3F 8800 Boot ROM (12K × 16, 0-Wait) 0x3F FFC0 Source Copy Code ROM	0x3D 7800	User OTP, Zone 2 P	asswords (512 $ imes$ 16)
Reserved0x3D 7E00Calibration Data0x3D 7FCBConfiguration Data0x3D 7FF0Reserved0x3E 8000FLASH (64K × 16, 10 Sectors, Dual Secure Zone) (Z1/Z2 User-Selectable Security Zone Per Sector)0x3F 7FFFZone 1 Secure Copy Code ROM (1K × 16)0x3F 8400Zone 2 Secure Copy Code ROM (1K × 16)0x3F 8800Reserved0x3F 8800Boot ROM (12K × 16, 0-Wait) 0x3F FEC0	0x3D 7A00	User OTP, Zone 1 P	asswords (512 × 16)
Calibration Data 0x3D 7FCB Configuration Data 0x3D 7FF0 Reserved 0x3E 8000 FLASH (64K × 16, 10 Sectors, Dual Secure Zone) (Z1/Z2 User-Selectable Security Zone Per Sector) 0x3F 7FFF Zone 1 Secure Copy Code ROM (1K × 16) 0x3F 8400 Zone 2 Secure Copy Code ROM (1K × 16) 0x3F 8800 Reserved 0x3F 8800 Boot ROM (12K × 16, 0-Wait) 0x3F FEC0 Description	0x3D 7C00	Rese	erved
Configuration Data 0x3D 7FF0 Reserved 0x3E 8000 FLASH (64K × 16, 10 Sectors, Dual Secure Zone) (Z1/Z2 User-Selectable Security Zone Per Sector) 0x3F 7FFF 0x3F 8000 Zone 1 Secure Copy Code ROM (1K × 16) 0x3F 8400 Zone 2 Secure Copy Code ROM (1K × 16) 0x3F 8800 Reserved 0x3F 8800 Boot ROM (12K × 16, 0-Wait) 0x3F FEC0	0x3D 7E00	Calibrat	ion Data
Reserved 0x3E 8000 FLASH (64K × 16, 10 Sectors, Dual Secure Zone) (Z1/Z2 User-Selectable Security Zone Per Sector) 0x3F 7FFF 0x3F 8000 Zone 1 Secure Copy Code ROM (1K × 16) 0x3F 8400 Zone 2 Secure Copy Code ROM (1K × 16) 0x3F 8800 Reserved 0x3F FEC0 Boot ROM (12K × 16, 0-Wait) (2000)		Configura	ation Data
FLASH (64K × 16, 10 Sectors, Dual Secure Zone) (Z1/Z2 User-Selectable Security Zone Per Sector) 0x3F 7FFF 0x3F 8000 Zone 1 Secure Copy Code ROM (1K × 16) 0x3F 8400 Zone 2 Secure Copy Code ROM (1K × 16) 0x3F 8800 Reserved 0x3F 8000 Boot ROM (12K × 16, 0-Wait)		Rese	erved
Ox3F 8000 Zone 1 Secure Copy Code ROM (1K × 16) 0x3F 8400 Zone 2 Secure Copy Code ROM (1K × 16) 0x3F 8800 Reserved 0x3F D000 Boot ROM (12K × 16, 0-Wait) 		(64K × 16, 10 Sectors, Dual Secure Zone)	
Ox3F 8400 Zone 2 Secure Copy Code ROM (1K × 16) 0x3F 8800 Reserved 0x3F D000 Boot ROM (12K × 16, 0-Wait) 0x3F FEC0			
Reserved 0x3F D000 Boot ROM (12K × 16, 0-Wait) 0x3F FEC0	0x3F 8400	Zone 2 Secure Copy Code ROM	
Boot ROM (12K × 16, 0-Wait) 0x3F FFC0	0x3F 8800	Reserved	
0x3F FFC0 Vector (32 Vectors, Enabled if VMAP = 1)	0x3F D000	Boot ROM (12K × 16, 0-Wait)	
	0x3F FFC0	Vector (32 Vectors, I	Enabled if VMAP = 1)

A. CLA-specific registers and RAM apply to the 28055 device only.

图 8-1. 28055 and 28054 Memory Map

Copyright © 2021 Texas Instruments Incorporated

1	Data Space	Brog Space
0x00 0000	Data Space	Prog Space nabled if VMAP = 0)
0x00 0040	- — — — — <u>`</u>	
0x00 0400	M0 SARAM (1K × 16, 0-Wait) M1 SARAM (1K × 16, 0-Wait)	
0x00 0800	Peripheral Frame 0	
0x00 0D00	PIE Vector - RAM (256 × 16) (Enabled if VMAP = 1,	-
	ENPIE = 1)	Reserved
0x00 0E00	Peripheral Frame 0	
0x00 1400	CLA Registers	_
0x00 1480	CLA-to-CPU Message RAM	
0x00 1500	CPU-to-CLA Message RAM	
0x00 1580	Peripheral Frame 0	
0x00 2000	Res	erved
0x00 6000	Peripheral Frame 1 (1K $ imes$ 16, Protected)	
0x00 6400	Peripheral Frame 3 (1.5K × 16, Protected)	Descend
0x00 6A00	Peripheral Frame 1 (1.5K × 16, Protected)	Reserved
0x00 7000	Peripheral Frame 2 (4K × 16, Protected)	
0x00 8000		AM (2K × 16) 2 Zone, CLA Data RAM 2)
0x00 8800		AM (1K × 16) 2 Zone, CLA Data RAM 0)
0x00 8C00	L2 DPSARAM (1K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 1)	
0x00 9000		AM (4K × 16) e Zone, CLA Prog RAM)
0x00 A000	Res	erved
0x00 F000	CLA Data R	OM (4K × 16)
0x01 0000	Res	erved
0x3D 7800	User OTP, Zone 2 P	asswords (512 × 16)
0x3D 7A00	User OTP, Zone 1 P	asswords (512 × 16)
0x3D 7C00	Reserved	
0x3D 7E00	Calibration Data	
0x3D 7FCB	Configuration Data	
0x3D 7FF0	Reserved	
0x3F 0000	FLASH (32K × 16, 5 Sectors, Dual Secure Zone) (Z1/Z2 User-Selectable Security Zone Per Sector)	
0x3F 7FFF 0x3F 8000		Copy Code ROM × 16)
0x3F 8400	Zone 2 Secure Copy Code ROM (1K × 16)	
0x3F 8800	Reserved	
0x3F D000	Boot ROM (12K × 16, 0-Wait)	
0x3F FFC0	Vector (32 Vectors,	Enabled if VMAP = 1)

A. CLA-specific registers and RAM apply to the 28053 device only.

图 8-2. 28053 and 28052 Memory Map

Copyright © 2021 Texas Instruments Incorporated

	Data Space	Prog Space
0x00 0000	M0 Vector RAM (Er	nabled if VMAP = 0)
0x00 0040	M0 SARAM (1	K × 16, 0-Wait)
0x00 0400	M1 SARAM (1	K × 16, 0-Wait)
0x00 0800	Peripheral Frame 0	
0x00 0D00	PIE Vector - RAM (256 × 16) (Enabled if VMAP = 1, ENPIE = 1)	Record
0x00 0E00	Peripheral Frame 0	Reserved
0x00 1400	CLA Registers	
0x00 1480	CLA-to-CPU Message RAM	
0x00 1500	CPU-to-CLA Message RAM	
0x00 1580	Peripheral Frame 0	
0x00 2000	Rese	erved
0x00 6000	Peripheral Frame 1 (1K × 16, Protected)	
0x00 6400	Peripheral Frame 3 (1.5K × 16, Protected)	
0x00 6A00	Peripheral Frame 1 (1.5K × 16, Protected)	Reserved
0x00 7000	Peripheral Frame 2 (4K × 16, Protected)	
0x00 8000	Rese	erved
0x00 8800	L1 DPSARAM (1K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 0)	
0x00 8C00	L2 DPSARAM (1K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Data RAM 1)	
0x00 9000	L3 DPSARAM (4K × 16) (0-Wait, Z1 or Z2 Secure Zone, CLA Prog RAM)	
0x00 A000	Rese	erved
0x00 F000	CLA Data R	OM (4K × 16)
0x01 0000	Reserved	
0x3D 7800	User OTP, Zone 2 Pa	asswords (512 × 16)
0x3D 7A00	User OTP, Zone 1 P	asswords (512 × 16)
0x3D 7C00	Reserved	
0x3D 7E00	Calibration Data	
0x3D 7FCB	Configuration Data	
0x3D 7FF0	Rese	erved
0x3F 0000	FLASH	
0x3F 7FFF	(32K \times 16, 5 Sectors, Dual Secure Zone) (Z1/Z2 User-Selectable Security Zone Per Sector)	
0x3F 8000	Zone 1 Secure Copy Code ROM (1K × 16)	
0x3F 8400	Zone 2 Secure Copy Code ROM (1K × 16)	
0x3F 8800	Reserved	
0x3F D000	Boot ROM (12K × 16, 0-Wait)	
0x3F FFC0	Vector (32 Vectors, I	Enabled if VMAP = 1)

图 8-3. 28051 Memory Map

48 Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

	Data Space	Prog Space
0x00 0000	M0 Vector RAM (E	inabled if VMAP = 0)
0x00 0040	M0 SARAM (1	IK × 16, 0-Wait)
0x00 0400	M1 SARAM (1	IK × 16, 0-Wait)
0x00 0800	Peripheral Frame 0	
0x00 0D00	PIE Vector - RAM (256 × 16) (Enabled if VMAP = 1, ENPIE = 1)	Reserved
0x00 0E00	Peripheral Frame 0	Reserveu
0x00 1400	Reserved	
0x00 1580	Peripheral Frame 0	-
0x00 2000	Res	erved
0x00 6000	Peripheral Frame 1 (1K × 16, Protected)	
0x00 6400	Peripheral Frame 3 (1.5K × 16, Protected)	Reserved
0x00 6A00	Peripheral Frame 1 (1.5K × 16, Protected)	Reserved
0x00 7000	Peripheral Frame 2 (4K \times 16, Protected)	
0x00 8000	L0 DPSARAM (2K × 16) (0-Wait, Z1 or Z2 Secure Zone)	
0x00 8800	L1 DPSARAM (1K × 16) (0-Wait, Z1 or Z2 Secure Zone)	
0x00 8C00	L2 DPSARAM (1K × 16) (0-Wait, Z1 or Z2 Secure Zone)	
0x00 9000	Reserved	
0x00 A000	Res	erved
0x00 F000	Res	erved
0x01 0000	Res	erved
0x3D 7800	User OTP, Zone 2 Passwords (512 × 16)	
0x3D 7A00	User OTP, Zone 1 F	Passwords (512 $ imes$ 16)
0x3D 7C00	Reserved	
0x3D 7E00	Calibration Data	
0x3D 7FCB	Configuration Data	
0x3D 7FF0	Reserved	
0x3F 4000 0x3F 7FFF	FLASH (16K × 16, 3 Sectors, Dual Secure Zone) (Z1/Z2 User-Selectable Security Zone Per Sector)	
0x3F 8000		Copy Code ROM × 16)
0x3F 8400	Zone 2 Secure Copy Code ROM (1K × 16)	
0x3F 8800	Reserved	
0x3F D000	Boot ROM (12K × 16, 0-Wait)	
0x3F FFC0	Vector (32 Vectors,	Enabled if VMAP = 1)

图 8-4. 28050 Memory Map

Copyright © 2021 Texas Instruments Incorporated

表 8-5, 表 8-6, and 表 8-7 list the addresses of flash sectors on the TMS320F2805x devices.

表 8-5. Addresses of Flash Sectors in F28055 and F28054				
ADDRESS RANGE	PROGRAM AND DATA SPACE			
0x3E 8000 to 0x3E 8FFF	Sector J (4K × 16)			
0x3E 9000 to 0x3E 9FFF	Sector I (4K × 16)			
0x3E A000 to 0x3E BFFF	Sector H (8K × 16)			
0x3E C000 to 0x3E DFFF	Sector G (8K × 16)			
0x3E E000 to 0x3E FFFF	Sector F (8K × 16)			
0x3F 0000 to 0x3F 1FFF	Sector E (8K × 16)			
0x3F 2000 to 0x3F 3FFF	Sector D (8K × 16)			
0x3F 4000 to 0x3F 5FFF	Sector C (8K × 16)			
0x3F 6000 to 0x3F 6FFF	Sector B (4K × 16)			
0x3F 7000 to 0x3F 7FFF	Sector A (4K × 16)			

表 8-5. Addresses of Flash Sectors in F28055 and F28054

表 8-6. Addresses of Flash Sectors in F28053, F28052, and F28051

······································				
ADDRESS RANGE	PROGRAM AND DATA SPACE			
0x3F 0000 to 0x3F 1FFF	Sector E (8K × 16)			
0x3F 2000 to 0x3F 3FFF	Sector D (8K × 16)			
0x3F 4000 to 0x3F 5FFF	Sector C (8K × 16)			
0x3F 6000 to 0x3F 6FFF	Sector B (4K × 16)			
0x3F 7000 to 0x3F 7FFF	Sector A (4K × 16)			

表 8-7. Addresses of Flash Sectors in F28050

ADDRESS RANGE	PROGRAM AND DATA SPACE
0x3F 4000 to 0x3F 5FFF	Sector C (8K × 16)
0x3F 6000 to 0x3F 6FFF	Sector B (4K × 16)
0x3F 7000 to 0x3F 7FFF	Sector A (4K × 16)

Peripheral Frame 1, Peripheral Frame 2, and Peripheral Frame 3 are grouped together to enable these blocks to be write/read peripheral block protected. The protected mode makes sure that all accesses to these blocks happen as written. Because of the pipeline, a write immediately followed by a read to different memory locations will appear in reverse order on the memory bus of the CPU. This action can cause problems in certain peripheral applications where the user expected the write to occur first (as written). The CPU supports a block protection mode where a region of memory can be protected so that operations occur as written (the penalty is extra cycles are added to align the operations). This mode is programmable, and by default, it protects the selected zones.

The wait-states for the various spaces in the memory map area are listed in $\frac{1}{8}$ 8-8.

AREA	WAIT-STATES (CPU)	COMMENTS
M0 and M1 SARAMs	0-wait	Fixed
Peripheral Frame 0	0-wait	
Peripheral Frame 1	0-wait (writes)	Cycles can be extended by peripheral generated ready.
	2-wait (reads)	Back-to-back write operations to Peripheral Frame 1 registers will incur a 1-cycle stall (1-cycle delay).
Peripheral Frame 2	0-wait (writes)	Fixed. Cycles cannot be extended by the peripheral.
	2-wait (reads)	
Peripheral Frame 3	0-wait (writes)	Assumes no conflict between CPU and CLA.
	2-wait (reads)	Cycles can be extended by peripheral-generated ready.
L0 SARAM	0-wait data and program	Assumes no CPU conflicts
L1 SARAM	0-wait data and program	Assumes no CPU conflicts
L2 SARAM	0-wait data and program	Assumes no CPU conflicts
L3 SARAM	0-wait data and program	Assumes no CPU conflicts
OTP	Programmable	Programmed through the Flash registers.
	1-wait minimum	1-wait is minimum number of wait states allowed.
Flash	Programmable	Programmed through the Flash registers.
	0-wait Paged min	
	1-wait Random min	
	Random ≥ Paged	
Flash Password	16-wait fixed	Wait states of password locations are fixed.
Boot-ROM	0-wait	
Secure ROM	0-wait	

表 8-8. Wait-States

8.3 Register Map

The devices contain four peripheral register spaces. The spaces are categorized as follows:

Peripheral Frame 0: These are peripherals that are mapped directly to the CPU memory bus. See 表 8-9.
Peripheral Frame 1: These are peripherals that are mapped to the 32-bit peripheral bus. See 表 8-10.
Peripheral Frame 2: These are peripherals that are mapped to the 16-bit peripheral bus. See 表 8-11.
Peripheral Frame 3: These are peripherals that are mapped to CLA in addition to their respective Peripheral Frame. See 表 8-12.

or i oripriorar i raino o riogic		
ADDRESS RANGE	SIZE (×16)	EALLOW PROTECTED ⁽²⁾
0x00 0880 to 0x00 0984	261	Yes
0x00 0985 to 0x00 0987	3	Yes
0x00 0A80 to 0x00 0ADF	96	Yes
0x00 0B00 to 0x00 0B0F	16	No
0x00 0B80 to 0x00 0BBF	64	Yes
0x00 0BC0 to 0x00 0BEF	48	Yes
0x00 0C00 to 0x00 0C3F	64	No
0x00 0CE0 to 0x00 0CFF	32	No
0x00 0D00 to 0x00 0DFF	256	No
0x00 1400 to 0x00 147F	128	Yes
0x00 1480 to 0x00 14FF	128	NA
0x00 1500 to 0x00 157F	128	NA
	ADDRESS RANGE 0x00 0880 to 0x00 0984 0x00 0985 to 0x00 0987 0x00 0800 to 0x00 0ADF 0x00 0B00 to 0x00 0B0F 0x00 0B80 to 0x00 0BBF 0x00 0BC0 to 0x00 0BEF 0x00 0C00 to 0x00 0C3F 0x00 0C00 to 0x00 0CFF 0x00 0D00 to 0x00 0DFF 0x00 0L00 to 0x00 0L7F 0x00 1400 to 0x00 147F 0x00 1480 to 0x00 14FF	ADDRESS RANGE SIZE (×16) 0x00 0880 to 0x00 0984 261 0x00 0985 to 0x00 0987 3 0x00 0A80 to 0x00 0ADF 96 0x00 0B00 to 0x00 0B0F 16 0x00 0B80 to 0x00 0BBF 64 0x00 0BC0 to 0x00 0BEF 48 0x00 0C00 to 0x00 0C3F 64 0x00 0CE0 to 0x00 0CFF 32 0x00 0D00 to 0x00 0DFF 256 0x00 1400 to 0x00 147F 128 0x00 1480 to 0x00 14FF 128

表 8-9. Peripheral Frame 0 Registers

(1) Registers in Frame 0 support 16-bit and 32-bit accesses.

(2) If registers are EALLOW protected, then writes cannot be performed until the EALLOW instruction is executed. The EDIS instruction disables writes to prevent stray code or pointers from corrupting register contents.

(3) The Flash Registers are also protected by the Dual Code Security Module.

表 8-10. Peripheral Frame 1 Registers

ADDRESS RANGE	SIZE (×16)	EALLOW PROTECTED	
0x00 6000 to 0x00 61FF	512	(1)	
0x00 6A00 to 0x00 6A1F	32	No	
0x00 6B00 to 0x00 6B3F	64	(1)	
0x00 6F80 to 0x00 6FFF	128	(1)	
	0x00 6000 to 0x00 61FF 0x00 6A00 to 0x00 6A1F 0x00 6B00 to 0x00 6B3F	0x00 6000 to 0x00 61FF 512 0x00 6A00 to 0x00 6A1F 32 0x00 6B00 to 0x00 6B3F 64	

(1) Some registers are EALLOW protected. See the module reference guide for more information.

表 8-11. Peripheral Frame 2 Registers

NAME	ADDRESS RANGE	SIZE (×16)	EALLOW PROTECTED
System Control Registers	0x00 7010 to 0x00 702F	32	Yes
SPI-A Registers	0x00 7040 to 0x00 704F	16	No
SCI-A Registers	0x00 7050 to 0x00 705F	16	No
SCI-B Registers	0x00 7750 to 0x00 775F	16	No
SCI-C Registers	0x00 7770 to 0x00 777F	16	No
NMI Watchdog Interrupt Registers	0x00 7060 to 0x00 706F	16	Yes
External Interrupt Registers	0x00 7070 to 0x00 707F	16	Yes
ADC Registers	0x00 7100 to 0x00 717F	128	(1)
I2C-A Registers	0x00 7900 to 0x00 793F	64	(1)

(1) Some registers are EALLOW protected. See the module reference guide for more information.

表 8-12. P	eripheral Frame	3 Registers
-----------	-----------------	-------------

NAME	ADDRESS RANGE	SIZE (×16)	EALLOW PROTECTED
ADC registers (0 wait read only)	0x00 0B00 to 0x00 0B0F	16	No
DAC Control Registers	0x00 6400 to 0x00 640F	16	Yes
DAC, PGA, Comparator, and Filter Enable Registers	0x00 6410 to 0x00 641F	16	Yes
SWITCH Registers	0x00 6420 to 0x00 642F	16	Yes
Digital Filter and Comparator Control Registers	0x00 6430 to 0x00 647F	80	Yes
LOCK Registers	0x00 64F0 to 0x00 64FF	16	Yes
ePWM1 registers	0x00 6800 to 0x00 683F	64	(1)
ePWM2 registers	0x00 6840 to 0x00 687F	64	(1)
ePWM3 registers	0x00 6880 to 0x00 68BF	64	(1)
ePWM4 registers	0x00 68C0 to 0x00 68FF	64	(1)
ePWM5 registers	0x00 6900 to 0x00 693F	64	(1)
ePWM6 registers	0x00 6940 to 0x00 697F	64	(1)
ePWM7 registers	0x00 6980 to 0x00 69BF	64	(1)
eCAP1 Registers	0x00 6A00 to 0x00 6A1F	32	No
eQEP1 Registers	0x00 6B00 to 0x00 6B3F	64	(1)

(1) Some registers are EALLOW protected. See the module reference guide for more information.

8.4 Device Emulation Registers

These registers are used to control the protection mode of the C28x CPU and to monitor some critical device signals. $\frac{1}{2}$ 8-13 defines the registers.

NAME	ADDRESS RANGE	SIZE (×16)		DESCRIPTION		EALLOW PROTECTED
DEVICECNF	0x0880 to 0x0881	2	Device Configuration	on Register		Yes
PARTID	0x0882	1	PARTID Register	TMS320F28055	0x0105	No
				TMS320F28054	0x0104	
				TMS320F28054M	0x0184	
				TMS320F28054F	0x0144	
				TMS320F28053	0x0103	
				TMS320F28052	0x0102	
				TMS320F28052M	0x0182	
				TMS320F28052F	0x0142	
				TMS320F28051	0x0101	
				TMS320F28050	0x0100	
REVID ⁽¹⁾	0x0883	1	Revision ID Register	0x0000 - Silicon Rev. () - TMX	No
				0x0000 - Silicon Rev.	A - TMS	
DC1	0x0886 to 0x0887	2	The Device Capab can be used to ver	Device Capability Register 1. The Device Capability Register is predefined by the part and can be used to verify features. If any bit is 0 in this register, the module is not present. See 表 8-14.		Yes
DC2	0x0888 to 0x0889	2	Device Capability Register 2. The Device Capability Register is predefined by the part and can be used to verify features. If any bit is 0 in this register, the module is not present. See $\frac{1}{2}$ 8-15.		Yes	
DC3	0x088A to 0x088B	2	Device Capability Register 3. The Device Capability Register is predefined by the part and can be used to verify features. If any bit is 0 in this register, the module is not present. See $\frac{1}{2}$ 8-16.		Yes	

表 8-13. Device Emulation Registers

(1) Boot-ROM contents changed from Rev. 0 silicon to Rev. A silicon. For more details, see the TMS320x2805x Real-Time Microcontrollers Technical Reference Manual.

表 8-14. Device Capability Register 1 (DC1) Field Descriptions

BIT ⁽¹⁾	FIELD	TYPE	DESCRIPTION
31:30	RSVD	R = 0	Reserved
29:22	PARTNO	R	These 8 bits set the PARTNO field value in the PARTID register for the device. They are readable in the PARTID[7:0] register bits.
21:14	RSVD	R = 0	Reserved
13	CLA	R	CLA is present when this bit is set.
12:7	RSVD	R = 0	Reserved
6	L3	R	L3 is present when this bit is set.
5	L2	R	L2 is present when this bit is set.
4	L1	R	L1 is present when this bit is set.
3	L0	R	L0 is present when this bit is set.
2	RSVD	R = 0	Reserved
1:0	RSVD	R = 0	Reserved

(1) All reserved bits should not be written to, but if any use case demands that reserved bits must be written to, then software must write the same value that is read back from the reserved bits. These bits are reserved for future enhancements.

表 8-	15. Device Ca	apability Register 2 (DC2) Field Descriptions

BIT ⁽¹⁾	FIELD	TYPE	DESCRIPTION	
31:28	RSVD	R = 0	Reserved	
27	eCAN-A	R	eCAN-A is present when this bit is set.	
26:17	RSVD	R = 0	Reserved	
16	EQEP-1	R	eQEP-1 is present when this bit is set.	
15:13	RSVD	R = 0	Reserved	
12	ECAP-1	R	eCAP-1 is present when this bit is set.	
11:9	RSVD	R = 0	Reserved	
8	I2C-A	R	I2C-A is present when this bit is set.	
7:5	RSVD	R = 0	Reserved	
4	SPI-A	R	SPI-A is present when this bit is set.	
3	RSVD	R = 0	Reserved	
2	SCI-C	R	SCI-C is present when this bit is set.	
1	SCI-B	R	SCI-B is present when this bit is set.	
0	SCI-A	R	SCI-A is present when this bit is set.	

(1) All reserved bits should not be written to, but if any use case demands that reserved bits must be written to, then software must write the same value that is read back from the reserved bits. These bits are reserved for future enhancements.

BIT ⁽¹⁾	FIELD	TYPE	DESCRIPTION				
31:20	RSVD	R = 0	Reserved				
19	CTRIPFIL7	R	CTRIPFIL7(B7) is present when this bit is set.				
18	CTRIPFIL6	R	CTRIPFIL6(B6) is present when this bit is set.				
17	CTRIPFIL5	R	CTRIPFIL5(B4) is present when this bit is set.				
16	CTRIPFIL4	R	CTRIPFIL4(A6) is present when this bit is set.				
15	CTRIPFIL3	R	CTRIPFIL3(B1) is present when this bit is set.				
14	CTRIPFIL2	R	CTRIPFIL2(A3) is present when this bit is set.				
13	CTRIPFIL1	R	CTRIPFIL1(A1) is present when this bit is set.				
12:8	RSVD	R = 0	Reserved				
7	RSVD	R = 0	Reserved				
6	ePWM7	R	ePWM7 is present when this bit is set.				
5	ePWM6	R	ePWM6 is present when this bit is set.				
4	ePWM5	R	ePWM5 is present when this bit is set.				
3	ePWM4	R	ePWM4 is present when this bit is set.				
2	ePWM3	R	ePWM3 is present when this bit is set.				
1	ePWM2	R	ePWM2 is present when this bit is set.				
0	ePWM1	R	ePWM1 is present when this bit is set.				

表 8-16. Device Capability Register 3 (DC3) Field Descriptions

(1) All reserved bits should not be written to, but if any use case demands that reserved bits must be written to, then software must write the same value that is read back from the reserved bits. These bits are reserved for future enhancements.

8.5 VREG, BOR, POR

Although the core and I/O circuitry operate on two different voltages, these devices have an on-chip voltage regulator (VREG) to generate the V_{DD} voltage from the V_{DDIO} supply. This feature eliminates the cost and space of a second external regulator on an application board. Additionally, internal power-on reset (POR) and brownout reset (BOR) circuits monitor both the V_{DD} and V_{DDIO} rails during power-up and run mode.

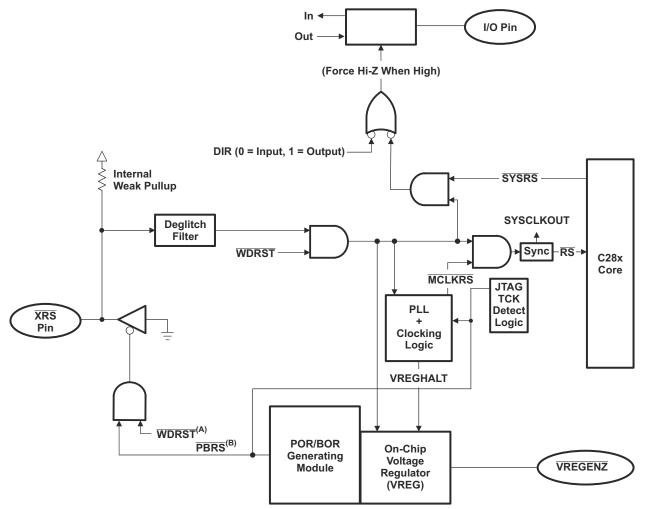
8.5.1 On-chip VREG

A linear regulator generates the core voltage (V_{DD}) from the V_{DDIO} supply. Therefore, although capacitors are required on each V_{DD} pin to stabilize the generated voltage, supplying power to these pins is not needed to operate the device. Conversely, the VREG can be disabled, if power or redundancy becomes the primary concern of the application.

8.5.1.1 Using the On-chip VREG

To use the on-chip VREG, the $\overline{VREGENZ}$ pin should be tied low and the appropriate recommended operating voltage should be supplied to the V_{DDIO} and V_{DDA} pins. In this case, the V_{DD} voltage needed by the core logic will be generated by the VREG. Each V_{DD} pin requires approximately 1.2 μ F (minimum) capacitance for proper regulation of the VREG. These capacitors should be located as close as possible to the V_{DD} pins.

8.5.1.2 Disabling the On-chip VREG


To conserve power, it is also possible to disable the on-chip VREG and supply the core logic voltage to the V_{DD} pins with a more efficient external regulator. To enable this option, the VREGENZ pin must be tied high.

8.5.2 On-chip Power-On Reset and Brownout Reset Circuit

The purpose of the POR is to create a clean reset throughout the device during the entire power-up procedure. The trip point is a looser, lower trip point than the BOR, which watches for dips in the V_{DD} or V_{DDIO} rail during device operation. The POR function is present on both V_{DD} and V_{DDIO} rails at all times. After initial device power-up, the BOR function is present on V_{DDIO} at all times, and on V_{DD} when the internal VREG is enabled (VREGENZ pin is tied low). Both functions tie the XRS pin low when one of the voltages is below its respective trip point. Additionally, when the internal voltage regulator is enabled, an overvoltage protection circuit will tie XRS low if the V_{DD} rail rises above its trip point. See \ddagger 7.6 for the various trip points as well as the delay time for the device to release the XRS pin after the undervoltage or overvoltage condition is removed. 😤 8-5 shows the VREG, POR, and BOR. To disable both the V_{DD} and V_{DDIO} BOR functions, a bit is provided in the BORCFG register. For details, see the System Control and Interrupts chapter of the *TMS320x2805x Real-Time Microcontrollers Technical Reference Manual*.

Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053 TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050

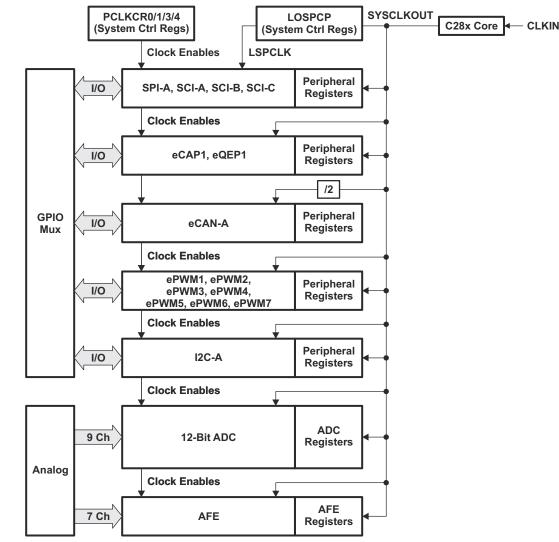
- A. WDRST is the reset signal from the CPU-watchdog.
- B. PBRS is the reset signal from the POR/BOR module.

图 8-5. VREG + POR + BOR + Reset Signal Connectivity

58 Submit Document Feedback

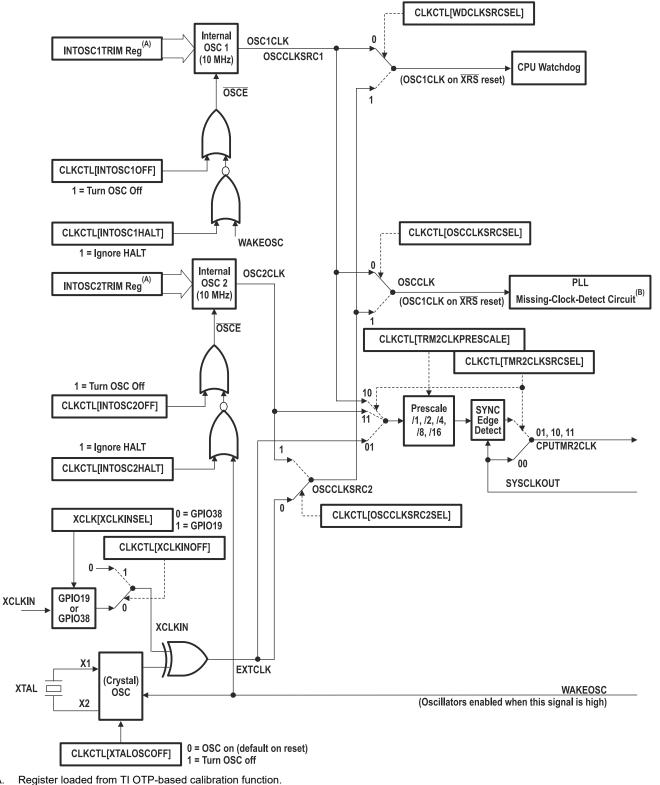
Copyright © 2021 Texas Instruments Incorporated

8.6 System Control


This section describes the oscillator and clocking mechanisms, the watchdog function and the low power modes. **8-17** lists the PLL, clocking, watchdog, and low-power mode registers.

NAME	ADDRESS	SIZE (×16)	DESCRIPTION ⁽¹⁾
BORCFG	0x00 0985	1	BOR Configuration register
XCLK	0x00 7010	1	XCLKOUT Control
PLLSTS	0x00 7011	1	PLL Status register
CLKCTL	0x00 7012	1	Clock Control register
PLLLOCKPRD	0x00 7013	1	PLL Lock Period
INTOSC1TRIM	0x00 7014	1	Internal Oscillator 1 Trim register
INTOSC2TRIM	0x00 7016	1	Internal Oscillator 2 Trim register
LOSPCP	0x00 701B	1	Low-Speed Peripheral Clock Prescaler register
PCLKCR0	0x00 701C	1	Peripheral Clock Control Register 0
PCLKCR1	0x00 701D	1	Peripheral Clock Control Register 1
LPMCR0	0x00 701E	1	Low Power Mode Control Register 0
PCLKCR3	0x00 7020	1	Peripheral Clock Control Register 3
PLLCR	0x00 7021	1	PLL Control register
SCSR	0x00 7022	1	System Control and Status register
WDCNTR	0x00 7023	1	Watchdog Counter register
PCLKCR4	0x00 7024	1	Peripheral Clock Control Register 4
WDKEY	0x00 7025	1	Watchdog Reset Key register
WDCR	0x00 7029	1	Watchdog Control register

(1) All registers in this table are EALLOW protected.


图 8-6 shows the various clock domains that are discussed. 图 8-7 shows the various clock sources (both internal and external) that can provide a clock for device operation.

A. CLKIN is the clock into the CPU. CLKIN is passed out of the CPU as SYSCLKOUT (that is, CLKIN is the same frequency as SYSCLKOUT).

图 8-6. Clock and Reset Domains

A. Register loaded from TI OTP-based calibration function
B. See ^{††} 8.6.4 for details on missing clock detection.

图 8-7. Clock Tree

8.6.1 Internal Zero-Pin Oscillators

The F2805x devices contain two independent internal zero-pin oscillators. By default both oscillators are turned on at power up, and internal oscillator 1 is the default clock source at this time. For power savings, unused oscillators may be powered down by the user. The center frequency of these oscillators is determined by their respective oscillator trim registers, written to in the calibration routine as part of the boot ROM execution. See \ddagger 7.13.1 for more information on these oscillators.

8.6.2 Crystal Oscillator Option

The on-chip crystal oscillator X1 and X2 pins are 1.8-V level signals and must never have 3.3-V level signals applied to them. If a system 3.3-V external oscillator is to be used as a clock source, it should be connected to the XCLKIN pin only. The X1 pin is not intended to be used as a single-ended clock input, it should be used with X2 and a crystal.

 $\frac{1}{8}$ 8-18 lists the typical specifications for the external quartz crystal (fundamental mode, parallel resonant). Furthermore, ESR range = 30 to 150 Ω. For $\frac{1}{8}$ 8-18, C_{shunt} should be less than or equal to 5 pF.

FREQUENCY (MHz)	R _d (Ω)	C _{L1} (pF)	C _{L2} (pF)				
5	2200	18	18				
10	470	15	15				
15	0	15	15				
20	0	12	12				

表 8-18. Typical Specifications for External Quartz Crystal

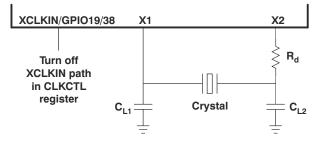


图 8-8. Using the On-chip Crystal Oscillator

Note

- 1. C_{L1} and C_{L2} are the total capacitance of the circuit board and components excluding the IC and crystal. The value is usually approximately twice the value of the load capacitance of the crystal.
- 2. The load capacitance of the crystal is described in the crystal specifications of the manufacturers.
- 3. TI recommends that customers have the resonator/crystal vendor characterize the operation of their device with the MCU chip. The resonator/crystal vendor has the equipment and expertise to tune the tank circuit. The vendor can also advise the customer regarding the proper tank component values that will produce proper start-up and stability over the entire operating range.

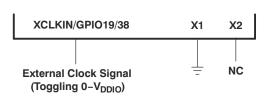


图 8-9. Using a 3.3-V External Oscillator

8.6.3 PLL-Based Clock Module

The devices have an on-chip, PLL-based clock module. This module provides all the necessary clocking signals for the device, as well as control for low-power mode entry. The PLL has a 4-bit ratio control PLLCR[DIV] to select different CPU clock rates. The watchdog module should be disabled before writing to the PLLCR register. The watchdog module can be re-enabled (if needed) after the PLL module has stabilized, which takes 1 ms. The input clock and PLLCR[DIV] bits should be chosen in such a way that the output frequency of the PLL (VCOCLK) is at least 50 MHz.

PLLCR[DIV] VALUE ^{(2) (3)}	SYSCLKOUT (CLKIN)					
	PLLSTS[DIVSEL] = 0 or 1 ⁽¹⁾	PLLSTS[DIVSEL] = 2	PLLSTS[DIVSEL] = 3			
0000 (PLL bypass)	OSCCLK/4 (Default) ⁽²⁾	OSCCLK/2	OSCCLK			
0001	(OSCCLK × 1)/4	(OSCCLK × 1)/2	(OSCCLK × 1)/1			
0010	(OSCCLK × 2)/4	(OSCCLK × 2)/2	(OSCCLK × 2)/1			
0011	(OSCCLK × 3)/4	(OSCCLK × 3)/2	(OSCCLK × 3)/1			
0100	(OSCCLK × 4)/4	(OSCCLK × 4)/2	(OSCCLK × 4)/1			
0101	(OSCCLK × 5)/4	(OSCCLK × 5)/2	(OSCCLK × 5)/1			
0110	(OSCCLK × 6)/4	(OSCCLK × 6)/2	(OSCCLK × 6)/1			
0111	(OSCCLK × 7)/4	(OSCCLK × 7)/2	(OSCCLK × 7)/1			
1000	(OSCCLK × 8)/4	(OSCCLK × 8)/2	(OSCCLK × 8)/1			
1001	(OSCCLK × 9)/4	(OSCCLK × 9)/2	(OSCCLK × 9)/1			
1010	(OSCCLK × 10)/4	(OSCCLK × 10)/2	(OSCCLK × 10)/1			
1011	(OSCCLK × 11)/4	(OSCCLK × 11)/2	(OSCCLK × 11)/1			
1100	(OSCCLK × 12)/4	(OSCCLK × 12)/2	(OSCCLK × 12)/1			

表 8-19. PLL Settings

(1) By default, PLLSTS[DIVSEL] is configured for /4. (The boot ROM changes the PLLSTS[DIVSEL] configuration to /1.) PLLSTS[DIVSEL] must be 0 before writing to the PLLCR and should be changed only after PLLSTS[PLLOCKS] = 1.

(2) The PLL control register (PLLCR) and PLL Status Register (PLLSTS) are reset to their default state by the XRS signal or a watchdog reset only. A reset issued by the debugger or the missing clock detect logic has no effect.

(3) This register is EALLOW protected. For more information, see the System Control and Interrupts chapter of the TMS320x2805x Real-Time Microcontrollers Technical Reference Manual.

PLLSTS [DIVSEL]	CLKIN DIVIDE
0	/4
1	/4
2	/2
3	/1

表 8-20. CLKIN Divide Options

The PLL-based clock module provides four modes of operation:

- **INTOSC1 (Internal Zero-pin Oscillator 1):** INTOSC1 is the on-chip internal oscillator 1. INTOSC1 can provide the clock for the Watchdog block, core and CPU-Timer 2.
- **INTOSC2 (Internal Zero-pin Oscillator 2):** INTOSC2 is the on-chip internal oscillator 2. INTOSC2 can provide the clock for the Watchdog block, core and CPU-Timer 2. Both INTOSC1 and INTOSC2 can be independently chosen for the Watchdog block, core and CPU-Timer 2.
- External Clock Source Operation: If the on-chip (crystal) oscillator is not used, this mode allows the on-chip (crystal) oscillator to be bypassed. The device clocks are generated from an external clock source input on the XCLKIN pin. The XCLKIN is multiplexed with GPIO19 or GPIO38 pin. The XCLKIN input can be selected as GPIO19 or GPIO38 through the XCLKINSEL bit in XCLK register. The CLKCTL[XCLKINOFF] bit disables

this clock input (forced low). If the clock source is not used or the respective pins are used as GPIOs, the user should disable at boot time.

Before changing clock sources, ensure that the target clock is present. If a clock is not present, then that clock source must be disabled (using the CLKCTL register) before switching clocks.

PLL MODE	REMARKS	PLLSTS[DIVSEL]	CLKIN AND SYSCLKOUT
	Invoked by the user setting the PLLOFF bit in the PLLSTS register. The PLL	0, 1	OSCCLK/4
PLL Off	block is disabled in this mode. The PLL block being disabled can be useful in reducing system noise and for low-power operation. The PLLCR register must	2	OSCCLK/2
	first be set to 0x0000 (PLL Bypass) before entering this mode. The CPU clock (CLKIN) is derived directly from the input clock on either X1/X2, X1 or XCLKIN.	3	OSCCLK/1
	PLL Bypass is the default PLL configuration upon power-up or after an external	0, 1	OSCCLK/4
PLL Bypass	reset (XRS). This mode is selected when the PLLCR register is set to 0x0000 or while the PLL locks to a new frequency after the PLLCR register has been modified. In this mode, the PLL is bypassed but is not turned off.	2	OSCCLK/2
		3	OSCCLK/1
		0, 1	OSCCLK × n/4
PLL Enable	Achieved by writing a nonzero value n into the PLLCR register. Upon writing to the PLLCR the device will switch to PLL Bypass mode until the PLL locks.	2	OSCCLK × n/2
		3	OSCCLK × n/1

表 8-21. Possible PLL Configuration Modes

8.6.4 Loss of Input Clock (NMI-watchdog Function)

The 2805x devices may be clocked from either one of the internal zero-pin oscillators (INTOSC1 or INTOSC2), the on-chip crystal oscillator, or from an external clock input. Regardless of the clock source, in PLL-enabled and PLL-bypass mode, if the input clock to the PLL vanishes, the PLL will issue a limp-mode clock at its output. This limp-mode clock continues to clock the CPU and peripherals at a typical frequency of 1 – 5 MHz.

When the limp mode is activated, a CLOCKFAIL signal is generated that is latched as an NMI interrupt. Depending on how the NMIRESETSEL bit has been configured, a reset to the device can be fired immediately or the NMI-watchdog counter can issue a reset when the counter overflows. In addition to this action, the Missing Clock Status (MCLKSTS) bit is set. The NMI interrupt could be used by the application to detect the input clock failure and initiate necessary corrective action such as switching over to an alternative clock source (if available) or initiate a shutdown procedure for the system.

If software does not respond to the clock-fail condition, the NMI-watchdog triggers a reset after a preprogrammed time interval. 🗏 8-10 shows the interrupt mechanisms involved.

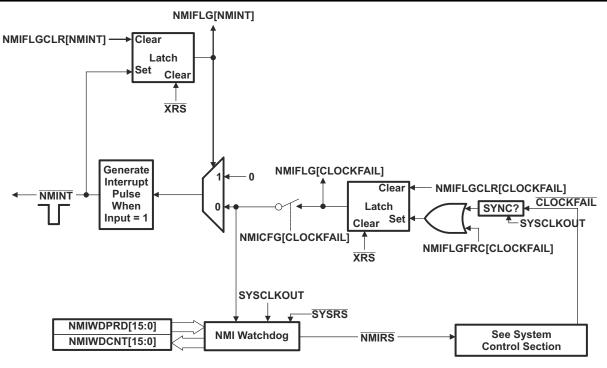


图 8-10. NMI-watchdog

8.6.5 CPU-watchdog Module

The CPU-watchdog module on the 2805x device is similar to the one used on the 281x, 280x, and 283xx devices. This module generates an output pulse, 512 oscillator clocks wide (OSCCLK), whenever the 8-bit watchdog up counter has reached its maximum value. To prevent this occurrence, the user must disable the counter or the software must periodically write a 0x55 + 0xAA sequence into the watchdog key register that resets the watchdog counter. \mathbb{R} 8-11 shows the various functional blocks within the watchdog module.

Normally, when the input clocks are present, the CPU-watchdog counter decrements to initiate a CPU-watchdog reset or WDINT interrupt. However, when the external input clock fails, the CPU-watchdog counter stops decrementing (that is, the watchdog counter does not change with the limp-mode clock).

Note

The CPU-watchdog is different from the NMI-watchdog. The CPU-watchdog is the legacy watchdog that is present in all 28x devices.

Note

Applications in which the correct CPU operating frequency is absolutely critical should implement a mechanism by which the MCU will be held in reset, should the input clocks ever fail. For example, an R-C circuit may be used to trigger the XRS pin of the MCU, should the capacitor ever get fully charged. An I/O pin may be used to discharge the capacitor on a periodic basis to prevent the capacitor from getting fully charged. Such a circuit would also help detect failure of the flash memory.

Copyright © 2021 Texas Instruments Incorporated

Submit Document Feedback 65

A. The WDRST signal is driven low for 512 OSCCLK cycles.

图 8-11. CPU-watchdog Module

The WDINT signal enables the watchdog to be used as a wakeup from IDLE/STANDBY mode.

In STANDBY mode, all peripherals are turned off on the device. The only peripheral that remains functional is the CPU-watchdog. This module will run off OSCCLK. The $\overline{\text{WDINT}}$ signal is fed to the LPM block so that the signal can wake the device from STANDBY (if enabled). For more details, see $\ddagger 8.7$, Low-power Modes Block.

In IDLE mode, the WDINT signal can generate an interrupt to the CPU, through the PIE, to take the CPU out of IDLE mode.

In HALT mode, the CPU-watchdog can be used to wake up the device through a device reset.

8.7 Low-power Modes Block

表 8-22 summarizes the various modes.

表 8-22. Low-power Modes						
MODE	LPMCR0(1:0)	OSCCLK	CLKIN	SYSCLKOUT	EXIT ⁽¹⁾	
IDLE	00	On	On	On	XRS, CPU-watchdog interrupt, any enabled interrupt	
STANDBY	01	On (CPU-watchdog still running)	Off	Off	XRS, CPU-watchdog interrupt, GPIO Port A signal, debugger ⁽²⁾	
HALT ⁽³⁾	1X	Off (on-chip crystal oscillator and PLL turned off, zero-pin oscillator and CPU-watchdog state dependent on user code.)	Off	Off	XRS, GPIO Port A signal, debugger ⁽²⁾ , CPU-watchdog	

丰 9 22 Low power Medee

(1) The EXIT column lists which signals or under what conditions the low power mode is exited. A low signal, on any of the signals, exits the low power condition. This signal must be kept low long enough for an interrupt to be recognized by the device. Otherwise, the lowpower mode will not be exited and the device will go back into the indicated low power mode.

The JTAG port can still function even if the CPU clock (CLKIN) is turned off. (2)

(3) The WDCLK must be active for the device to go into HALT mode.

The various low-power modes operate as follows:

IDLE Mode:	This mode is exited by any enabled interrupt that is recognized by the processor. The LPM block performs no tasks during this mode as long as the LPMCR0(LPM) bits are set to 0,0.
STANDBY Mode:	Any GPIO port A signal (GPIO[31:0]) can wake the device from STANDBY mode. The user must select which signals will wake the device in the GPIOLPMSEL register. The selected signals are also qualified by the OSCCLK before waking the device. The number of OSCCLKs is specified in the LPMCR0 register.
HALT Mode:	CPU-watchdog, XRS, and any GPIO port A signal (GPIO[31:0]) can wake the device from HALT mode. The user selects the signal in the GPIOLPMSEL register.

Note

The low-power modes do not affect the state of the output pins (PWM pins included). They will be in whatever state the code left them in when the IDLE instruction was executed. For more information, see the System Control and Interrupts chapter of the TMS320x2805x Real-Time Microcontrollers Technical Reference Manual.

8.8 Interrupts

图 8-12 shows how the various interrupt sources are multiplexed.

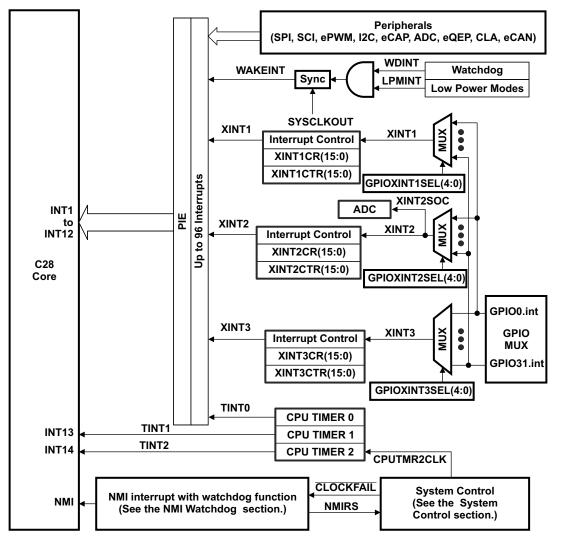


图 8-12. External and PIE Interrupt Sources

Eight PIE block interrupts are grouped into one CPU interrupt. In total, 12 CPU interrupt groups, with 8 interrupts per group equals 96 possible interrupts. **8-23** shows the interrupts used by 2805x devices.

The TRAP #VectorNumber instruction transfers program control to the interrupt service routine (ISR) corresponding to the vector specified. TRAP #0 attempts to transfer program control to the address pointed to by the reset vector. The PIE vector table does not, however, include a reset vector. Therefore, TRAP #0 should not be used when the PIE is enabled. Doing so will result in undefined behavior.

When the PIE is enabled, TRAP #1 to TRAP #12 will transfer program control to the ISR corresponding to the first vector within the PIE group. For example: TRAP #1 fetches the vector from INT1.1, TRAP #2 fetches the vector from INT2.1, and so forth.

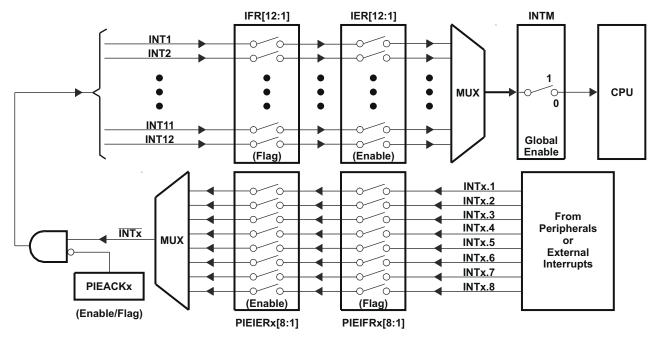


图 8-13. Multiplexing of Interrupts Using the PIE Block

In $\frac{1}{8}$ 8-23, out of 96 possible interrupts, some interrupts are not used. These interrupts are reserved for future devices. These interrupts can be used as software interrupts if they are enabled at the PIEIFRx level, provided none of the interrupts within the group is being used by a peripheral. Otherwise, interrupts coming in from peripherals may be lost by accidentally clearing their flag while modifying the PIEIFR. To summarize, there are two safe cases when the reserved interrupts could be used as software interrupts:

- 1. No peripheral within the group is asserting interrupts.
- 2. No peripheral interrupts are assigned to the group (for example, PIE group 7).

	INTx.8	INTx.7	INTx.6	INTx.5	INTx.4	INTx.3	INTx.2	INTx.1
INT1.y	WAKEINT	TINTO	ADCINT9	XINT2	XINT1	Reserved	ADCINT2	ADCINT1
	(LPM/WD)	(TIMER 0)	(ADC)	Ext. int. 2	Ext. int. 1	-	(ADC)	(ADC)
	0xD4E	0xD4C	0xD4A	0xD48	0xD46	0xD44	0xD42	0xD40
INT2.y	Reserved	EPWM7_TZINT	EPWM6_TZINT	EPWM5_TZINT	EPWM4_TZINT	EPWM3_TZINT	EPWM2_TZINT	EPWM1_TZINT
	-	(ePWM7)	(ePWM6)	(ePWM5)	(ePWM4)	(ePWM3)	(ePWM2)	(ePWM1)
	0xD5E	0xD5C	0xD5A	0xD58	0xD56	0xD54	0xD52	0xD50
INT3.y	Reserved	EPWM7_INT	EPWM6_INT	EPWM5_INT	EPWM4_INT	EPWM3_INT	EPWM2_INT	EPWM1_INT
	-	(ePWM7)	(ePWM6)	(ePWM5)	(ePWM4)	(ePWM3)	(ePWM2)	(ePWM1)
	0xD6E	0xD6C	0xD6A	0xD68	0xD66	0xD64	0xD62	0xD60
INT4.y	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	ECAP1_INT
	-	-	-	-	-	-	-	(eCAP1)
	0xD7E	0xD7C	0xD7A	0xD78	0xD76	0xD74	0xD72	0xD70
INT5.y	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	EQEP1_INT
	-	-	-	-	-	-	-	(eQEP1)
	0xD8E	0xD8C	0xD8A	0xD88	0xD86	0xD84	0xD82	0xD80
INT6.y	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	SPITXINTA	SPIRXINTA
	-	-	-	-	-	-	(SPI-A)	(SPI-A)
	0xD9E	0xD9C	0xD9A	0xD98	0xD96	0xD94	0xD92	0xD90
INT7.y	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
	-	-	-	-	-	-	-	-
	0xDAE	0xDAC	0xDAA	0xDA8	0xDA6	0xDA4	0xDA2	0xDA0
INT8.y	Reserved	Reserved	SCITXINTC	SCIRXINTC	Reserved	Reserved	I2CINT2A	I2CINT1A
	-	-	(SCI-C)	(SCI-C)	-	-	(I2C-A)	(I2C-A)
	0xDBE	0xDBC	0xDBA	0xDB8	0xDB6	0xDB4	0xDB2	0xDB0
INT9.y	Reserved	Reserved	ECAN1_INTA	ECAN0_INTA	SCITXINTB	SCIRXINTB	SCITXINTA	SCIRXINTA
	-	-	(CAN-A)	(CAN-A)	(SCI-B)	(SCI-B)	(SCI-A)	(SCI-A)
	0xDCE	0xDCC	0xDCA	0xDC8	0xDC6	0xDC4	0xDC2	0xDC0
INT10.y	ADCINT8	ADCINT7	ADCINT6	ADCINT5	ADCINT4	ADCINT3	ADCINT2	ADCINT1
	(ADC)	(ADC)	(ADC)	(ADC)	(ADC)	(ADC)	(ADC)	(ADC)
	(ePWM16)	(ePWM15)	(ePWM14)	(ePWM13)	(ePWM12)	(ePWM11)	(ePWM10)	(ePWM9)
	0xDDE	0xDDC	0xDDA	0xDD8	0xDD6	0xDD4	0xDD2	0xDD0
INT11.y	CLA1_INT8	CLA1_INT7	CLA1_INT6	CLA1_INT5	CLA1_INT4	CLA1_INT3	CLA1_INT2	CLA1_INT1
	(CLA)	(CLA)	(CLA)	(CLA)	(CLA)	(CLA)	(CLA)	(CLA)
	(ePWM16)	(ePWM15)	(ePWM14)	(ePWM13)	(ePWM12)	(ePWM11)	(ePWM10)	(ePWM9)
	0xDEE	0xDEC	0xDEA	0xDE8	0xDE6	0xDE4	0xDE2	0xDE0
INT12.y	LUF	LVF	Reserved	Reserved	Reserved	Reserved	Reserved	XINT3
	(CLA)	(CLA)	-	-	-	-	-	Ext. Int. 3
	0xDFE	0xDFC	0xDFA	0xDF8	0xDF6	0xDF4	0xDF2	0xDF0

表 8-23. PIE MUXed Peripheral Interrupt Vector Table

表 8-24. PIE Configuration and Control Registers							
NAME	ADDRESS	SIZE (×16)	DESCRIPTION ⁽¹⁾				
PIECTRL	0x0CE0	1	PIE, Control register				
PIEACK	0x0CE1	1	PIE, Acknowledge register				
PIEIER1	0x0CE2	1	PIE, INT1 Group Enable register				
PIEIFR1	0x0CE3	1	PIE, INT1 Group Flag register				
PIEIER2	0x0CE4	1	PIE, INT2 Group Enable register				
PIEIFR2	0x0CE5	1	PIE, INT2 Group Flag register				
PIEIER3	0x0CE6	1	PIE, INT3 Group Enable register				
PIEIFR3	0x0CE7	1	PIE, INT3 Group Flag register				
PIEIER4	0x0CE8	1	PIE, INT4 Group Enable register				
PIEIFR4	0x0CE9	1	PIE, INT4 Group Flag register				
PIEIER5	0x0CEA	1	PIE, INT5 Group Enable register				
PIEIFR5	0x0CEB	1	PIE, INT5 Group Flag register				
PIEIER6	0x0CEC	1	PIE, INT6 Group Enable register				
PIEIFR6	0x0CED	1	PIE, INT6 Group Flag register				
PIEIER7	0x0CEE	1	PIE, INT7 Group Enable register				
PIEIFR7	0x0CEF	1	PIE, INT7 Group Flag register				
PIEIER8	0x0CF0	1	PIE, INT8 Group Enable register				
PIEIFR8	0x0CF1	1	PIE, INT8 Group Flag register				
PIEIER9	0x0CF2	1	PIE, INT9 Group Enable register				
PIEIFR9	0x0CF3	1	PIE, INT9 Group Flag register				
PIEIER10	0x0CF4	1	PIE, INT10 Group Enable register				
PIEIFR10	0x0CF5	1	PIE, INT10 Group Flag register				
PIEIER11	0x0CF6	1	PIE, INT11 Group Enable register				
PIEIFR11	0x0CF7	1	PIE, INT11 Group Flag register				
PIEIER12	0x0CF8	1	PIE, INT12 Group Enable register				
PIEIFR12	0x0CF9	1	PIE, INT12 Group Flag register				
Reserved	0x0CFA - 0x0CFF	6	Reserved				

表 8-24. PIE Configuration and Control Registers

(1) The PIE configuration and control registers are not protected by EALLOW mode. The PIE vector table is protected.

8.8.1 External Interrupts

NAME	ADDRESS	SIZE (×16)	DESCRIPTION				
XINT1CR	0x00 7070	1	XINT1 configuration register				
XINT2CR	0x00 7071	1	XINT2 configuration register				
XINT3CR	0x00 7072	1	XINT3 configuration register				
XINT1CTR	0x00 7078	1	XINT1 counter register				
XINT2CTR	0x00 7079	1	XINT2 counter register				
XINT3CTR	0x00 707A	1	XINT3 counter register				

表 8-25. External Interrupt Registers

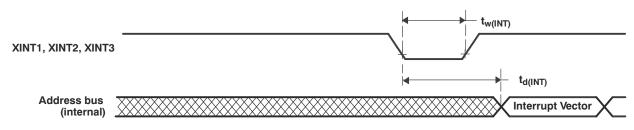
Each external interrupt can be enabled, disabled, or qualified using positive, negative, or both positive and negative edge. For more information, see the System Control and Interrupts chapter of the *TMS320x2805x Real-Time Microcontrollers Technical Reference Manual*.

8.8.1.1 External Interrupt Electrical Data/Timing

8.8.1.1.1 External Interrupt Timing Requirements

	TEST CONDITIONS	MIN MAX	UNIT
t _{w/INT} , ^{(1) (2)} Pulse duration, INT input low/high	Synchronous	1t _{c(SCO)}	cycles
t _{w(INT)} (1) (2) Pulse duration, INT input low/nigh	With qualifier	$1t_{c(SCO)} + t_{w(IQSW)}$	cycles

(1) For an explanation of the input qualifier parameters, see \ddagger 8.9.12.3.2.1.


(2) This timing is applicable to any GPIO pin configured for ADCSOC functionality.

8.8.1.1.2 External Interrupt Switching Characteristics

over recommended operating conditions (unless otherwise noted)

PARAMETER		MIN	MAX	UNIT
t _{d(INT)} (1)	Delay time, INT low/high to interrupt-vector fetch		$t_{w(IQSW)}$ + 12 $t_{c(SCO)}$	cycles

(1) For an explanation of the input qualifier parameters, see $\ddagger 8.9.12.3.2.1$.

图 8-14. External Interrupt Timing

8.9 Peripherals

8.9.1 Control Law Accelerator

8.9.1.1 CLA Device-Specific Information

The CLA extends the capabilities of the C28x CPU by adding parallel processing. Time-critical control loops serviced by the CLA can achieve low ADC sample to output delay. Thus, the CLA enables faster system response and higher frequency control loops. Using the CLA for time-critical tasks frees up the main CPU to perform other system and communication functions concurrently. The following is a list of major features of the CLA.

- Clocked at the same rate as the main CPU (SYSCLKOUT).
- An independent architecture allowing CLA algorithm execution independent of the main C28x CPU.
 - Complete bus architecture:
 - Program address bus and program data bus
 - Data address bus, data read bus, and data write bus
 - Independent eight-stage pipeline.
 - 12-bit program counter (MPC)
 - Four 32-bit result registers (MR0 MR3)
 - Two 16-bit auxillary registers (MAR0, MAR1)
 - Status register (MSTF)
- Instruction set includes:
 - IEEE single-precision (32-bit) floating-point math operations
 - Floating-point math with parallel load or store
 - Floating-point multiply with parallel add or subtract
 - 1/X and 1/sqrt(X) estimations
 - Data type conversions.
 - Conditional branch and call
 - Data load and store operations
- The CLA program code can consist of up to eight tasks or ISRs.
 - The start address of each task is specified by the MVECT registers.
 - No limit on task size as long as the tasks fit within the CLA program memory space.
 - One task is serviced at a time through to completion. There is no nesting of tasks.
 - Upon task completion, a task-specific interrupt is flagged within the PIE.
 - When a task finishes, the next highest-priority pending task is automatically started.
- Task trigger mechanisms:
 - C28x CPU through the IACK instruction
 - Task1 to Task7: the corresponding ADC, ePWM, eQEP, or eCAP module interrupt. For example:
 - Task1: ADCINT1 or EPWM1_INT
 - Task2: ADCINT2 or EPWM2_INT
 - Task4: ADCINT4 or EPWM4_INT or EQEPx_INT or ECAPx_INT
 - Task7: ADCINT7 or EPWM7_INT or EQEPx_INT or ECAPx_INT
 - Task8: ADCINT8 or by CPU Timer 0 or EQEPx_INT or ECAPx_INT
- Memory and Shared Peripherals:
 - Two dedicated message RAMs for communication between the CLA and the main CPU.
 - The C28x CPU can map CLA program and data memory to the main CPU space or CLA space.
 - The CLA has direct access to the CLA Data ROM that stores the math tables required by the routines in the CLA Math Library.
 - The CLA has direct access to the ADC Result registers, comparator and DAC registers, eCAP, eQEP, and ePWM registers.

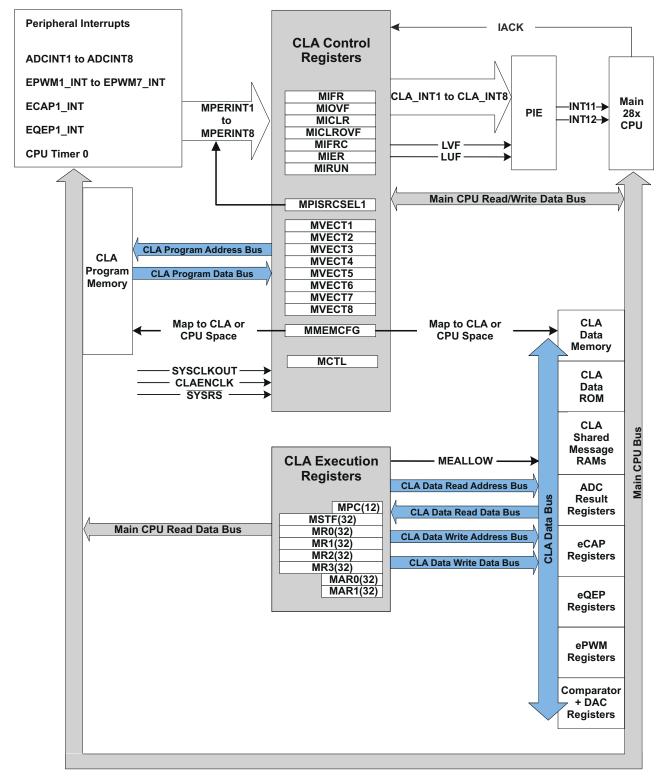


图 8-15. CLA Block Diagram

Copyright © 2021 Texas Instruments Incorporated

8.9.1.2 CLA Register Descriptions

REGISTER NAME	CLA1 ADDRESS	SIZE (×16)	EALLOW PROTECTED	DESCRIPTION ⁽¹⁾
MVECT1	0x1400	1	Yes	CLA Interrupt/Task 1 Start Address
MVECT2	0x1401	1	Yes	CLA Interrupt/Task 2 Start Address
MVECT3	0x1402	1	Yes	CLA Interrupt/Task 3 Start Address
MVECT4	0x1403	1	Yes	CLA Interrupt/Task 4 Start Address
MVECT5	0x1404	1	Yes	CLA Interrupt/Task 5 Start Address
MVECT6	0x1405	1	Yes	CLA Interrupt/Task 6 Start Address
MVECT7	0x1406	1	Yes	CLA Interrupt/Task 7 Start Address
MVECT8	0x1407	1	Yes	CLA Interrupt/Task 8 Start Address
MCTL	0x1410	1	Yes	CLA Control register
MMEMCFG	0x1411	1	Yes	CLA Memory Configure register
MPISRCSEL1	0x1414	2	Yes	Peripheral Interrupt Source Select Register 1
MIFR	0x1420	1	Yes	Interrupt Flag register
MIOVF	0x1421	1	Yes	Interrupt Overflow register
MIFRC	0x1422	1	Yes	Interrupt Force register
MICLR	0x1423	1	Yes	Interrupt Clear register
MICLROVF	0x1424	1	Yes	Interrupt Overflow Clear register
MIER	0x1425	1	Yes	Interrupt Enable register
MIRUN	0x1426	1	Yes	Interrupt RUN register
MPC ⁽²⁾	0x1428	1	-	CLA Program Counter
MAR0 ⁽²⁾	0x142A	1	-	CLA Aux Register 0
MAR1 ⁽²⁾	0x142B	1	-	CLA Aux Register 1
MSTF ⁽²⁾	0x142E	2	-	CLA STF register
MR0 ⁽²⁾	0x1430	2	-	CLA R0H register
MR1 ⁽²⁾	0x1434	2	-	CLA R1H register
MR2 ⁽²⁾	0x1438	2	-	CLA R2H register
MR3 ⁽²⁾	0x143C	2	-	CLA R3H register

表 8-26 CLA Control Registers

All registers in this table are DCSM protected. (1)

The main C28x CPU has read only access to this register for debug purposes. The main CPU cannot perform CPU or debugger writes (2) to this register.

ADDRESS RANGE	SIZE (×16)	DESCRIPTION
0x1480 to 0x14FF	128	CLA to CPU Message RAM
0x1500 to 0x157F	128	CPU to CLA Message RAM

8.9.2 Analog Block

8.9.2.1 Analog-to-Digital Converter

8.9.2.1.1 ADC Device-Specific Information

The core of the ADC contains a single 12-bit converter fed by two sample-and-hold circuits. The sample-and-hold circuits can be sampled simultaneously or sequentially. These, in turn, are fed by a total of up to 16 analog input channels. The converter can be configured to run with an internal bandgap reference to create true-voltage-based conversions or with a pair of external voltage references (V_{REFHI}/V_{REFLO}) to create ratiometric-based conversions.

Contrary to previous ADC types, this ADC is not sequencer-based. The user can easily create a series of conversions from a single trigger. However, the basic principle of operation is centered around the configurations of individual conversions, called SOCs, or Start-Of-Conversions.

Functions of the ADC module include:

- 12-bit ADC core with built-in dual sample-and-hold (S/H)
- Simultaneous sampling or sequential sampling modes
- Full range analog input: 0 V to 3.3 V fixed, or V_{REFHI}/V_{REFLO} ratiometric. The digital value of the input analog voltage is derived by:
 - Internal Reference (V_{REFLO} = V_{SSA}. V_{REFHI} must not exceed V_{DDA} when using either internal or external reference modes.)

Digital Value = 0,

 $\label{eq:Digital Value} \begin{aligned} \text{Digital Value} &= 4096 \times \frac{\text{Input Analog Voltage} - \text{V}_{\text{REFLO}}}{3.3} \end{aligned}$

Digital Value = 4095,

 External Reference (V_{REFHI}/V_{REFLO} connected to external references. V_{REFHI} must not exceed V_{DDA} when using either internal or external reference modes.)

Digital Value = 0,

 $\label{eq:Digital Value} \begin{aligned} \text{Digital Value} &= 4096 \times \frac{\text{Input Analog Voltage} - \text{V}_{\text{REFLO}}}{\text{V}_{\text{REFHI}} - \text{V}_{\text{REFLO}}} \end{aligned}$

when input $\geq V_{REFHI}$

when input $\leq 0 V$

when input \geq 3.3 V

when input $\leq 0 V$

when 0 V < input < 3.3 V

when $0 V < input < V_{REFHI}$

Digital Value = 4095,

- Up to 16-channel, multiplexed inputs
- 16 SOCs, configurable for trigger, sample window, and channel
- 16 result registers (individually addressable) to store conversion values
- Multiple trigger sources
 - S/W software immediate start
 - ePWM 1 7
 - GPIO XINT2
 - CPU-Timer 0, CPU-Timer 1, CPU-Timer 2
 - ADCINT1, ADCINT2
- 9 flexible PIE interrupts, can configure interrupt request after any conversion

REGISTER NAME	ADDRESS	SIZE (×16)	EALLOW PROTECTE D	DESCRIPTION
ADCCTL1	0x7100	1	Yes	Control 1 register
ADCCTL2	0x7101	1	Yes	Control 2 register
ADCINTFLG	0x7104	1	No	Interrupt Flag register
ADCINTFLGCLR	0x7105	1	No	Interrupt Flag Clear register
ADCINTOVF	0x7106	1	No	Interrupt Overflow register
ADCINTOVFCLR	0x7107	1	No	Interrupt Overflow Clear register
INTSEL1N2	0x7108	1	Yes	Interrupt 1 and 2 Selection register
INTSEL3N4	0x7109	1	Yes	Interrupt 3 and 4 Selection register
INTSEL5N6	0x710A	1	Yes	Interrupt 5 and 6 Selection register
INTSEL7N8	0x710B	1	Yes	Interrupt 7 and 8 Selection register
INTSEL9N10	0x710C	1	Yes	Interrupt 9 Selection register (reserved Interrupt 10 Selection)
SOCPRICTL	0x7110	1	Yes	SOC Priority Control register
ADCSAMPLEMODE	0x7112	1	Yes	Sampling Mode register
ADCINTSOCSEL1	0x7114	1	Yes	Interrupt SOC Selection 1 register (for 8 channels)
ADCINTSOCSEL2	0x7115	1	Yes	Interrupt SOC Selection 2 register (for 8 channels)
ADCSOCFLG1	0x7118	1	No	SOC Flag 1 register (for 16 channels)
ADCSOCFRC1	0x711A	1	No	SOC Force 1 register (for 16 channels)
ADCSOCOVF1	0x711C	1	No	SOC Overflow 1 register (for 16 channels)
ADCSOCOVFCLR1	0x711E	1	No	SOC Overflow Clear 1 register (for 16 channels)
ADCSOC0CTL to ADCSOC15CTL	0x7120 to 0x712F	1	Yes	SOC0 Control Register to SOC15 Control register
ADCREFTRIM	0x7140	1	Yes	Reference Trim register
ADCOFFTRIM	0x7141	1	Yes	Offset Trim register
ADCREV	0x714F	1	No	Revision register

表 8-28. ADC Configuration and Control Registers

表 8-29. ADC Result Registers (Mapped to PF0)

REGISTER NAME	ADDRESS	SIZE (×16)	EALLOW PROTECTED	DESCRIPTION
ADCRESULT0 to ADCRESULT15	0xB00 to 0xB0F	1	No	ADC Result 0 register to ADC Result 15 register

		0-Wait Result Registers	PF0 (CPU)	
			PF2 (CPU)	
			SYSCLKOUT	
		ADCINT 1		
		•		PIE
		ADCINT 9	•	
	ADC Core 12-Bit	ADCTRIG 1	TINT 0	CPUTIMER 0
		ADCTRIG 2	TINT 1	CPUTIMER 1
ADC Channels		ADCTRIG 3		CPUTIMER 2
		ADCTRIG 4	A XINT 2SOC	XINT 2
r		ADCTRIG 5	SOCA 1	
		ADCTRIG 6	SOCB 1	EPWM 1
		ADCTRIG 7	SOCA 2	
		ADCTRIG 8	SOCB 2	EPWM 2
		ADCTRIG 9	SOCA 3	50444.0
		ADCTRIG 10	SOCB 3	EPWM 3
		ADCTRIG 11	SOCA 4	
		ADCTRIG 12		EPWM 4
		ADCTRIG 13	SOCA 5	EPWM 5
		ADCTRIG 14	SOCB 5	
		ADCTRIG 15	SOCA 6	EPWM 6
		ADCTRIG 16		
		ADCTRIG 17	SOCA 7	EPWM 7
		ADCTRIG 18	SOCB 7	

图 8-16. ADC Connections

ADC Connections if the ADC is Not Used

TI recommends keeping the connections for the analog power pins, even if the ADC is not used. Following is a summary of how the ADC pins should be connected, if the ADC is not used in an application:

- V_{DDA} Connect to V_{DDIO}
- V_{SSA} Connect to V_{SS}
- V_{REFLO} Connect to V_{SS}
- ADCINAn, ADCINBn, V_{REFHI} Connect to V_{SSA}

When the ADC module is used in an application, unused ADC input pins should be connected to analog ground (V_{SSA}) .

When the ADC is not used, be sure that the clock to the ADC module is not turned on to realize power savings.

8.9.2.1.2 ADC Electrical Data/Timing

8.9.2.1.2.1 ADC Electrical Characteristics

PARAMETER		MIN	TYP	MAX	UNIT
DC SPECIFICATIONS					
Resolution		12			Bits
ADC clock		0.5		60	MHz
Sample Window (see 表 8-30)	28055, 28054, 28053, 28052	10		63	ADC clocks
	28051, 28050	24		63	
ACCURACY					
INL (Integral nonlinearity) ⁽¹⁾		- 4		4.5	LSB
DNL (Differential nonlinearity), no missing codes		- 1		1.5	LSB
Offset error ⁽²⁾	Executing a single self- recalibration ⁽³⁾	- 20	0	20	
	Executing periodic self- recalibration ⁽⁴⁾	- 4	0	4	LSB
Overall gain error with internal reference		- 60		60	LSB
Overall gain error with external reference		- 40		40	LSB
Channel-to-channel offset variation		- 4		4	LSB
Channel-to-channel gain variation		- 4		4	LSB
ADC temperature coefficient with internal reference			- 50		ppm/°C
ADC temperature coefficient with external reference			- 20		ppm/°C
V _{REFLO}			- 100		μA
V _{REFHI}			100		μA
ANALOG INPUT					1
Analog input voltage with internal reference		0		3.3	V
Analog input voltage with external reference		V _{REFLO}		V _{REFHI}	V
V _{REFLO} input voltage		V _{SSA}		0.66	V
V _{REFHI} input voltage ⁽⁵⁾		2.64		V_{DDA}	V
	with $V_{REFLO} = V_{SSA}$	1.98		V_{DDA}	
Input capacitance			5		pF
Input leakage current			±2		μ Α

 INL will degrade when the ADC input voltage goes above V_{DDA}.
 1 LSB has the weighted value of full-scale range (FSR)/4096. FSR is 3.3 V with internal reference and V_{REFHI} - V_{REFLO} for external reference.

For more details, see the TMS320F2805x Real-Time MCUs Silicon Errata. (3)

(4) Periodic self-recalibration will remove system-level and temperature dependencies on the ADC zero offset error. This can be performed as needed in the application without sacrificing an ADC channel by using the procedure listed in the "ADC Zero Offset Calibration" section in the Analog-to-Digital Converter and Comparator chapter of the TMS320x2805x Real-Time Microcontrollers Technical Reference Manual.

(5) V_{REFHI} must not exceed V_{DDA} when using either internal or external reference modes.

表 8-30. ACQPS Values

	OVERLAP MODE ⁽¹⁾	NONOVERLAP MODE ⁽¹⁾
Non-PGA	{9, 10, 23, 36, 49, 62}	{15, 16, 28, 29, 41, 42, 54, 55}
PGA	{23, 36, 49, 62}	{15, 16, 28, 29, 41, 42, 54, 55}

(1) ACQPS = 6 can be used for the first sample if it is thrown away.

8.9.2.1.2.2 ADC Power Modes

ADC OPERATING MODE	CONDITIONS	I _{DDA}	UNITS
Mode A - Operating Mode	ADC Clock Enabled Bandgap On (ADCBGPWD = 1) Reference On (ADCREFPWD = 1) ADC Powered Up (ADCPWDN = 1)	13	mA
Mode B – Quick Wake Mode	ADC Clock Enabled Bandgap On (ADCBGPWD = 1) Reference On (ADCREFPWD = 1) ADC Powered Up (ADCPWDN = 0)	4	mA
Mode C - Comparator-Only Mode	ADC Clock Enabled Bandgap On (ADCBGPWD = 1) Reference On (ADCREFPWD = 0) ADC Powered Up (ADCPWDN = 0)	1.5	mA
Mode D - Off Mode	ADC Clock Enabled Bandgap On (ADCBGPWD = 0) Reference On (ADCREFPWD = 0) ADC Powered Up (ADCPWDN = 0)	0.075	mA

8.9.2.1.2.3 External ADC Start-of-Conversion Electrical Data/Timing 8.9.2.1.2.3.1 External ADC Start-of-Conversion Switching Characteristics

over recommended operating conditions (unless otherwise noted)

	PARAMETER		MIN	MAX	UNIT
t _{w(ADCSOCL)}	Pulse duration, ADCSOCxO low		32t _{c(HCO)}		cycles
ADCSOCAO —		- t _{w(ADCS}	OCL)		
or ADCSOCBO	¥#	!			

图 8-17. ADCSOCAO or ADCSOCBO Timing

8.9.2.1.2.4 Internal Temperature Sensor

8.9.2.1.2.4.1 Temperature Sensor Coefficient

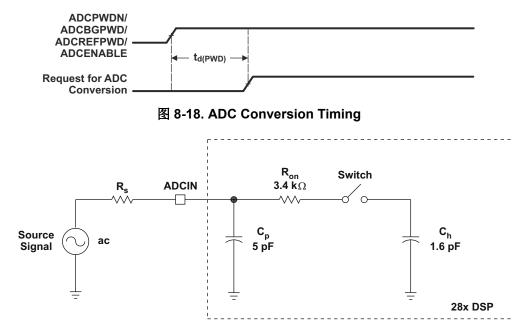
	PARAMETER ^{(1) (2)}	MIN	TYP	MAX	UNIT
T _{SLOPE}	Degrees C of temperature movement per measured ADC LSB change of the temperature sensor	C).18 ⁽⁴⁾ (3)		°C/LSB
T _{OFFSET}	ADC output at 0°C of the temperature sensor		1750		LSB

(1) The accuracy of the temperature sensor for sensing absolute temperature (temperature in degrees) is not specified. The primary use of the temperature sensor should be to compensate the internal oscillator for temperature drift (this operation is assured as per \ddagger 7.13.1.3).

(2) The temperature sensor slope and offset are given in terms of ADC LSBs using the internal reference of the ADC. Values must be adjusted accordingly in external reference mode to the external reference voltage.

(3) Output of the temperature sensor (in terms of LSBs) is sign-consistent with the direction of the temperature movement. Increasing temperatures will give increasing ADC values relative to an initial value; decreasing temperatures will give decreasing ADC values relative to an initial value.

(4) ADC temperature coefficient is accounted for in this specification



8.9.2.1.2.5 ADC Power-Up Control Bit Timing

8.9.2.1.2.5.1 ADC Power-Up Delays

PARAMETER ⁽¹⁾	MIN	MAX	UNIT	
t _{d(PWD)} Delay time for the ADC to be stable after power up		1	ms	

(1) Timings maintain compatibility to the ADC module. The 2805x ADC supports driving all 3 bits at the same time t_{d(PWD)} ms before first conversion.

Typical Values of the Input Circuit Components:

Switch Resistance (R_{on}): 3.4 k Ω Sampling Capacitor (C_h): 1.6 pF Parasitic Capacitance (C_p): 5 pF Source Resistance (R_s): 50 Ω

图 8-19. ADC Input Impedance Model

8.9.2.1.2.6 ADC Sequential and Simultaneous Timings

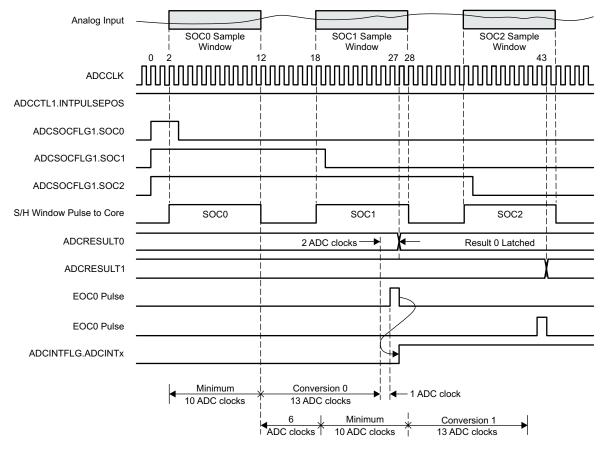


图 8-20. Timing Example for Sequential Mode / Late Interrupt Pulse

82 Submit Document Feedback

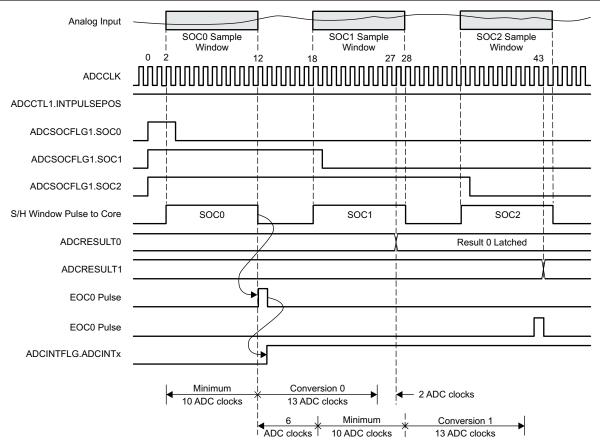


图 8-21. Timing Example for Sequential Mode / Early Interrupt Pulse

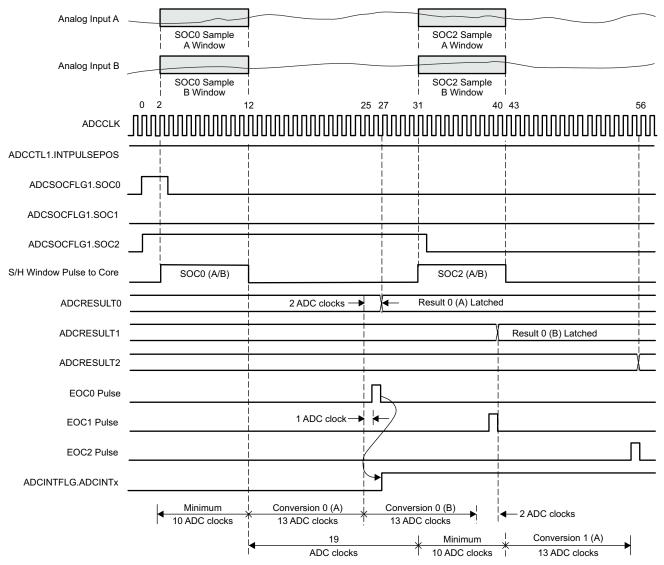


图 8-22. Timing Example for Simultaneous Mode / Late Interrupt Pulse

84 Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

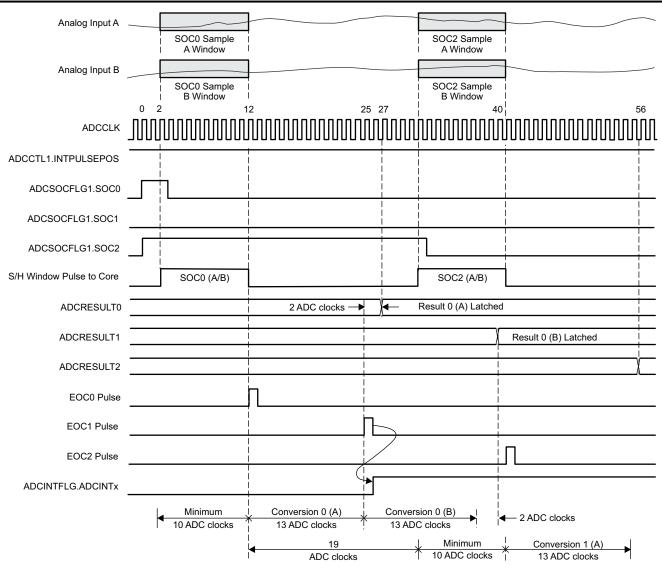


图 8-23. Timing Example for Simultaneous Mode / Early Interrupt Pulse

8.9.2.2 Analog Front End

8.9.2.2.1 AFE Device-Specific Information

The AFE contains up to seven comparators with up to three integrated DACs, one V_{REFOUT} -buffered DAC, up to four PGAs, and up to four digital filters. 8 - 24 and 8 - 25 show the AFE.

The comparator output signal filtering is achieved using the digital filter present on selective input line and qualifies the output of the COMP/DAC subsystem (see 8-27). The filtered or unfiltered output of the COMP/DAC subsystem can be configured to be an input to the Digital Compare submodule of the ePWM peripheral.

Note

The analog inputs are brought in through the AFE subsystem rather than through an AIO Mux, which is not present.

The ADCINSWITCH register is used to control ADC inputs dynamically, and the setting of this register is separate from the AFE and digital filter initialization.

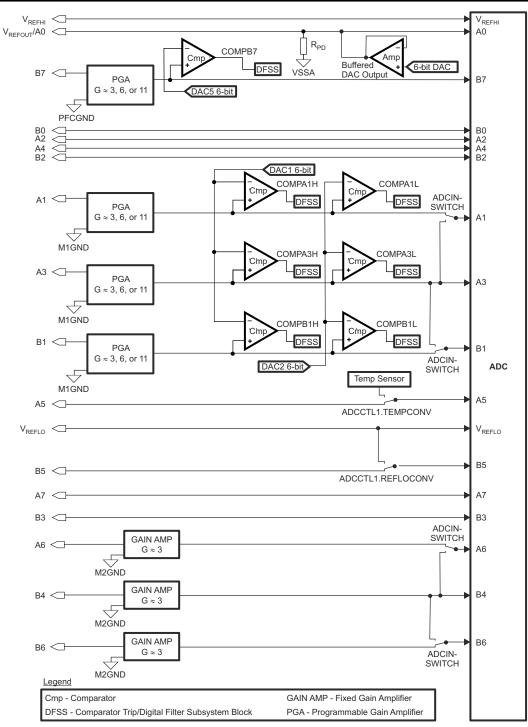


图 8-24. 28055, 28054, 28053, 28052, and 28051 Analog Front End

Copyright © 2021 Texas Instruments Incorporated

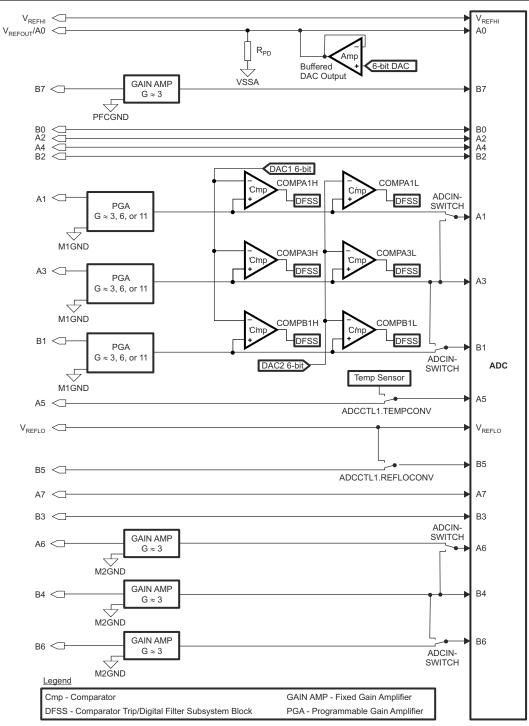


图 8-25. 28050 Analog Front End

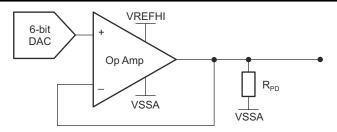


图 8-26. V_{REFOUT}

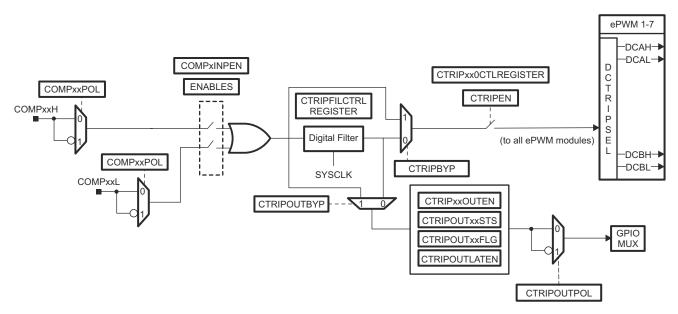


图 8-27. Comparator Trip/Digital Filter Subsystem

8.9.2.2.2 AFE Register Descriptions

REGISTER NAME	ADDRESS	SIZE (×16)	EALLOW PROTECTE D	DESCRIPTION				
DAC1CTL	0x6400	1	Yes	DAC1 Control register				
DAC2CTL	0x6401	1	Yes	DAC2 Control register				
DAC5CTL	0x6404	1	Yes	DAC5 Control register				
VREFOUTCTL	0x6405	1	Yes	VREF Output Control Register				

表 8-31. DAC Control Registers

表 8-32. DAC, PGA, Comparator, and Filter Enable Registers

REGISTER NAME	ADDRESS	SIZE (×16)	EALLOW PROTECTE D	DESCRIPTION
DACEN	0x6410	1	Yes	DAC Enables register
VREFOUTEN	0x6411	1	Yes	VREF Out Enable Register
PGAEN	0x6412	1	Yes	Programmable Gain Amplifier Enable register
COMPEN	0x6413	1	Yes	Comparator Enable register
AMPM1_GAIN	0x6414	1	Yes	Motor Unit 1 PGA Gain Controls register
AMP_PFC_GAIN	0x6416	1	Yes	PFC PGA Gain Controls register

表 8-33. SWITCH Registers

REGISTER NAME	ADDRESS	SIZE (×16)	EALLOW PROTECTE D	DESCRIPTION
ADCINSWITCH	0x6421	1	Yes	ADC Input-Select Switch Control register
Reserved	0x6422 to 0x6428	7	Yes	Reserved
COMPHYSTCTL	0x6429	1	Yes	Comparator Hysteresis Control register

表 8-34. Digital Filter and Comparator Control Registers

REGISTER NAME	ADDRESS	SIZE (×16)	EALLOW PROTECTE D	DESCRIPTION
CTRIPA1ICTL	0x6430	1	Yes	CTRIPA1 Filter Input and Function Control register
CTRIPA1FILCTL	0x6431	1	Yes	CTRIPA1 Filter Parameters register
CTRIPA1FILCLKCTL	0x6432	1	Yes	CTRIPA1 Filter Sample Clock Control register
Reserved	0x6433	1	Yes	Reserved
CTRIPA3ICTL	0x6434	1	Yes	CTRIPA3 Filter Input and Function Control register
CTRIPA3FILCTL	0x6435	1	Yes	CTRIPA3 Filter Parameters register
CTRIPA3FILCLKCTL	0x6436	1	Yes	CTRIPA3 Filter Sample Clock Control register
Reserved	0x6437	1	Yes	Reserved
CTRIPB1ICTL	0x6438	1	Yes	CTRIPB1 Filter Input and Function Control register
CTRIPB1FILCTL	0x6439	1	Yes	CTRIPB1 Filter Parameters register
CTRIPB1FILCLKCTL	0x643A	1	Yes	CTRIPB1 Filter Sample Clock Control register
Reserved	0x643B	1	Yes	Reserved
Reserved	0x643C	1	Yes	Reserved
CTRIPM10CTL	0x643D	1	Yes	CTRIPM1 CTRIP Filter Output Control register
CTRIPM1STS	0x643E	1	Yes	CTRIPM1 CTRIPxx Outputs Status register
CTRIPM1FLGCLR	0x643F	1	Yes	CTRIPM1 CTRIPxx Flag Clear register

90 Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

表 8-34. Digital Filter and Comparator Control Registers (continued)

REGISTER NAME	ADDRESS	SIZE (×16)	EALLOW PROTECTE D	DESCRIPTION
Reserved	0x6440 to 0x645F	16	Yes	Reserved
Reserved	0x6460 to 0x646F	16	Yes	Reserved
CTRIPB7ICTL	0x6470	1	Yes	CTRIPB7 Filter Input and Function Control register
CTRIPB7FILCTL	0x6471	1	Yes	CTRIPB7 Filter Parameters register
CTRIPB7FILCLKCTL	0x6472	1	Yes	CTRIPB7 Filter Sample Clock Control register
Reserved	0x6473 to 0x647B	9	Yes	Reserved
Reserved	0x647C	1	Yes	Reserved
CTRIPPFCOCTL	0x647D	1	Yes	CTRIPPFC CTRIPxx Outputs Status register
CTRIPPFCSTS	0x647E	1	Yes	CTRIPPFC CTRIPxx Flag Clear register
CTRIPPFCFLGCLR	0x647F	1	Yes	CTRIPPFC COMP Test Control register

表 8-35. LOCK Registers

REGISTER NAME	ADDRESS	SIZE (×16)	EALLOW PROTECTE D	DESCRIPTION
LOCKCTRIP	0x64F0	1	Yes	Lock Register for CTRIP Filters register
Reserved	0x64F1	1	Yes	Reserved
LOCKDAC	0x64F2	1	Yes	Lock Register for DACs register
Reserved	0x64F3	1	Yes	Reserved
LOCKAMPCOMP	0x64F4	1	Yes	Lock Register for Amplifiers and Comparators register
Reserved	0x64F5	1	Yes	Reserved
LOCKSWITCH	0x64F6	1	Yes	Lock Register for Switches register

8.9.2.2.3 PGA Electrical Data/Timing

•••			
INTERNAL RESISTOR RATIO	EQUIVALENT GAIN FROM INPUT TO OUTPUT	LINEAR OUTPUT RANGE OF OP-AMP	MINIMUM ADC SAMPLING TIME TO ACHIEVE SETTLING ACCURACY
10	11	0.6 V to V _{DDA} - 0.6 V	384 ns (ACQPS = 23)
5	6	0.6 V to V _{DDA} - 0.6 V	384 ns (ACQPS = 23)
2	3	0.6 V to V _{DDA} - 0.6 V	384 ns (ACQPS = 23)

表 8-36. Op-Amp Linear Output and ADC Sampling Time Across Gain Settings

表 8-37. PGA Gain Stage: DC Accuracy Across Gain Settings

INTERNAL RESISTOR RATIO	EQUIVALENT GAIN FROM INPUT TO OUTPUT	COMPENSATED GAIN-ERROR ACROSS TEMPERATURE AND SUPPLY VARIATIONS	COMPENSATED INPUT OFFSET-ERROR ACROSS TEMPERATURE AND SUPPLY VARIATIONS IN mV
10	11	< ±2.5%	< ±8 mV
5	6	< ±1.5%	< ±8 mV
2	3	< ±1.0%	< ±8 mV

8.9.2.2.4 Comparator Block Electrical Data/Timing

8.9.2.2.4.1 Electrical Characteristics of the Comparator/DAC

PARAMETER	MIN TYP	MAX	UNITS					
Comparator								
Comparator Input Range	V _{SSA} – V _{DDA}		V					
Comparator response time to PWM Trip Zone (Async)	65		ns					
Comparator large step response time to PWM Trip Zone (Async)	95		ns					
DAC		<u> </u>						
DAC Output Range	V_{DDA} / $2^6 - V_{DDA}$		V					
DAC resolution	6		bits					
DAC Gain	- 1.5%							
DAC Offset	10		mV					
Monotonic	Yes							
INL	0.2		LSB					

8.9.2.2.5 V_{REFOUT} Buffered DAC Electrical Data

8.9.2.2.5.1 Electrical Characteristics of V_{REFOUT} Buffered DAC

PARAMETER	MIN	TYP	MAX	UNITS
V _{REFOUT} Programmable Range	6	·	56	LSB
V _{REFOUT} resolution		6		bits
V _{REFOUT} Gain		- 1.5%		
V _{REFOUT} Offset		10		mV
Monotonic		Yes		
INL		±0.2		LSB
Load	3			kΩ
			100	pF
R _{PD}		20		kΩ

92 Submit Document Feedback

8.9.3 Detailed Descriptions

Integral Nonlinearity

Integral nonlinearity refers to the deviation of each individual code from a line drawn from zero through full scale. The point used as zero occurs one-half LSB before the first code transition. The full-scale point is defined as level one-half LSB beyond the last code transition. The deviation is measured from the center of each particular code to the true straight line between these two points.

Differential Nonlinearity

An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. A differential nonlinearity error of less than ±1 LSB ensures no missing codes.

Zero Offset

Zero error is the difference between the ideal input voltage and the actual input voltage that just causes a transition from an output code of zero to an output code of one.

Gain Error

The first code transition should occur at an analog value one-half LSB above negative full scale. The last transition should occur at an analog value one and one-half LSB below the nominal full scale. Gain error is the deviation of the actual difference between first and last code transitions and the ideal difference between first and last code transitions.

Signal-to-Noise Ratio + Distortion

Signal-to-noise ratio + distortion (SINAD) is the ratio of the rms value of the measured input signal to the rms sum of all other spectral components below the Nyquist frequency, including harmonics but excluding DC. The value for SINAD is expressed in decibels.

Effective Number of Bits

 $N = \frac{(SINAD - 1.76)}{(SINAD - 1.76)}$

For a sine wave, SINAD can be expressed in terms of the number of bits. Using the formula 6.02 it is possible to get a measure of performance expressed as N, the effective number of bits (ENOB). Thus, the ENOB for a device for sine wave inputs at a given input frequency can be calculated directly from its measured SINAD.

Total Harmonic Distortion

Total harmonic distortion (THD) is the ratio of the rms sum of the first nine harmonic components to the rms value of the measured input signal and is expressed as a percentage or in decibels.

Spurious Free Dynamic Range

Spurious free dynamic range (SFDR) is the difference in dB between the rms amplitude of the input signal and the peak spurious signal.

8.9.4 Serial Peripheral Interface

8.9.4.1 SPI Device-Specific Information

The device includes the four-pin SPI module. The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream of programmed length (1 to 16 bits) to be shifted into and out of the device at a programmable bit-transfer rate. Normally, the SPI is used for communications between the MCU and external peripherals or another processor. Typical applications include external I/O or peripheral expansion through devices such as shift registers, display drivers, and ADCs. Multidevice communications are supported by the master/slave operation of the SPI.

The SPI module features include:

- · Four external pins:
 - SPISOMI: SPI slave-output/master-input pin
 - SPISIMO: SPI slave-input/master-output pin
 - SPISTE: SPI slave transmit-enable pin
 - SPICLK: SPI serial-clock pin

Note

All four pins can be used as GPIO if the SPI module is not used.

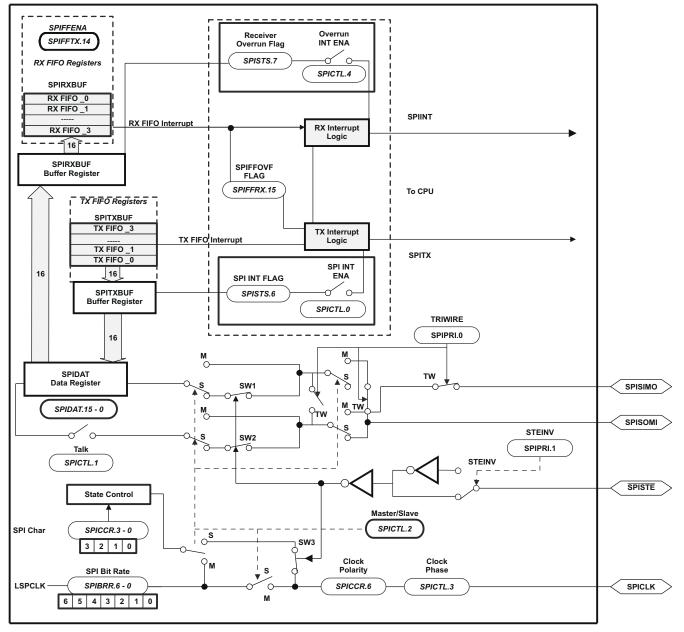
• Two operational modes: master and slave

Baud rate: 125 different programmable rates.

Baud rate =
$$\frac{\text{LSPCLK}}{(\text{SPIBRR} + 1)}$$
 when SPIBRR = 3 to 127
Baud rate = $\frac{\text{LSPCLK}}{4}$ when SPIBRR = 0, 1, 2

- Data word length: 1 to 16 data bits
- Four clocking schemes (controlled by clock polarity and clock phase bits) include:
 - Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.
 - Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the falling edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.
 - Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.
 - Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the rising edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.
- Simultaneous receive and transmit operation (transmit function can be disabled in software)
- Transmitter and receiver operations are accomplished through either interrupt-driven or polled algorithms.
- Nine SPI module control registers: Located in control register frame beginning at address 7040h.

Note


All registers in this module are 16-bit registers that are connected to Peripheral Frame 2. When a register is accessed, the register data is in the lower byte (7 - 0), and the upper byte (15 - 8) is read as zeros. Writing to the upper byte has no effect.

Enhanced feature:

- 4-level transmit/receive FIFO
- Delayed transmit control
- Bi-directional 3-wire SPI mode support
- Audio data receive support through SPISTE inversion

图 8-28 is a block diagram of the SPI in slave mode.

A. SPISTE is driven low by the master for a slave device.

图 8-28. SPI Module Block Diagram (Slave Mode)

8.9.4.2 SPI Register Descriptions

The SPI port operation is configured and controlled by the registers listed in $\frac{1}{8}$ 8-38.

NAME	ADDRESS	SIZE (×16)	EALLOW PROTECTED	DESCRIPTION ⁽¹⁾					
SPICCR	0x7040	1	No	SPI-A Configuration Control register					
SPICTL	0x7041	1	No	SPI-A Operation Control register					
SPISTS	0x7042	1	No	SPI-A Status register					
SPIBRR	0x7044	1	No	SPI-A Baud Rate register					
SPIRXEMU	0x7046	1	No	SPI-A Receive Emulation Buffer register					
SPIRXBUF	0x7047	1	No	SPI-A Serial Input Buffer register					
SPITXBUF	0x7048	1	No	SPI-A Serial Output Buffer register					
SPIDAT	0x7049	1	No	SPI-A Serial Data register					
SPIFFTX	0x704A	1	No	SPI-A FIFO Transmit register					
SPIFFRX	0x704B	1	No	SPI-A FIFO Receive register					
SPIFFCT	0x704C	1	No	SPI-A FIFO Control register					
SPIPRI	0x704F	1	No	SPI-A Priority Control register					

表 8-38. SPI-A Registers

(1) Registers in this table are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined results.

8.9.4.3 SPI Master Mode Electrical Data/Timing

 \ddagger 8.9.4.3.1 lists the master mode timing (clock phase = 0) and \ddagger 8.9.4.3.2 lists the master mode timing (clock phase = 1). 🛽 8-29 and 🖉 8-30 show the timing waveforms.

8.9.4.3.1 SPI Master Mode External Timing (Clock Phase = 0)

NO.	D/	ARAMETER(1) (2) (3) (4) (5)	BRR EV	/EN	BRR ODD		
NO.			MIN	MAX	MIN	MAX	UNIT
1	t _{c(SPC)M}	Cycle time, SPICLK	4t _{c(LSPCLK)}	128t _{c(LSPCLK)}	5t _{c(LSPCLK)}	127t _{c(LSPCLK)}	ns
2	t _{w(SPC1)M}	Pulse duration, SPICLK first pulse	0.5t _{c(SPC)M} - 10	0.5t _{c(SPC)M} + 10	0.5t _{c(SPC)M} + 0.5t _{c(LSPCLK)} - 10	0.5t _{c(SPC)M} + 0.5t _{c(LSPCLK)} + 10	ns
3	t _{w(SPC2)M}	Pulse duration, SPICLK second pulse	0.5t _{c(SPC)M} - 10	0.5t _{c(SPC)M} + 10	0.5t _{c(SPC)M} - 0.5t _{c(LSPCLK)} - 10	0.5t _{c(SPC)M} ⁻ 0.5t _{c(LSPCLK)} + 10	ns
4	t _{d(SIMO)M}	Delay time, SPICLK to SPISIMO valid		10		10	ns
5	t _{v(SIMO)M}	Valid time, SPISIMO valid after SPICLK	0.5t _{c(SPC)M} - 10		0.5t _{c(SPC)M} - 0.5t _{c(LSPCLK)} - 10		ns
8	t _{su(SOMI)M}	Setup time, SPISOMI before SPICLK	26		26		ns
9	t _{h(SOMI)M}	Hold time, SPISOMI valid after SPICLK	0		0		ns
23	t _{d(SPC)M}	Delay time, <u>SPISTE</u> active to SPICLK	1.5t _{c(SPC)M} – Зt _{c(SYSCLK)} – 10		1.5t _{c(SPC)M} - Зt _{c(SYSCLK)} - 10		ns
24	t _{d(STE)M}	Delay time, SPICLK to SPISTE inactive	0.5t _{c(SPC)M} - 10		0.5t _{c(SPC)M} - 0.5t _{c(LSPCLK)} - 10		ns

(1) The MASTER / SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is cleared.

(2) $t_{c(SPC)}$ = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR +1)

(3) $t_{c(LCO)} = LSPCLK$ cycle time

(4) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate: Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX Slave mode transmit 12.5-MAX, slave mode receive 12.5-MHz MAX.

(5) The active edge of the SPICLK signal referenced is controlled by the clock polarity bit (SPICCR.6).

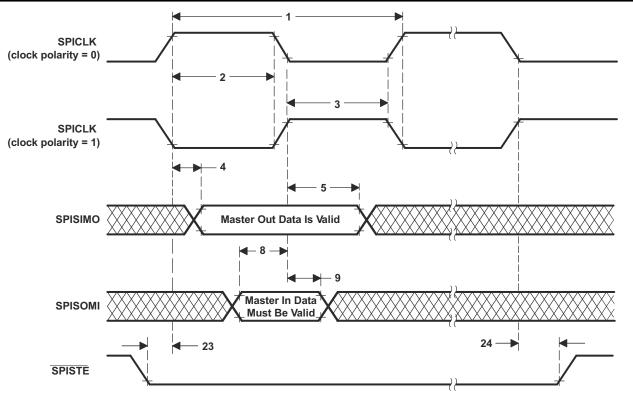
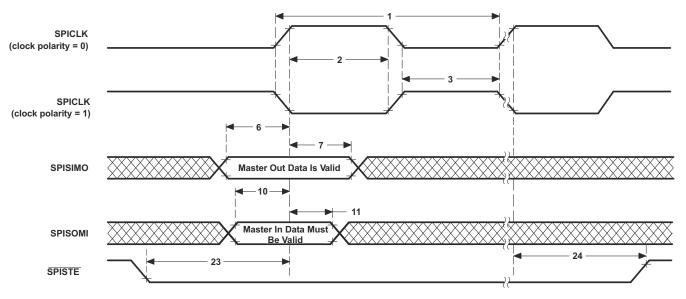


图 8-29. SPI Master Mode External Timing (Clock Phase = 0)

98 Submit Document Feedback

8.9.4.3.2 SPI Master Mode External Timing (Clock Phase = 1)

NO.	PARAMETER ^{(1) (2) (3) (4) (5)}		BRR EVEN		BRR OI	UNIT	
NO.			MIN	MAX	MIN	MAX	UNIT
1	t _{c(SPC)M}	Cycle time, SPICLK	4t _{c(LSPCLK)}	128t _{c(LSPCLK)}	5t _{c(LSPCLK)}	127t _{c(LSPCLK)}	ns
2	t _{w(SPC1)M}	Pulse duration, SPICLK first pulse	0.5t _{c(SPC)M} - 10	0.5t _{c(SPC)M} + 10	0.5t _{c(SPC)M} - 0.5t _{c(LSPCLK)} - 10	0.5t _{c(SPC)M} ⁻ 0.5t _{c(LSPCLK)} + 10	ns
3	t _{w(SPC2)M}	Pulse duration, SPICLK second pulse	0.5t _{c(SPC)M} - 10	0.5t _{c(SPC)M} + 10	0.5t _{c(SPC)M} + 0.5t _{c(LSPCLK)} - 10	0.5t _{c(SPC)M} + 0.5t _{c(LSPCLK)} + 10	ns
6	t _{d(SIMO)M}	Delay time, SPISIMO valid to SPICLK	0.5t _{c(SPC)M} - 10		0.5t _{c(SPC)M} + 0.5t _{c(LSPCLK)} [–] 10		ns
7	t _{v(SIMO)M}	Valid time, SPISIMO valid after SPICLK	0.5t _{c(SPC)M} - 10		0.5t _{c(SPC)M} [–] 0.5t _{c(LSPCLK)} [–] 10		ns
10	t _{su(SOMI)M}	Setup time, SPISOMI before SPICLK	26		26		ns
11	t _{h(SOMI)M}	Hold time, SPISOMI valid after SPICLK	0		0		ns
23	t _{d(SPC)M}	Delay time, <u>SPISTE</u> active to SPICLK	2t _{c(SPC)M} – 3t _{c(SYSCLK)} – 10		2t _{c(SPC)M} - 3t _{c(SYSCLK)} - 10		ns
24	t _{d(STE)M}	Delay time, SPICLK to SPISTE inactive	0.5t _{c(SPC)} - 10		0.5t _{c(SPC)} - 0.5t _{c(LSPCLK)} - 10		ns


(1) The MASTER/SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is set.

(2) $t_{c(SPC)} = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)$

(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate: Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5-MHz MAX.

(4) $t_{c(LCO)} = LSPCLK$ cycle time

(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).

8.9.4.4 SPI Slave Mode Electrical Data/Timing

 \ddagger 8.9.4.4.1 lists the slave mode timing (clock phase = 0) and \ddagger 8.9.4.4.2 lists the slave mode timing (clock phase = 1). 🛽 8-31 and 🖺 8-32 show the timing waveforms.

8.9.4.4.1 SPI Slave Mode External Timing (Clock Phase = 0)

NO.		PARAMETER ⁽¹⁾ (2) (3) (4) (5)	MIN	MAX	UNIT
12	t _{c(SPC)S}	Cycle time, SPICLK	4t _{c(SYSCLK)}		ns
13	t _{w(SPC1)S}	Pulse duration, SPICLK first pulse	2t _{c(SYSCLK)} - 1		ns
14	t _{w(SPC2)S}	Pulse duration, SPICLK second pulse	2t _{c(SYSCLK)} - 1		ns
15	t _{d(SOMI)S}	Delay time, SPICLK to SPISOMI valid		21	ns
16	t _{v(SOMI)S}	Valid time, SPISOMI data valid after SPICLK	0		ns
19	t _{su(SIMO)S}	Setup time, SPISIMO valid before SPICLK	1.5t _{c(SYSCLK)}		ns
20	t _{h(SIMO)S}	Hold time, SPISIMO data valid after SPICLK	1.5t _{c(SYSCLK)}		ns
25	t _{su(STE)S}	Setup time, SPISTE active before SPICLK	1.5t _{c(SYSCLK)}		ns
26	t _{h(STE)S}	Hold time, SPISTE inactive after SPICLK	1.5t _{c(SYSCLK)}		ns

(1) The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.

(2) $t_{c(SPC)}$ = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)

(3) $t_{c(LCO)} = LSPCLK$ cycle time

(4) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate: Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5-MHz MAX.

(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).

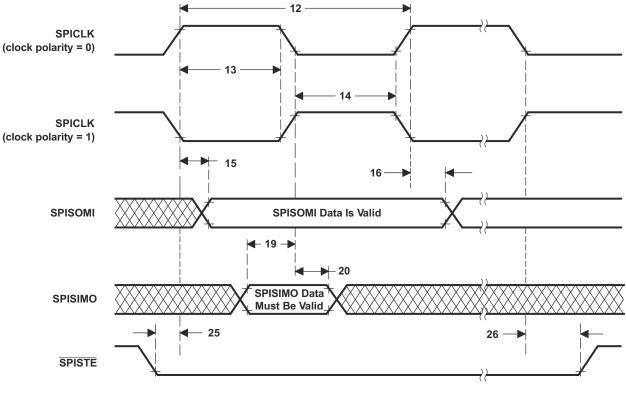


图 8-31. SPI Slave Mode External Timing (Clock Phase = 0)

8.9.4.4.2 SPI Slave Mode External Timing (Clock Phase = 1)

NO.		PARAMETER ⁽¹⁾ (2) (3) (4) (5)	MIN	MAX	UNIT
12	t _{c(SPC)S}	Cycle time, SPICLK	4t _{c(SYSCLK)}		ns
13	t _{w(SPC1)S}	Pulse duration, SPICLK first pulse	2t _{c(SYSCLK)} - 1		ns
14	t _{w(SPC2)S}	Pulse duration, SPICLK second pulse	2t _{c(SYSCLK)} - 1		ns
17	t _{d(SOMI)S}	Delay time, SPICLK to SPISOMI valid		21	ns
18	t _{v(SOMI)S}	Valid time, SPISOMI data valid after SPICLK	0		ns
21	t _{su(SIMO)S}	Setup time, SPISIMO valid before SPICLK	1.5t _{c(SYSCLK)}		ns
22	t _{h(SIMO)S}	Hold time, SPISIMO data valid after SPICLK	1.5t _{c(SYSCLK)}		ns
25	t _{su(STE)S}	Setup time, SPISTE active before SPICLK	1.5t _{c(SYSCLK)}		ns
26	t _{h(STE)S}	Hold time, SPISTE inactive after SPICLK	1.5t _{c(SYSCLK)}		ns

(1) The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.

(2) $t_{c(SPC)} = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)$

(3) $t_{c(LCO)} = LSPCLK$ cycle time

(4) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate: Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5-MHz MAX.

(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).

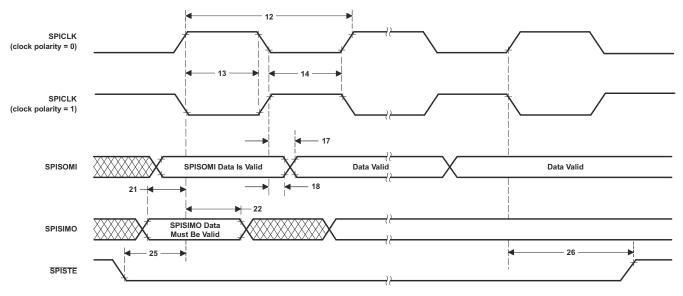


图 8-32. SPI Slave Mode External Timing (Clock Phase = 1)

8.9.5 Serial Communications Interface

8.9.5.1 SCI Device-Specific Information

The 2805x devices include three SCI modules (SCI-A, SCI-B, SCI-C). Each SCI module supports digital communications between the CPU and other asynchronous peripherals that use the standard non-return-to-zero (NRZ) format. The SCI receiver and transmitter are double-buffered, and each has its own separate enable and interrupt bits. Both can be operated independently or simultaneously in the full-duplex mode. To ensure data integrity, the SCI checks received data for break detection, parity, overrun, and framing errors. The bit rate is programmable to over 65000 different speeds through a 16-bit baud-select register.

Features of each SCI module include:

- Two external pins:
 - SCITXD: SCI transmit-output pin
 - SCIRXD: SCI receive-input pin

Note

Both pins can be used as GPIO if not used for SCI.

- Baud rate programmable to 64K different rates:

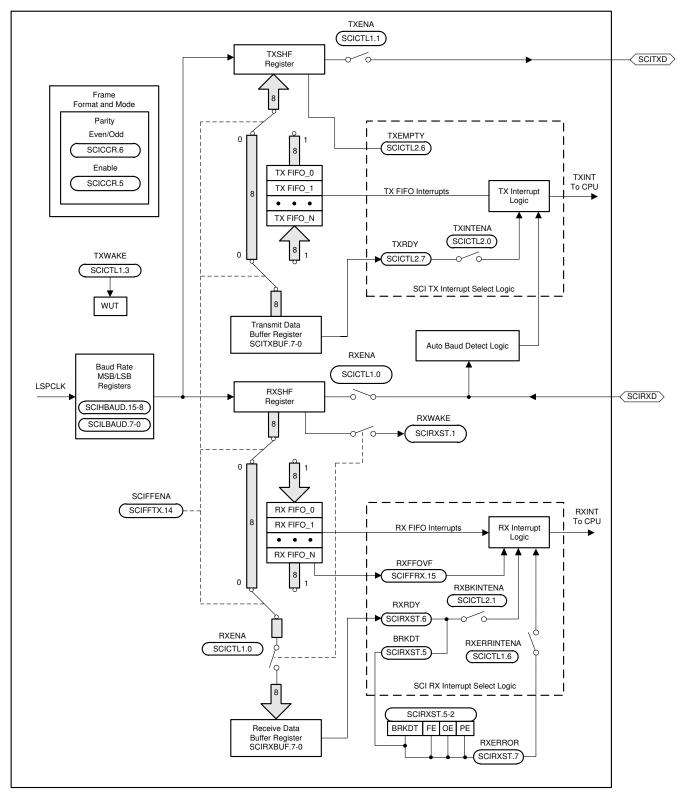
Baud rate =
$$\frac{\text{LSPCLK}}{(\text{BRR}+1)*8}$$
 when $\text{BRR} \neq 0$

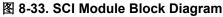
Baud rate =
$$\frac{\text{LSPCLK}}{16}$$
 when BRR = 0

- Data-word format
 - One start bit
 - Data-word length programmable from 1 to 8 bits
 - Optional even/odd/no parity bit
 - 1 or 2 stop bits
- Four error-detection flags: parity, overrun, framing, and break detection
- · Two wake-up multiprocessor modes: idle-line and address bit
- · Half- or full-duplex operation
- Double-buffered receive and transmit functions
- Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms with status flags.
 - Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX EMPTY flag (transmitter-shift register is empty)
 - Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag (break condition occurred), and RX ERROR flag (monitoring four interrupt conditions)
- Separate enable bits for transmitter and receiver interrupts (except BRKDT)
- NRZ format

Note

All registers in this module are 8-bit registers that are connected to Peripheral Frame 2. When a register is accessed, the register data is in the lower byte (7 - 0), and the upper byte (15 - 8) is read as zeros. Writing to the upper byte has no effect.


Enhanced features:


- Auto baud-detect hardware logic
- 4-level transmit/receive FIFO

102 Submit Document Feedback

8-33 shows the SCI module block diagram.

Copyright © 2021 Texas Instruments Incorporated

Submit Document Feedback 103

8.9.5.2 SCI Register Descriptions

The SCI port operation is configured and controlled by the registers listed in 表 8-39, 表 8-40, and 表 8-41.

			衣 0-55. SCI-A Registers						
ADDRESS	SIZE (×16)	EALLOW PROTECTED	DESCRIPTION						
0x7050	1	No	SCI-A Communications Control register						
0x7051	1	No	SCI-A Control Register 1						
0x7052	1	No	SCI-A Baud register, high bits						
0x7053	1	No	SCI-A Baud register, low bits						
0x7054	1	No	SCI-A Control Register 2						
0x7055	1	No	SCI-A Receive Status register						
0x7056	1	No	SCI-A Receive Emulation Data Buffer register						
0x7057	1	No	SCI-A Receive Data Buffer register						
0x7059	1	No	SCI-A Transmit Data Buffer register						
0x705A	1	No	SCI-A FIFO Transmit register						
0x705B	1	No	SCI-A FIFO Receive register						
0x705C	1	No	SCI-A FIFO Control register						
0x705F	1	No	SCI-A Priority Control register						
	0x7050 0x7051 0x7052 0x7053 0x7054 0x7055 0x7056 0x7057 0x7059 0x7059 0x705A 0x705B 0x705B	0x7050 1 0x7051 1 0x7052 1 0x7053 1 0x7054 1 0x7055 1 0x7056 1 0x7057 1 0x7058 1 0x7059 1 0x7058 1 0x7059 1 0x7050 1	ADDRESS SIZE (×16) PROTECTED 0x7050 1 No 0x7051 1 No 0x7052 1 No 0x7053 1 No 0x7054 1 No 0x7055 1 No 0x7056 1 No 0x7057 1 No 0x7059 1 No 0x705A 1 No 0x705B 1 No 0x705C 1 No						

表 8-39. SCI-A Registers

(1) Registers in this table are mapped to Peripheral Frame 2 space. This space only allows 16-bit accesses. All 32-bit accesses produce undefined results.

(2) These registers are new registers for the FIFO mode.

衣 8-40. SCI-B Registers						
NAME ⁽¹⁾	ADDRESS	SIZE (×16)	EALLOW PROTECTED	DESCRIPTION		
SCICCRB	0x7750	1	No	SCI-B Communications Control register		
SCICTL1B	0x7751	1	No	SCI-B Control Register 1		
SCIHBAUDB	0x7752	1	No	SCI-B Baud register, high bits		
SCILBAUDB	0x7753	1	No	SCI-B Baud register, low bits		
SCICTL2B	0x7754	1	No	SCI-B Control Register 2		
SCIRXSTB	0x7755	1	No	SCI-B Receive Status register		
SCIRXEMUB	0x7756	1	No	SCI-B Receive Emulation Data Buffer register		
SCIRXBUFB	0x7757	1	No	SCI-B Receive Data Buffer register		
SCITXBUFB	0x7759	1	No	SCI-B Transmit Data Buffer register		
SCIFFTXB ⁽²⁾	0x775A	1	No	SCI-B FIFO Transmit register		
SCIFFRXB ⁽²⁾	0x775B	1	No	SCI-B FIFO Receive register		
SCIFFCTB ⁽²⁾	0x775C	1	No	SCI-B FIFO Control register		
SCIPRIB	0x775F	1	No	SCI-B Priority Control register		

表 8-40. SCI-B Registers

(1) Registers in this table are mapped to Peripheral Frame 2 space. This space only allows 16-bit accesses. All 32-bit accesses produce undefined results.

(2) These registers are new registers for the FIFO mode.

表 8-41. SCI-C Registers						
NAME ⁽¹⁾	ADDRESS	SIZE (×16)	EALLOW PROTECTED	DESCRIPTION		
SCICCRC	0x7770	1	No	SCI-C Communications Control register		
SCICTL1C	0x7771	1	No	SCI-C Control Register 1		
SCIHBAUDC	0x7772	1	No	SCI-C Baud register, high bits		
SCILBAUDC	0x7773	1	No	SCI-C Baud register, low bits		
SCICTL2C	0x7774	1	No	SCI-C Control Register 2		
SCIRXSTC	0x7775	1	No	SCI-C Receive Status register		
SCIRXEMUC	0x7776	1	No	SCI-C Receive Emulation Data Buffer register		
SCIRXBUFC	0x7777	1	No	SCI-C Receive Data Buffer register		
SCITXBUFC	0x7779	1	No	SCI-C Transmit Data Buffer register		
SCIFFTXC ⁽²⁾	0x777A	1	No	SCI-C FIFO Transmit register		
SCIFFRXC ⁽²⁾	0x777B	1	No	SCI-C FIFO Receive register		
SCIFFCTC ⁽²⁾	0x777C	1	No	SCI-C FIFO Control register		
SCIPRIC	0x777F	1	No	SCI-C Priority Control register		

(1) Registers in this table are mapped to Peripheral Frame 2 space. This space only allows 16-bit accesses. All 32-bit accesses produce undefined results.

(2) These registers are new registers for the FIFO mode.

8.9.6 Enhanced Controller Area Network

8.9.6.1 eCAN Device-Specific Information

The CAN module (eCAN-A) has the following features:

- Fully compliant with CAN protocol, version 2.0B
- Supports data rates up to 1 Mbps
- Thirty-two mailboxes, each with the following properties:
 - Configurable as receive or transmit
 - Configurable with standard or extended identifier
 - Has a programmable receive mask
 - Supports data and remote frame
 - Composed of 0 to 8 bytes of data
 - Uses a 32-bit timestamp on receive and transmit message
 - Protects against reception of new message
 - Holds the dynamically programmable priority of transmit message
 - Employs a programmable interrupt scheme with two interrupt levels
 - Employs a programmable alarm on transmission or reception time-out
- Low-power mode
- Programmable wakeup on bus activity
- · Automatic reply to a remote request message
- Automatic retransmission of a frame in case of loss of arbitration or error
- 32-bit local network time counter synchronized by a specific message (communication in conjunction with mailbox 16)
- Self-test mode
 - Operates in a loopback mode receiving its own message. A "dummy" acknowledge is provided, thereby eliminating the need for another node to provide the acknowledge bit.

Note

For a SYSCLKOUT of 60 MHz, the smallest bit rate possible is 4.6875 kbps.

The F2805x CAN has passed the conformance test per ISO/DIS 16845. Contact TI for test report and exceptions.

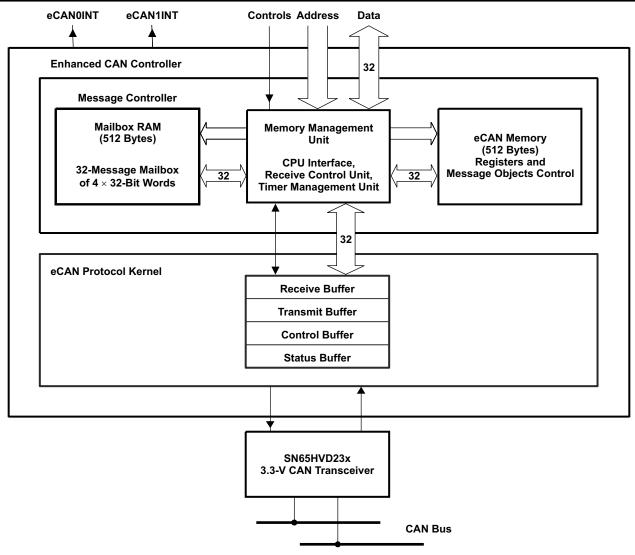


图 8-34. eCAN Block Diagram and Interface Circuit

表 8-42. 3.3-V	eCAN Transceivers
---------------	-------------------

PART NUMBER	SUPPLY VOLTAGE	LOW-POWER MODE	SLOPE CONTROL	VREF	OTHER	T _A
SN65HVD230	3.3 V	Standby	Adjustable	Yes	-	- 40°C to 85°C
SN65HVD230Q	3.3 V	Standby	Adjustable	Yes	-	- 40°C to 125°C
SN65HVD231	3.3 V	Sleep	Adjustable	Yes	-	- 40°C to 85°C
SN65HVD231Q	3.3 V	Sleep	Adjustable	Yes	_	- 40°C to 125°C
SN65HVD232	3.3 V	None	None	None	-	- 40°C to 85°C
SN65HVD232Q	3.3 V	None	None	None	-	- 40°C to 125°C
SN65HVD233	3.3 V	Standby	Adjustable	None	Diagnostic Loopback	- 40°C to 125°C
SN65HVD234	3.3 V	Standby and Sleep	Adjustable	None	-	- 40°C to 125°C
SN65HVD235	3.3 V	Standby	Adjustable	None	Autobaud Loopback	- 40°C to 125°C
ISO1050	3 - 5.5 V	None	None	None	Built-in Isolation Low Prop Delay Thermal Shutdown Failsafe Operation Dominant Time-Out	- 55°C to 105°C

Copyright © 2021 Texas Instruments Incorporated

Submit Document Feedback 107

eCAN-A Control and Status Registers

			eCAN-A Control and Status Registers
		1	Mailbox Enable - CANME
		1	Mailbox Direction - CANMD
			Transmission Request Set - CANTRS
			Transmission Request Reset - CANTRR
		į	Transmission Acknowledge - CANTA
	eCAN-A Memory (512 Bytes)	1	Abort Acknowledge - CANAA
6000h		í l	Received Message Pending - CANRMP
603Fh	Control and Status Registers		Received Message Lost - CANRML
6040h	Local Acceptance Masks (LAM)	1]	Remote Frame Pending - CANRFP
607Fh	(32 × 32-Bit RAM)		Global Acceptance Mask - CANGAM
6080h	Message Object Time Stamps (MOTS)		Master Control - CANMC
60BFh	$(32 \times 32$ -Bit RAM)		Bit-Timing Configuration - CANBTC
60C0h	Message Object Time-Out (MOTO)		Error and Status - CANES
60FFh	(32 × 32-Bit RAM)		Transmit Error Counter - CANTEC
			Receive Error Counter - CANREC
			Global Interrupt Flag 0 - CANGIF0
			Global Interrupt Mask - CANGIM
	eCAN-A Memory RAM (512 Bytes)		Global Interrupt Flag 1 - CANGIF1
C4005 C4075		1	Mailbox Interrupt Mask - CANMIM
6100h-6107h	Mailbox 0		Mailbox Interrupt Level - CANMIL
6108h-610Fh	Mailbox 1		Overwrite Protection Control - CANOPC
6110h-6117h	Mailbox 2		TX I/O Control - CANTIOC
6118h-611Fh	Mailbox 3		RX I/O Control - CANRIOC
6120h-6127h	Mailbox 4		Time Stamp Counter - CANTSC
	<u> </u>		Time-Out Control - CANTOC
T		ſ	Time-Out Status - CANTOS
61E0h-61E7h	Mailbox 28		Reserved
61E8h-61EFh	Mailbox 29	<i>ا</i> بر لــــا	
61F0h-61F7h	Mailbox 30		
61F8h-61FFh	Mailbox 31		
			Message Mailbox (16 Bytes)
		61E8h-61E9h	Message Identifier - MSGID
		61EAh-61EBh	Message Control - MSGCTRL
		61ECh-61EDh	Message Data Low - MDL
		61EEh-61EFh	Message Data High - MDH

图 8-35. eCAN-A Memory Map

Note

If the eCAN module is not used in an application, the RAM available (LAM, MOTS, MOTO, and mailbox RAM) can be used as general-purpose RAM. The CAN module clock should be enabled if the eCAN RAM (LAM, MOTS, MOTO, and mailbox RAM) is used as general-purpose RAM.

8.9.6.2 eCAN Register Descriptions

The CAN registers listed in $\frac{1}{8}$ 8-43 are used by the CPU to configure and control the CAN controller and the message objects. eCAN control registers only support 32-bit read/write operations. Mailbox RAM can be accessed as 16 bits or 32 bits. 32-bit accesses are aligned to an even boundary.

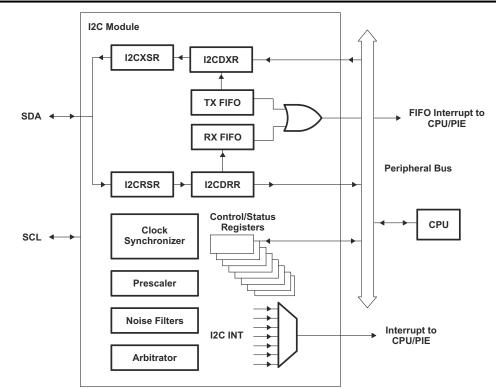
REGISTER NAME ⁽¹⁾	eCAN-A ADDRESS	SIZE (×32)	DESCRIPTION
CANME	0x6000	1	Mailbox enable
CANMD	0x6002	1	Mailbox direction
CANTRS	0x6004	1	Transmit request set
CANTRR	0x6006	1	Transmit request reset
CANTA	0x6008	1	Transmission acknowledge
CANAA	0x600A	1	Abort acknowledge
CANRMP	0x600C	1	Receive message pending
CANRML	0x600E	1	Receive message lost
CANRFP	0x6010	1	Remote frame pending
CANGAM	0x6012	1	Global acceptance mask
CANMC	0x6014	1	Master control
CANBTC	0x6016	1	Bit-timing configuration
CANES	0x6018	1	Error and status
CANTEC	0x601A	1	Transmit error counter
CANREC	0x601C	1	Receive error counter
CANGIF0	0x601E	1	Global interrupt flag 0
CANGIM	0x6020	1	Global interrupt mask
CANGIF1	0x6022	1	Global interrupt flag 1
CANMIM	0x6024	1	Mailbox interrupt mask
CANMIL	0x6026	1	Mailbox interrupt level
CANOPC	0x6028	1	Overwrite protection control
CANTIOC	0x602A	1	TX I/O control
CANRIOC	0x602C	1	RX I/O control
CANTSC	0x602E	1	Timestamp counter (Reserved in SCC mode)
CANTOC	0x6030	1	Time-out control (Reserved in SCC mode)
CANTOS	0x6032	1	Time-out status (Reserved in SCC mode)

表 8-43. CAN Register Map

(1) These registers are mapped to Peripheral Frame 1.

Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053 TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050

8.9.7 Inter-Integrated Circuit


8.9.7.1 I2C Device-Specific Information

The device contains one I2C serial port. 🛽 8-36 shows how the I2C peripheral module interfaces within the device.

The I2C module has the following features:

- Compliance with the Philips Semiconductors I²C-bus specification (version 2.1):
 - Support for 1-bit to 8-bit format transfers
 - 7-bit and 10-bit addressing modes
 - General call
 - START byte mode
 - Support for multiple master-transmitters and slave-receivers
 - Support for multiple slave-transmitters and master-receivers
 - Combined master transmit/receive and receive/transmit mode
 - Data transfer rate of from 10 kbps up to 400 kbps (I2C Fast-mode rate)
- One 4-word receive FIFO and one 4-word transmit FIFO
- One interrupt that can be used by the CPU. This interrupt can be generated as a result of one of the following conditions:
 - Transmit-data ready
 - Receive-data ready
 - Register-access ready
 - No-acknowledgment received
 - Arbitration lost
 - Stop condition detected
 - Addressed as slave
- · An additional interrupt that can be used by the CPU when in FIFO mode
- Module enable/disable capability
- Free data format mode

- A. The I2C registers are accessed at the SYSCLKOUT rate. The internal timing and signal waveforms of the I2C port are also at the SYSCLKOUT rate.
- B. The clock enable bit (I2CAENCLK) in the PCLKCRO register turns off the clock to the I2C port for low power operation. Upon reset, I2CAENCLK is clear, which indicates the peripheral internal clocks are off.

图 8-36. I2C Peripheral Module Interfaces

8.9.7.2 I2C Register Descriptions

The registers in $\frac{1}{8}$ 8-44 configure and control the I2C port operation.

☆ 0-44. IZC-A Registers							
NAME	ADDRESS	EALLOW PROTECTED	DESCRIPTION				
I2COAR	0x7900	No	I2C own address register				
I2CIER	0x7901	No	I2C interrupt enable register				
I2CSTR	0x7902	No	I2C status register				
I2CCLKL	0x7903	No	I2C clock low-time divider register				
I2CCLKH	0x7904	No	I2C clock high-time divider register				
I2CCNT	0x7905	No	I2C data count register				
I2CDRR	0x7906	No	I2C data receive register				
I2CSAR	0x7907	No	I2C slave address register				
I2CDXR	0x7908	No	I2C data transmit register				
I2CMDR	0x7909	No	I2C mode register				
I2CISRC	0x790A	No	I2C interrupt source register				
I2CPSC	0x790C	No	I2C prescaler register				
I2CFFTX	0x7920	No	I2C FIFO transmit register				
I2CFFRX	0x7921	No	I2C FIFO receive register				
I2CRSR	-	No	I2C receive shift register (not accessible to the CPU)				
I2CXSR	-	No	I2C transmit shift register (not accessible to the CPU)				

表 8-44. I2C-A Registers

8.9.7.3 I2C Electrical Data/Timing

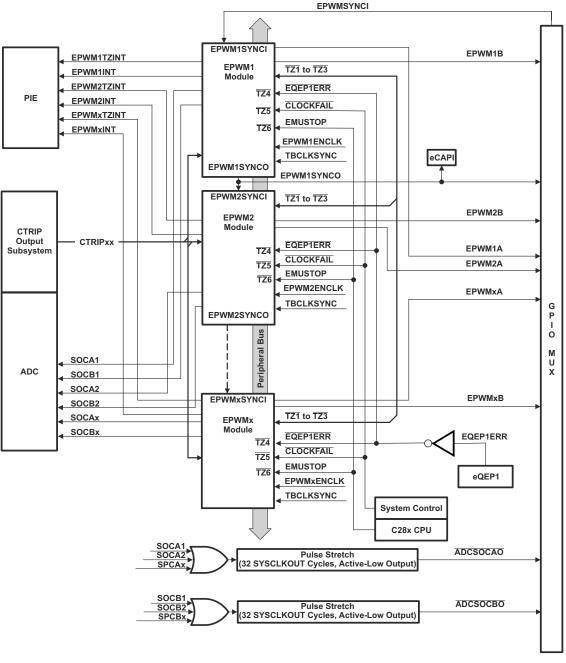
节 8.9.7.3.1 shows the I2C timing requirements. 节 8.9.7.3.2 shows the I2C switching characteristics.

8.9.7.3.1 I2C Timing Requirements

			MIN	MAX	UNIT
t _{h(SDA-SCL)} START	Hold time, START condition, SCL fall delay after SDA fall		0.6		μs
t _{su(SCL-SDA)} START	Setup time, Repeated START, SCL rise before SDA fall delay		0.6		μs
t _{h(SCL-DAT)}	Hold time, data after SCL fall		0		μs
t _{su(DAT-SCL)}	Setup time, data before SCL rise		100		ns
t _{r(SDA)}	Rise time, SDA	Input tolerance	20	300	ns
t _{r(SCL)}	Rise time, SCL	Input tolerance	20	300	ns
t _{f(SDA)}	Fall time, SDA	Input tolerance	11.4	300	ns
t _{f(SCL)}	Fall time, SCL	Input tolerance	11.4	300	ns
t _{su(SCL-SDA)} STOP	Setup time, STOP condition, SCL rise before SDA rise delay		0.6		μs

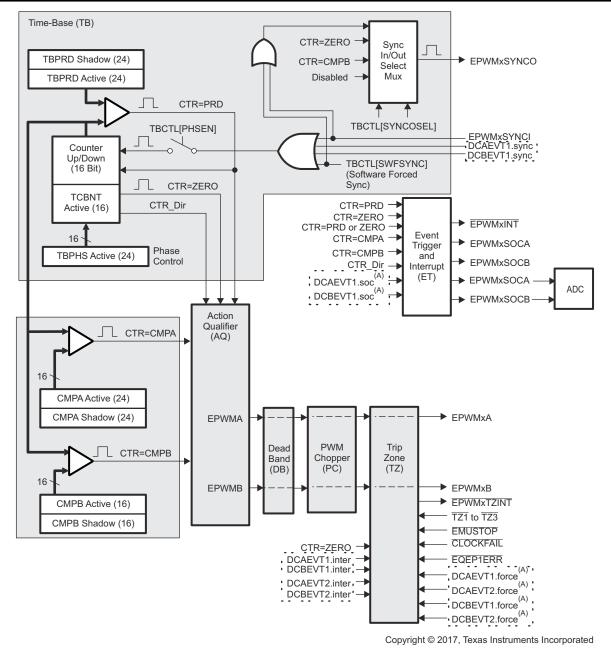
8.9.7.3.2 I2C Switching Characteristics

over recommended operating conditions (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
f _{SCL}	SCL clock frequency	I2C clock module frequency is from 7 MHz to 12 MHz and I2C prescaler and clock divider registers are configured appropriately.		400	kHz
V _{il}	Low level input voltage			0.3 V _{DDIO}	V
V _{ih}	High level input voltage		0.7 V _{DDIO}		V
V _{hys}	Input hysteresis		0.05 V _{DDIO}		V
V _{ol}	Low level output voltage	3 mA sink current	0	0.4	V
t _{LOW}	Low period of SCL clock	I2C clock module frequency is from 7 MHz to 12 MHz and I2C prescaler and clock divider registers are configured appropriately.	1.3		μS
t _{HIGH}	High period of SCL clock	I2C clock module frequency is from 7 MHz to 12 MHz and I2C prescaler and clock divider registers are configured appropriately.	0.6		μs
lı	Input current with an input voltage from 0.1 V_{DDIO} to 0.9 V_{DDIO} MAX		- 10	10	μA

8.9.8 Enhanced Pulse Width Modulator

8.9.8.1 ePWM Device-Specific Information


The devices contain up to seven enhanced PWM modules (ePWM1 to ePWM7). A 8-37 shows a block diagram of multiple ePWM modules. 8 8-38 shows the signal interconnections with the ePWM. For more details, see the Enhanced Pulse Width Modulator (ePWM) Module chapter of the *TMS320x2805x Real-Time Microcontrollers Technical Reference Manual*.

Copyright © 2017, Texas Instruments Incorporated

图 8-37. ePWM

A. These events are generated by the Type 1 ePWM digital compare (DC) submodule based on the levels of the COMPxOUT and TZ signals.

图 8-38. ePWM Submodules Showing Critical Internal Signal Interconnections

8.9.8.2 ePWM Register Descriptions

8-45 and **8-46** show the complete ePWM register set per module.

NAME	ePWM1	ePWM2	ePWM3	ePWM4	SIZE (×16) / #SHADOW	DESCRIPTION			
TBCTL	0x6800	0x6840	0x6880	0x68C0	1 / 0	Time Base Control register			
TBSTS	0x6801	0x6841	0x6881	0x68C1	1 / 0	Time Base Status register			
Reserved	0x6802	0x6842	0x6882	0x68C2	1 / 0	Reserved			
TBPHS	0x6803	0x6843	0x6883	0x68C3	1 / 0	Time Base Phase register			
TBCTR	0x6804	0x6844	0x6884	0x68C4	1 / 0	Time Base Counter register			
TBPRD	0x6805	0x6845	0x6885	0x68C5	1 / 1	Time Base Period Register Set			
Reserved	0x6806	0x6846	0x6886	0x68C6	1 / 1	Reserved			
CMPCTL	0x6807	0x6847	0x6887	0x68C7	1 / 0	Counter Compare Control register			
Reserved	0x6808	0x6848	0x6888	0x68C8	1 / 1	Reserved			
CMPA	0x6809	0x6849	0x6889	0x68C9	1 / 1	Counter Compare A Register Set			
СМРВ	0x680A	0x684A	0x688A	0x68CA	1 / 1	Counter Compare B Register Set			
AQCTLA	0x680B	0x684B	0x688B	0x68CB	1 / 0	Action Qualifier Control register for output A			
AQCTLB	0x680C	0x684C	0x688C	0x68CC	1 / 0	Action Qualifier Control register for output B			
AQSFRC	0x680D	0x684D	0x688D	0x68CD	1 / 0	Action Qualifier Software Force register			
AQCSFRC	0x680E	0x684E	0x688E	0x68CE	1 / 1	Action Qualifier Continuous S/W Force Register Set			
DBCTL	0x680F	0x684F	0x688F	0x68CF	1 / 1	Dead-Band Generator Control register			
DBRED	0x6810	0x6850	0x6890	0x68D0	1 / 0	Dead-Band Generator Rising Edge Delay Count register			
DBFED	0x6811	0x6851	0x6891	0x68D1	1 / 0	Dead-Band Generator Falling Edge Delay Count register			
TZSEL	0x6812	0x6852	0x6892	0x68D2	1 / 0	Trip Zone Select register ⁽¹⁾			
TZDCSEL	0x6813	0x6853	0x6893	0x98D3	1 / 0	Trip Zone Digital Compare register			
TZCTL	0x6814	0x6854	0x6894	0x68D4	1 / 0	Trip Zone Control register ⁽¹⁾			
TZEINT	0x6815	0x6855	0x6895	0x68D5	1 / 0	Trip Zone Enable Interrupt register ⁽¹⁾			
TZFLG	0x6816	0x6856	0x6896	0x68D6	1 / 0	Trip Zone Flag register ⁽¹⁾			
TZCLR	0x6817	0x6857	0x6897	0x68D7	1 / 0	Trip Zone Clear register ⁽¹⁾			
TZFRC	0x6818	0x6858	0x6898	0x68D8	1 / 0	Trip Zone Force register ⁽¹⁾			
ETSEL	0x6819	0x6859	0x6899	0x68D9	1 / 0	Event Trigger Selection register			
ETPS	0x681A	0x685A	0x689A	0x68DA	1 / 0	Event Trigger Prescale register			
ETFLG	0x681B	0x685B	0x689B	0x68DB	1 / 0	Event Trigger Flag register			
ETCLR	0x681C	0x685C	0x689C	0x68DC	1 / 0	Event Trigger Clear register			

表 8-45. ePWM1 - ePWM4 Control and Status Registers

116 Submit Document Feedback

TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053 TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050 ZHCSAH6F - NOVEMBER 2012 - REVISED SEPTEMBER 2021

表 8-45. ePWM1 - ePWM4 Control and Status Registers (continued)

NAME	ePWM1	ePWM2	ePWM3	ePWM4	SIZE (×16) / #SHADOW	DESCRIPTION	
ETFRC	0x681D	0x685D	0x689D	0x68DD	1 / 0	Event Trigger Force register	
PCCTL	0x681E	0x685E	0x689E	0x68DE	1 / 0	PWM Chopper Control register	
Reserved	0x6820	0x6860	0x68A0	0x68E0	1 / 0	Reserved	
Reserved	0x6821	-	-	-	1 / 0	Reserved	
Reserved	0x6826	-	-	-	1 / 0	Reserved	
Reserved	0x6828	0x6868	0x68A8	0x68E8	1 / 0	Reserved	
Reserved	0x682A	0x686A	0x68AA	0x68EA	1 / W ⁽²⁾	Reserved	
TBPRDM	0x682B	0x686B	0x68AB	0x68EB	1 / W ⁽²⁾	Time Base Period Register Mirror	
Reserved	0x682C	0x686C	0x68AC	0x68EC	1 / W ⁽²⁾	Reserved	
СМРАМ	0x682D	0x686D	0x68AD	0x68ED	1 / W ⁽²⁾	Compare A Register Mirror	
DCTRIPSEL	0x6830	0x6870	0x68B0	0x68F0	1 / 0	Digital Compare Trip Select register ⁽¹⁾	
DCACTL	0x6831	0x6871	0x68B1	0x68F1	1 / 0	Digital Compare A Control register ⁽¹⁾	
DCBCTL	0x6832	0x6872	0x68B2	0x68F2	1 / 0	Digital Compare B Control register ⁽¹⁾	
DCFCTL	0x6833	0x6873	0x68B3	0x68F3	1 / 0	Digital Compare Filter Control register ⁽¹⁾	
DCCAPCT	0x6834	0x6874	0x68B4	0x68F4	1 / 0	Digital Compare Capture Control register ⁽¹⁾	
DCFOFFSET	0x6835	0x6875	0x68B5	0x68F5	1/1	Digital Compare Filter Offset register	
DCFOFFSETCNT	0x6836	0x6876	0x68B6	0x68F6	1 / 0	Digital Compare Filter Offset Counter register	
DCFWINDOW	0x6837	0x6877	0x68B7	0x68F7	1 / 0	Digital Compare Filter Window register	
DCFWINDOWCNT	0x6838	0x6878	0x68B8	0x68F8	1 / 0	Digital Compare Filter Window Counter register	
DCCAP	0x6839	0x6879	0x68B9	0x68F9	1 / 1	Digital Compare Counter Capture register	

Registers that are EALLOW protected. W = Write to shadow register (1)

(2)

表 8-46. ePWM5 - ePWM7 Control and Status Registers

NAME	ePWM5	ePWM6	ePWM7	SIZE (×16) / #SHADOW	DESCRIPTION
TBCTL	0x6900	0x6940	0x6980	1 / 0	Time Base Control register
TBSTS	0x6901	0x6941	0x6981	1 / 0	Time Base Status register
Reserved	0x6902	0x6942	0x6982	1 / 0	Reserved
TBPHS	0x6903	0x6943	0x6983	1/0	Time Base Phase register
TBCTR	0x6904	0x6944	0x6984	1/0	Time Base Counter register
TBPRD	0x6905	0x6945	0x6985	1/1	Time Base Period Register Set
Reserved	0x6906	0x6946	0x6986	1/1	Reserved

Copyright © 2021 Texas Instruments Incorporated

Submit Document Feedback 117

表 8-46. ePWM5 - ePWM7 Control and Status Registers (continued)

NAME	ePWM5	ePWM6	ePWM7	SIZE (×16) / #SHADOW	DESCRIPTION
CMPCTL	0x6907	0x6947	0x6987	1 / 0	Counter Compare Control register
Reserved	0x6908	0x6948	0x6988	1 / 1	Reserved
СМРА	0x6909	0x6949	0x6989	1 / 1	Counter Compare A Register Set
СМРВ	0x690A	0x694A	0x698A	1 / 1	Counter Compare B Register Set
AQCTLA	0x690B	0x694B	0x698B	1 / 0	Action Qualifier Control register for output A
AQCTLB	0x690C	0x694C	0x698C	1 / 0	Action Qualifier Control register for output B
AQSFRC	0x690D	0x694D	0x698D	1 / 0	Action Qualifier Software Force register
AQCSFRC	0x690E	0x694E	0x698E	1 / 1	Action Qualifier Continuous S/W Force Register Set
DBCTL	0x690F	0x694F	0x698F	1 / 1	Dead-Band Generator Control register
DBRED	0x6910	0x6950	0x6990	1 / 0	Dead-Band Generator Rising Edge Delay Count register
DBFED	0x6911	0x6951	0x6991	1 / 0	Dead-Band Generator Falling Edge Delay Count register
TZSEL	0x6912	0x6952	0x6992	1 / 0	Trip Zone Select register ⁽¹⁾
TZDCSEL	0x6913	0x6953	0x6993	1 / 0	Trip Zone Digital Compare register
TZCTL	0x6914	0x6954	0x6994	1 / 0	Trip Zone Control register ⁽¹⁾
TZEINT	0x6915	0x6955	0x6995	1 / 0	Trip Zone Enable Interrupt register ⁽¹⁾
TZFLG	0x6916	0x6956	0x6996	1 / 0	Trip Zone Flag register ⁽¹⁾
TZCLR	0x6917	0x6957	0x6997	1 / 0	Trip Zone Clear register ⁽¹⁾
TZFRC	0x6918	0x6958	0x6998	1 / 0	Trip Zone Force register ⁽¹⁾
ETSEL	0x6919	0x6959	0x6999	1 / 0	Event Trigger Selection register
ETPS	0x691A	0x695A	0x699A	1 / 0	Event Trigger Prescale register
ETFLG	0x691B	0x695B	0x699B	1 / 0	Event Trigger Flag register
ETCLR	0x691C	0x695C	0x699C	1 / 0	Event Trigger Clear register
ETFRC	0x691D	0x695D	0x699D	1 / 0	Event Trigger Force register
PCCTL	0x691E	0x695E	0x699E	1 / 0	PWM Chopper Control register
Reserved	0x6920	0x6960	0x69A0	1 / 0	Reserved
Reserved	-	-	-	1 / 0	Reserved
Reserved	-	-	-	1 / 0	Reserved
Reserved	0x6928	0x6968	0x69A8	1 / 0	Reserved
Reserved	0x692A	0x696A	0x69AA	1 / W ⁽²⁾	Reserved
TBPRDM	0x692B	0x696B	0x69AB	1 / W ⁽²⁾	Time Base Period Register Mirror
Reserved	0x692C	0x696C	0x69AC	1 / W ⁽²⁾	Reserved
CMPAM	0x692D	0x696D	0x69AD	1 / W ⁽²⁾	Compare A Register Mirror

118 Submit Document Feedback

TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053 TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050 ZHCSAH6F - NOVEMBER 2012 - REVISED SEPTEMBER 2021

表 8-46. ePWM5 - ePWM7 Control and Status Registers (continued)

NAME	ePWM5	ePWM6	ePWM7	SIZE (×16) / #SHADOW	DESCRIPTION
DCTRIPSEL	0x6930	0x6970	0x69B0	1/0	Digital Compare Trip Select register ⁽¹⁾
DCACTL	0x6931	0x6971	0x69B1	1/0	Digital Compare A Control register ⁽¹⁾
DCBCTL	0x6932	0x6972	0x69B2	1/0	Digital Compare B Control register ⁽¹⁾
DCFCTL	0x6933	0x6973	0x69B3	1/0	Digital Compare Filter Control register ⁽¹⁾
DCCAPCT	0x6934	0x6974	0x69B4	1/0	Digital Compare Capture Control register ⁽¹⁾
DCFOFFSET	0x6935	0x6975	0x69B5	1/1	Digital Compare Filter Offset register
DCFOFFSETCNT	0x6936	0x6976	0x69B6	1/0	Digital Compare Filter Offset Counter register
DCFWINDOW	0x6937	0x6977	0x69B7	1 / 0	Digital Compare Filter Window register
DCFWINDOWCNT	0x6938	0x6978	0x69B8	1/0	Digital Compare Filter Window Counter register
DCCAP	0x6939	0x6979	0x69B9	1/1	Digital Compare Counter Capture register

(1) Registers that are EALLOW protected.

(2) W = Write to shadow register

8.9.8.3 ePWM Electrical Data/Timing

PWM refers to PWM outputs on ePWM1 to ePWM7. \ddagger 8.9.8.3.1 shows the PWM timing requirements and \ddagger 8.9.8.3.2, switching characteristics.

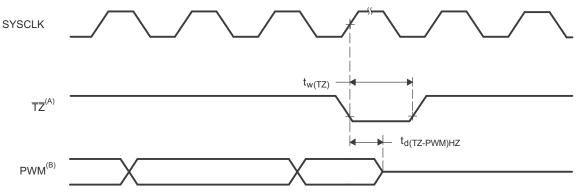
8.9.8.3.1 ePWM Timing Requirements

			MIN MAX	UNIT
	Asynchronous	2t _{c(SCO)}	cycles	
t _{w(SYCIN)} ⁽¹⁾	$t_{w(SYCIN)}^{(1)}$ Sync input pulse width	Synchronous	2t _{c(SCO)}	cycles
		With input qualifier	$1t_{c(SCO)} + t_{w(IQSW)}$	cycles

(1) For an explanation of the input qualifier parameters, see $\ddagger 8.9.12.3.2.1$.

8.9.8.3.2 ePWM Switching Characteristics

over recommended operating conditions (unless otherwise noted)

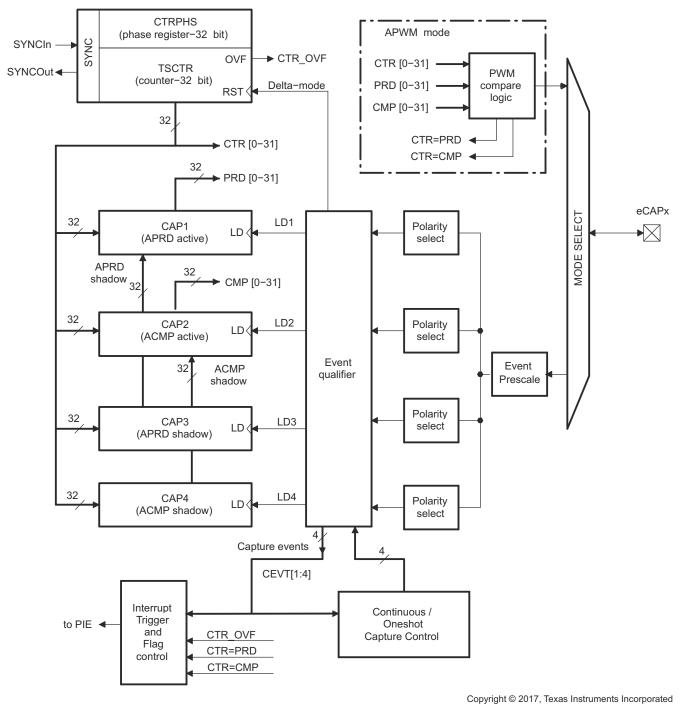

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
t _{w(PWM)}	Pulse duration, PWMx output high/low		33.33		ns
t _{w(SYNCOUT)}	Sync output pulse width		8t _{c(SCO)}		cycles
t _{d(PWM)tza}	Delay time, trip input active to PWM forced high Delay time, trip input active to PWM forced low	no pin load		25	ns
t _{d(TZ-PWM)HZ}	Delay time, trip input active to PWM Hi-Z			20	ns

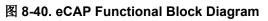
8.9.8.3.3 Trip-Zone Input Timing

8.9.8.3.3.1 Trip-Zone Input Timing Requirements

			MIN MAX	UNIT
	Asynchronous	2t _{c(TBCLK)}	cycles	
t _{w(TZ)} (1)		Synchronous	2t _{c(TBCLK)}	cycles
		With input qualifier	$2t_{c(TBCLK)} + t_{w(IQSW)}$	cycles

(1) For an explanation of the input qualifier parameters, see $\ddagger 8.9.12.3.2.1$.


- A. TZ TZ1, TZ2, TZ3, TZ4, TZ5, TZ6
- B. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery software.


图 8-39. PWM Hi-Z Characteristics

8.9.9 Enhanced Capture Module

8.9.9.1 eCAP Module Device-Specific Information

The device contains an enhanced capture module (eCAP1). 🛽 8-40 shows a functional block diagram of a module.

Copyright $\ensuremath{\textcircled{C}}$ 2021 Texas Instruments Incorporated

Submit Document Feedback 121

Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053 TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050

The eCAP module is clocked at the SYSCLKOUT rate.

The clock enable bits (ECAP1ENCLK) in the PCLKCR1 register turn off the eCAP module individually (for low power operation). Upon reset, ECAP1ENCLK is set to low, indicating that the peripheral clock is off.

8.9.9.2 eCAP Module Register Descriptions

表 8-47 shows the eCAP Control and Status Registers.

表 8-47. eCAP Contro	I and Status Registers
---------------------	------------------------

NAME	eCAP1	SIZE (×16)	EALLOW PROTECTED	DESCRIPTION
TSCTR	0x6A00	2		Timestamp Counter
CTRPHS	0x6A02	2		Counter Phase Offset Value register
CAP1	0x6A04	2		Capture 1 register
CAP2	0x6A06	2		Capture 2 register
CAP3	0x6A08	2		Capture 3 register
CAP4	0x6A0A	2		Capture 4 register
Reserved	0x6A0C to 0x6A12	8		Reserved
ECCTL1	0x6A14	1		Capture Control Register 1
ECCTL2	0x6A15	1		Capture Control Register 2
ECEINT	0x6A16	1	Capture Interrupt Enable register	
ECFLG	0x6A17	1		Capture Interrupt Flag register
ECCLR	0x6A18	1	Capture Interrupt Clear register	
ECFRC	0x6A19	1	Capture Interrupt Force register	
Reserved	0x6A1A to 0x6A1F	6		Reserved

8.9.9.3 eCAP Module Electrical Data/Timing

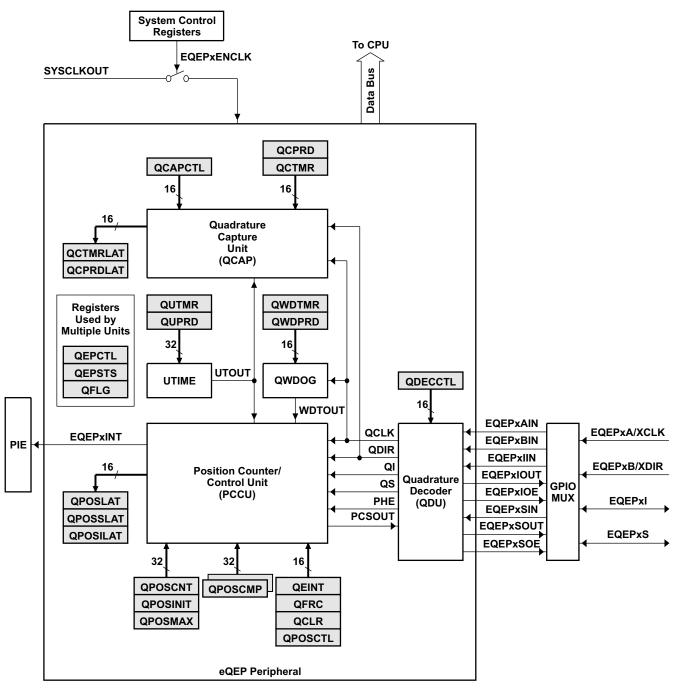
 \ddagger 8.9.9.3.1 provides the eCAP timing requirement and \ddagger 8.9.9.3.2 provides the eCAP switching characteristics.

8.9.9.3.1 eCAP Timing Requirement

			MIN MAX	UNIT
		Asynchronous	2t _{c(SCO)}	cycles
t _{w(CAP)} ⁽¹⁾	Capture input pulse width	Synchronous	2t _{c(SCO)}	cycles
		With input qualifier	$1t_{c(SCO)} + t_{w(IQSW)}$	cycles

(1) For an explanation of the input qualifier parameters, see $\ddagger 8.9.12.3.2.1$.

8.9.9.3.2 eCAP Switching Characteristics


over recommended operating conditions (unless otherwise noted)

	PARAMETER	MIN	MAX	UNIT
t _{w(APWM)}	Pulse duration, APWMx output high/low	20		ns

8.9.10 Enhanced Quadrature Encoder Pulse

8.9.10.1 eQEP Device-Specific Information

The device contains one eQEP module. <a>[8] 8-41 shows the eQEP functional block diagram.

Copyright © 2017, Texas Instruments Incorporated

图 8-41. eQEP Functional Block Diagram

Copyright © 2021 Texas Instruments Incorporated

Submit Document Feedback 123

Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053 TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050

8.9.10.2 eQEP Register Descriptions

表 8-48 lists the eQEP Control and Status Registers.

NAME	eQEP1 ADDRESS	eQEP1 SIZE(×16)/ #SHADOW	REGISTER DESCRIPTION
QPOSCNT	0x6B00	2/0	eQEP Position Counter
QPOSINIT	0x6B02	2/0	eQEP Initialization Position Count
QPOSMAX	0x6B04	2/0	eQEP Maximum Position Count
QPOSCMP	0x6B06	2/1	eQEP Position-compare
QPOSILAT	0x6B08	2/0	eQEP Index Position Latch
QPOSSLAT	0x6B0A	2/0	eQEP Strobe Position Latch
QPOSLAT	0x6B0C	2/0	eQEP Position Latch
QUTMR	0x6B0E	2/0	eQEP Unit Timer
QUPRD	0x6B10	2/0	eQEP Unit Period register
QWDTMR	0x6B12	1/0	eQEP Watchdog Timer
QWDPRD	0x6B13	1/0	eQEP Watchdog Period register
QDECCTL	0x6B14	1/0	eQEP Decoder Control register
QEPCTL	0x6B15	1/0	eQEP Control register
QCAPCTL	0x6B16	1/0	eQEP Capture Control register
QPOSCTL	0x6B17	1/0	eQEP Position-compare Control register
QEINT	0x6B18	1/0	eQEP Interrupt Enable register
QFLG	0x6B19	1/0	eQEP Interrupt Flag register
QCLR	0x6B1A	1/0	eQEP Interrupt Clear register
QFRC	0x6B1B	1/0	eQEP Interrupt Force register
QEPSTS	0x6B1C	1/0	eQEP Status register
QCTMR	0x6B1D	1/0	eQEP Capture Timer
QCPRD	0x6B1E	1/0	eQEP Capture Period register
QCTMRLAT	0x6B1F	1/0	eQEP Capture Timer Latch
QCPRDLAT	0x6B20	1/0	eQEP Capture Period Latch
Reserved	0x6B21 to 0x6B3F	31/0	

表 8-48. eQEP Control and Status Registers

8.9.10.3 eQEP Electrical Data/Timing

 \ddagger 8.9.10.3.1 provides the eQEP timing requirement and \ddagger 8.9.10.3.2 provides the eQEP switching characteristics.

8.9.10.3.1 eQEP Timing Requirements

		TEST CONDITIONS	MIN MA	X UNIT
t _{w(QEPP)}	QEP input period	Asynchronous ⁽¹⁾ /Synchronous	2t _{c(SCO)}	cycles
		With input qualifier ⁽²⁾	$2[1t_{c(SCO)} + t_{w(IQSW)}]$	cycles
t _{w(INDEXH)}	QEP Index Input High time	Asynchronous ⁽¹⁾ /Synchronous	2t _{c(SCO)}	cycles
		With input qualifier ⁽²⁾	2t _{c(SCO)} +t _{w(IQSW)}	cycles
t _{w(INDEXL)}	QEP Index Input Low time	Asynchronous ⁽¹⁾ /Synchronous	2t _{c(SCO)}	cycles
		With input qualifier ⁽²⁾	$2t_{c(SCO)} + t_{w(IQSW)}$	cycles
t _{w(STROBH)}	QEP Strobe High time	Asynchronous ⁽¹⁾ /Synchronous	2t _{c(SCO)}	cycles
		With input qualifier ⁽²⁾	$2t_{c(SCO)} + t_{w(IQSW)}$	cycles
t _{w(STROBL)}	QEP Strobe Input Low time	Asynchronous ⁽¹⁾ /Synchronous	2t _{c(SCO)}	cycles
		With input qualifier ⁽²⁾	$2t_{c(SCO)} + t_{w(IQSW)}$	cycles

(1) See the TMS320F2805x Real-Time MCUs Silicon Errata for limitations in the asynchronous mode.

(2) For an explanation of the input qualifier parameters, see $\ddagger 8.9.12.3.2.1$.

8.9.10.3.2 eQEP Switching Characteristics

over recommended operating conditions (unless otherwise noted)

	PARAMETER	MIN MAX	UNIT
t _{d(CNTR)xin}	Delay time, external clock to counter increment	4t _{c(SCC}) cycles
t _{d(PCS-OUT)QEP}	Delay time, QEP input edge to position compare sync output	6t _{c(SCC}) cycles

8.9.11 JTAG Port

8.9.11.1 JTAG Port Device-Specific Information

On the 2805x device, the JTAG port is reduced to 5 pins (TRST, TCK, TDI, TMS, TDO). TCK, TDI, TMS and TDO pins are also GPIO pins. The TRST signal selects either JTAG or GPIO operating mode for the pins in 8-42. During emulation/debug, the GPIO function of these pins are not available. If the GPIO38/TCK/XCLKIN pin is used to provide an external clock, an alternate clock source should be used to clock the device during emulation/debug because this pin will be needed for the TCK function.

Note

In 2805x devices, the JTAG pins may also be used as GPIO pins. Care should be taken in the board design to ensure that the circuitry connected to these pins do not affect the emulation capabilities of the JTAG pin function. Any circuitry connected to these pins should not prevent the JTAG debug probe from driving (or being driven by) the JTAG pins for successful debug.

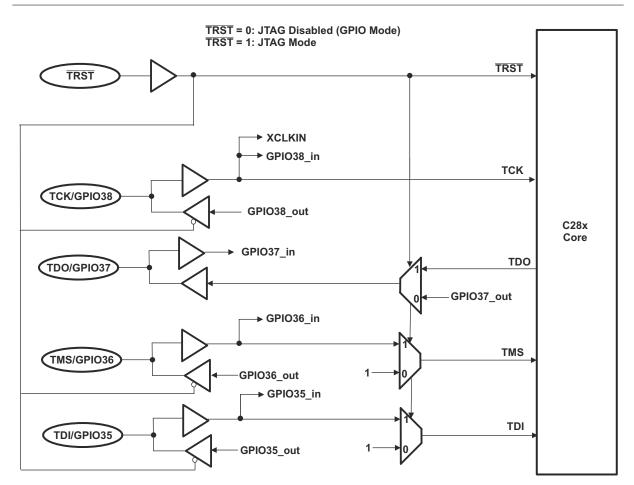


图 8-42. JTAG/GPIO Multiplexing

8.9.12 General-Purpose Input/Output

8.9.12.1 GPIO Device-Specific Information

The GPIO MUX can multiplex up to three independent peripheral signals on a single GPIO pin in addition to providing individual pin bit-banging I/O capability.

	表 8-49. GPIOA MUX						
	PRIMARY I/O FUNCTION	PERIPHERAL SELECTION 1 ⁽¹⁾ ⁽²⁾	PERIPHERAL SELECTION 2 ⁽¹⁾ ⁽²⁾	PERIPHERAL SELECTION 3 ^{(1) (2)}			
GPAMUX1 REGISTER BITS	(GPAMUX1 BITS = 00)	(GPAMUX1 BITS = 01)	(GPAMUX1 BITS = 10)	(GPAMUX1 BITS = 11)			
1:0	GPIO0	EPWM1A (O)	Reserved	Reserved			
3:2	GPIO1	EPWM1B (O)	Reserved	CTRIPM1OUT (O)			
5:4	GPIO2	EPWM2A (O)	Reserved	Reserved			
7:6	GPIO3	EPWM2B (O)	SPISOMIA (I/O)	Reserved			
9:8	GPIO4	EPWM3A (O)	Reserved	Reserved			
11:10	GPIO5	EPWM3B (O)	SPISIMOA (I/O)	ECAP1 (I/O)			
13:12	GPIO6	EPWM4A (O)	EPWMSYNCI (I)	EPWMSYNCO (O)			
15:14	GPIO7	EPWM4B (O)	SCIRXDA (I)	Reserved			
17:16	GPIO8	EPWM5A (O)	Reserved	ADCSOCAO (O)			
19:18	GPIO9	EPWM5B (O)	SCITXDB (O)	Reserved			
21:20	GPIO10	EPWM6A (O)	Reserved	ADCSOCBO (O)			
23:22	GPIO11	EPWM6B (O)	SCIRXDB (I)	Reserved			
25:24	GPIO12	TZ1 (I)/ CTRIPM1OUT (O)	SCITXDA (O)	Reserved			
27:26	GPIO13	TZ2 (I)	Reserved	Reserved			
29:28	GPIO14	TZ3 (I)/ CTRIPPFCOUT (O)	SCITXDB (O)	Reserved			
31:30	GPIO15	TZ1 (I)/ CTRIPM1OUT (O)	SCIRXDB (I)	Reserved			

表 8-49. GPIOA MUX

	DEFAULT AT RESET PRIMARY I/O FUNCTION	PERIPHERAL SELECTION 1 ^{(1) (2)}	PERIPHERAL SELECTION 2 ⁽¹⁾ (2)	PERIPHERAL SELECTION 3 ^{(1) (2)}
GPAMUX2 REGISTER BITS	(GPAMUX2 BITS = 00)	(GPAMUX2 BITS = 01)	(GPAMUX2 BITS = 10)	(GPAMUX2 BITS = 11)
1:0	GPIO16	SPISIMOA (I/O)	EQEP1S (I/O)	TZ2 (I)
3:2	GPIO17	SPISOMIA (I/O)	EQEP1I (I/O)	TZ3 (I)/ CTRIPPFCOUT (O)
5:4	GPIO18	SPICLKA (I/O)	SCITXDB (O)	XCLKOUT (O/Z)
7:6	GPIO19/XCLKIN	SPISTEA (I/O)	SCIRXDB (I)	ECAP1 (I/O)
9:8	GPIO20	EQEP1A (I)	EPWM7A (O)	CTRIPM1OUT (O)
11:10	GPIO21	EQEP1B (I)	EPWM7B (O)	Reserved
13:12	GPIO22	EQEP1S (I/O)	Reserved	SCITXDB (O)
15:14	GPIO23	EQEP1I (I/O)	Reserved	SCIRXDB (I)
17:16	GPIO24	ECAP1 (I/O)	EPWM7A (O)	Reserved
19:18	GPIO25	Reserved	Reserved	Reserved
21:20	GPIO26	Reserved	SCIRXDC (I)	Reserved
23:22	GPIO27	Reserved	SCITXDC (O)	Reserved
25:24	GPIO28	SCIRXDA (I)	SDAA (I/OD)	TZ2 (I)
27:26	GPIO29	SCITXDA (O)	SCLA (I/OD)	TZ3 (I)/ CTRIPPFCOUT (O)
29:28	GPIO30	CANRXA (I)	SCIRXDB (I)	EPWM7A (O)
31:30	GPIO31	CANTXA (O)	SCITXDB (O)	EPWM7B (O)

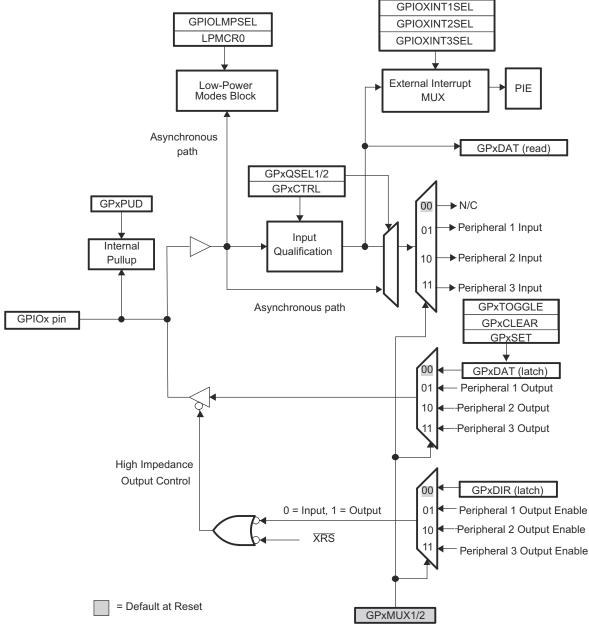
表 8-49. GPIOA MUX (continued)

(1) The word reserved means that there is no peripheral assigned to this GPxMUX1/2 register setting. If the Reserved GPxMUX1/2 register setting is selected, the state of the pin will be undefined and the pin may be driven. This selection is a reserved configuration for future expansion.

(2) I = Input, O = Output, Z = High Impedance, OD = Open Drain

Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053 TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050

表 8-50. GPIOB MUX						
	DEFAULT AT RESET PRIMARY I/O FUNCTION	PERIPHERAL SELECTION 1 ⁽¹⁾	PERIPHERAL SELECTION 2 ⁽¹⁾	PERIPHERAL SELECTION 3 ⁽¹⁾		
GPBMUX1 REGISTER BITS	(GPBMUX1 BITS = 00)	(GPBMUX1 BITS = 01)	(GPBMUX1 BITS = 10)	(GPBMUX1 BITS = 11)		
1:0	GPIO32	SDAA (I/OD)	EPWMSYNCI (I)	EQEP1S (I/O)		
3:2	GPIO33	SCLA (I/OD)	EPWMSYNCO (O)	EQEP1I (I/O)		
5:4	GPIO34	Reserved	Reserved	CTRIPPFCOUT (O)		
7:6	GPIO35 (TDI)	Reserved	Reserved	Reserved		
9:8	GPIO36 (TMS)	Reserved	Reserved	Reserved		
11:10	GPIO37 (TDO)	Reserved	Reserved	Reserved		
13:12	GPIO38/XCLKIN (TCK)	Reserved	Reserved	Reserved		
15:14	GPIO39	Reserved	SCIRXDC (I)	CTRIPPFCOUT (O)		
17:16	GPIO40	EPWM7A (O)	Reserved	Reserved		
19:18	Reserved	Reserved	Reserved	Reserved		
21:20	GPIO42	EPWM7B (O)	SCITXDC (O)	CTRIPM1OUT (O)		
23:22	Reserved	Reserved	Reserved	Reserved		
25:24	Reserved	Reserved	Reserved	Reserved		
27:26	Reserved	Reserved	Reserved	Reserved		
29:28	Reserved	Reserved	Reserved	Reserved		
31:30	Reserved	Reserved	Reserved	Reserved		


(1) I = Input, O = Output, OD = Open Drain

The user can select the type of input qualification for each GPIO pin through the GPxQSEL1/2 registers from four choices:

- Synchronization to SYSCLKOUT Only (GPxQSEL1/2 = 0, 0): This mode is the default mode of all GPIO pins at reset and this mode simply synchronizes the input signal to the system clock (SYSCLKOUT).
- Qualification Using Sampling Window (GPxQSEL1/2 = 0, 1 and 1, 0): In this mode the input signal, after synchronization to the system clock (SYSCLKOUT), is qualified by a specified number of cycles before the input is allowed to change.
- The sampling period is specified by the QUALPRD bits in the GPxCTRL register and is configurable in groups of 8 signals. The sampling period specifies a multiple of SYSCLKOUT cycles for sampling the input signal. The sampling window is either 3-samples or 6-samples wide and the output is only changed when ALL samples are the same (all 0s or all 1s) as shown in <u>8</u> 8-45 (for 6 sample mode).
- No Synchronization (GPxQSEL1/2 = 1,1): This mode is used for peripherals where synchronization is not required (synchronization is performed within the peripheral).

Due to the multiplevel multiplexing that is required on the device, there may be cases where a peripheral input signal can be mapped to more then one GPIO pin. Also, when an input signal is not selected, the input signal will default to either a 0 or 1 state, depending on the peripheral.

- A. The letter x stands for the port, either A or B. For example, GPxDIR refers to either the GPADIR and GPBDIR register depending on the particular GPIO pin selected.
- B. GPxDAT latch/read are accessed at the same memory location.
- C. This diagram is a generic GPIO MUX block diagram. Not all options may be applicable for all GPIO pins. See the Systems Control and Interrupts chapter of the *TMS320x2805x Real-Time Microcontrollers Technical Reference Manual* for pin-specific variations.

图 8-43. GPIO Multiplexing

8.9.12.2 GPIO Register Descriptions

The device supports 42 GPIO pins. The GPIO control and data registers are mapped to Peripheral Frame 1 to enable 32-bit operations on the registers (along with 16-bit operations). 表 8-51 provides the GPIO register mapping.

		表 8-51. GF	PIO Registers
NAME	ADDRESS	SIZE (×16)	DESCRIPTION
	GPIO COI	NTROL REGISTI	ERS (EALLOW PROTECTED)
GPACTRL	0x6F80	2	GPIO A Control register (GPIO0 to 31)
GPAQSEL1	0x6F82	2	GPIO A Qualifier Select 1 register (GPIO0 to 15)
GPAQSEL2	0x6F84	2	GPIO A Qualifier Select 2 register (GPIO16 to 31)
GPAMUX1	0x6F86	2	GPIO A MUX 1 register (GPIO0 to 15)
GPAMUX2	0x6F88	2	GPIO A MUX 2 register (GPIO16 to 31)
GPADIR	0x6F8A	2	GPIO A Direction register (GPIO0 to 31)
GPAPUD	0x6F8C	2	GPIO A Pull Up Disable register (GPIO0 to 31)
GPBCTRL	0x6F90	2	GPIO B Control register (GPIO32 to 44)
GPBQSEL1	0x6F92	2	GPIO B Qualifier Select 1 register (GPIO32 to 44)
GPBMUX1	0x6F96	2	GPIO B MUX 1 register (GPIO32 to 44)
GPBDIR	0x6F9A	2	GPIO B Direction register (GPIO32 to 44)
GPBPUD	0x6F9C	2	GPIO B Pull Up Disable register (GPIO32 to 44)
Reserved	0x6FB6	2	Reserved
Reserved	0x6FBA	2	Reserved
	GPIO DAT	A REGISTERS (NOT EALLOW PROTECTED)
GPADAT	0x6FC0	2	GPIO A Data register (GPIO0 to 31)
GPASET	0x6FC2	2	GPIO A Data Set register (GPIO0 to 31)
GPACLEAR	0x6FC4	2	GPIO A Data Clear register (GPIO0 to 31)
GPATOGGLE	0x6FC6	2	GPIO A Data Toggle register (GPIO0 to 31)
GPBDAT	0x6FC8	2	GPIO B Data register (GPIO32 to 44)
GPBSET	0x6FCA	2	GPIO B Data Set register (GPIO32 to 44)
GPBCLEAR	0x6FCC	2	GPIO B Data Clear register (GPIO32 to 44)
GPBTOGGLE	0x6FCE	2	GPIO B Data Toggle register (GPIO32 to 44)
Reserved	0x6FD8	2	Reserved
Reserved	0x6FDA	2	Reserved
Reserved	0x6FDC	2	Reserved
Reserved	0x6FDE	2	Reserved
GPIO	INTERRUPT AND LOW	POWER MODE	S SELECT REGISTERS (EALLOW PROTECTED)
GPIOXINT1SEL	0x6FE0	1	XINT1 GPIO Input Select register (GPIO0 to 31)
GPIOXINT2SEL	0x6FE1	1	XINT2 GPIO Input Select register (GPIO0 to 31)
GPIOXINT3SEL	0x6FE2	1	XINT3 GPIO Input Select register (GPIO0 to 31)
GPIOLPMSEL	0x6FE8	2	LPM GPIO Select register (GPIO0 to 31)

表 8-51. GPIO Registers

Note

There is a two-SYSCLKOUT cycle delay from when the write to the GPxMUXn and GPxQSELn registers occurs to when the action is valid.

Copyright © 2021 Texas Instruments Incorporated

Submit Document Feedback 131

Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053 TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050

8.9.12.3 GPIO Electrical Data/Timing

8.9.12.3.1 GPIO - Output Timing

8.9.12.3.1.1 General-Purpose Output Switching Characteristics

over recommended operating conditions (unless otherwise noted)

	PARAMETER			MAX	UNIT
t _{r(GPO)}	Rise time, GPIO switching low to high	All GPIOs		13 ⁽¹⁾	ns
t _{f(GPO)}	Fall time, GPIO switching high to low	All GPIOs		13 ⁽¹⁾	ns
t _{fGPO}	Toggling frequency			15	MHz

(1) Rise time and fall time vary with electrical loading on I/O pins. Values given in 🕆 8.9.12.3.1.1 are applicable for a 40-pF load on I/O pins.

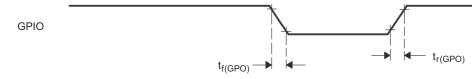
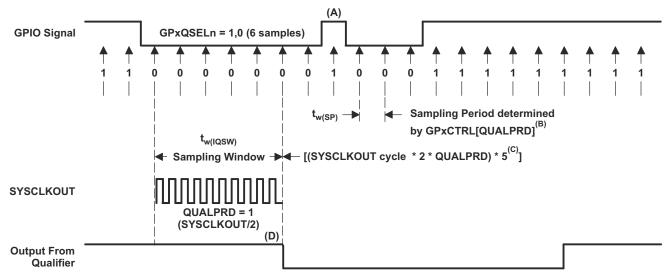


图 8-44. General-Purpose Output Timing


8.9.12.3.2 GPIO - Input Timing

8.9.12.3.2.1 General-Purpose Input Timing Requirements

			MIN	MAX	UNIT
t _{w(SP)}	Sampling period	QUALPRD = 0	1t _{c(SCO)}		cycles
		QUALPRD \neq 0	2t _{c(SCO)} * QUALPRD		cycles
t _{w(IQSW)}	Input qualifier sampling window		t _{w(SP)} * (n ⁽¹⁾ - 1)		cycles
t _{w(GPI)} ⁽²⁾	Pulse duration, GPIO low/high	Synchronous mode	2t _{c(SCO)}		cycles
		With input qualifier	$t_{w(IQSW)} + t_{w(SP)} + 1t_{c(SCO)}$		cycles

(1) The letter n represents the number of qualification samples as defined by GPxQSELn register.

(2) For $t_{w(GPI)}$, pulse width is measured from V_{IL} to V_{IL} for an active low signal and V_{IH} to V_{IH} for an active high signal.

- A. This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. The QUALPRD bit field value can vary from 00 to 0xFF. If QUALPRD = 00, then the sampling period is 1 SYSCLKOUT cycle. For any other value n, the qualification sampling period in 2n SYSCLKOUT cycles (that is, at every 2n SYSCLKOUT cycles, the GPIO pin will be sampled).
- B. The qualification period selected through the GPxCTRL register applies to groups of 8 GPIO pins.
- C. The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is used.
- D. In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLKOUT cycles or greater. In other words, the inputs should be stable for (5 × QUALPRD × 2) SYSCLKOUT cycles. This condition would ensure 5 sampling periods for detection to occur. Because external signals are driven asynchronously, an 13-SYSCLKOUT-wide pulse ensures reliable recognition.

图 8-45. Sampling Mode

8.9.12.3.3 Sampling Window Width for Input Signals

The following section summarizes the sampling window width for input signals for various input qualifier configurations.

Sampling frequency denotes how often a signal is sampled with respect to SYSCLKOUT.

Sampling frequency = SYSCLKOUT/(2 × QUALPRD), if QUALPRD \neq 0

Sampling frequency = SYSCLKOUT, if QUALPRD = 0

Sampling period = SYSCLKOUT cycle × 2 × QUALPRD, if QUALPRD \neq 0

In the preceding equations, SYSCLKOUT cycle indicates the time period of SYSCLKOUT.

Sampling period = SYSCLKOUT cycle, if QUALPRD = 0

In a given sampling window, either 3 or 6 samples of the input signal are taken to determine the validity of the signal. The number of samples is determined by the value written to GPxQSELn register.

Case 1:

Qualification using 3 samples

Sampling window width = (SYSCLKOUT cycle × 2 × QUALPRD) × 2, if QUALPRD \neq 0

Sampling window width = (SYSCLKOUT cycle) × 2, if QUALPRD = 0

Case 2:

Qualification using 6 samples

Sampling window width = (SYSCLKOUT cycle × 2 × QUALPRD) × 5, if QUALPRD \neq 0

Sampling window width = (SYSCLKOUT cycle) × 5, if QUALPRD = 0

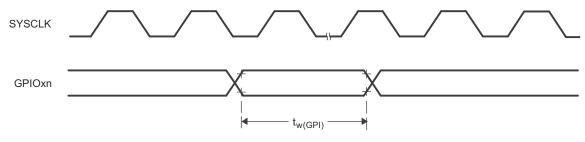


图 8-46. General-Purpose Input Timing

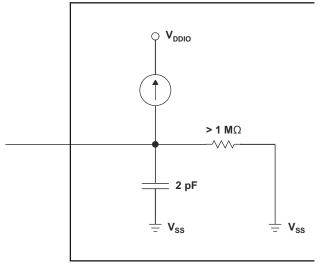


图 8-47. Input Resistance Model for a GPIO Pin With an Internal Pullup

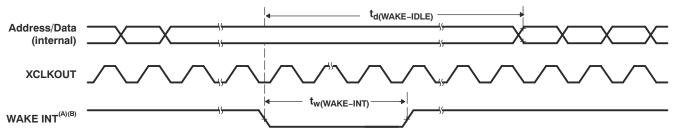
8.9.12.3.4 Low-Power Mode Wakeup Timing

 \ddagger 8.9.12.3.4.1 provides the timing requirements, \ddagger 8.9.12.3.4.2 provides the switching characteristics, and \boxtimes 8-48 shows the timing diagram for IDLE mode.

8.9.12.3.4.1 IDLE Mode Timing Requirements

		MIN MAX	UNIT	
t _{w(WAKE-INT)} ⁽¹⁾ Pulse duration, external wake-up signal	Without input qualifier	2t _{c(SCO)}	cycles	
tw(WAKE-INT) (*** Pulse duration, external wake-up signal	With input qualifier	$5t_{c(SCO)} + t_{w(IQSW)}$		

(1) For an explanation of the input qualifier parameters, see \ddagger 8.9.12.3.2.1.


8.9.12.3.4.2 IDLE Mode Switching Characteristics

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN MAX	UNIT	
	Delay time, external wake signal to program execution resume ⁽²⁾			cycles	
	Wake up from flash Flash module in active state Wake up from flash Flash module in sleep state	Without input qualifier	20t _{c(SCO)}	cycles	
		With input qualifier	$20t_{c(SCO)} + t_{w(IQSW)}$		
t _{d(WAKE-IDLE)} (1)		Without input qualifier	1050t _{c(SCO)}		
		With input qualifier	$1050t_{c(SCO)} + t_{w(IQSW)}$	cycles	
	Wake up from SARAM	Without input qualifier	20t _{c(SCO)}	cycles	
		With input qualifier	20t _{c(SCO)} + t _{w(IQSW)}		

(1) For an explanation of the input qualifier parameters, see $\ddagger 8.9.12.3.2.1$.

(2) This delay time is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. execution of an ISR (triggered by the wakeup) signal involves additional latency.

A. WAKE INT can be any enabled interrupt, WDINT or XRS. After the IDLE instruction is executed, a delay of 5 OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted.

B. From the time the IDLE instruction is executed to place the device into low-power mode (LPM), wakeup should not be initiated until at least 4 OSCCLK cycles have elapsed.

图 8-48. IDLE Entry and Exit Timing

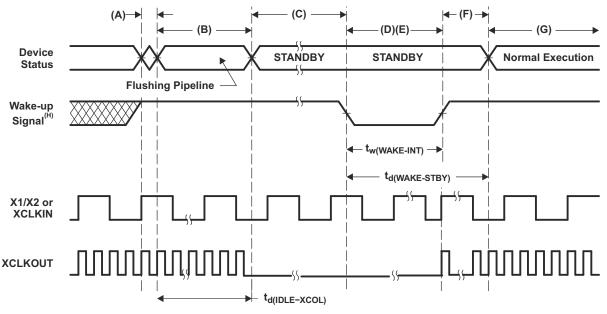
136 Submit Document Feedback

8.9.12.3.4.3 STANDBY Mode Timing Requirements

			MIN MAX	
t	Pulse duration, external	Without input qualification	3t _{c(OSCCLK)}	cvcles
^t w(WAKE-INT)	wake-up signal	With input qualification ⁽¹⁾	(2 + QUALSTDBY) * $t_{c(OSCCLK)}$	Cycles

(1) QUALSTDBY is a 6-bit field in the LPMCR0 register.

8.9.12.3.4.4 STANDBY Mode Switching Characteristics


over recommended operating conditions (unless otherwise noted)

		PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
t _{d(IDLE-XCOL)}		elay time, IDLE instruction recuted to XCLKOUT low		32t _{c(SCO)}	45t _{c(SCO)}	cycles
	Delay time, external wake signal to pr resume ⁽¹⁾		ogram execution			cycles
	•	Wake up from flash	Without input qualifier		100t _{c(SCO)}	
		- Flash module in active state	With input qualifier		$100t_{c(SCO)} + t_{w(WAKE-INT)}$	cycles
t _{d(WAKE-STBY)}	•	Wake up from flash	Without input qualifier		1125t _{c(SCO)}	
		 Flash module in sleep state 	With input qualifier		$1125t_{c(SCO)} + t_{w(WAKE-INT)}$	cycles
	Wake up from SARAM	Without input qualifier		100t _{c(SCO)}	cycles	
			With input qualifier		$100t_{c(SCO)} + t_{w(WAKE-INT)}$	cycles

(1) This delay time is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. execution of an ISR (triggered by the wake up signal) involves additional latency.

TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053 TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050 ZHCSAH6F - NOVEMBER 2012 - REVISED SEPTEMBER 2021

- A. IDLE instruction is executed to put the device into STANDBY mode.
- B. The PLL block responds to the STANDBY signal. SYSCLKOUT is held for the number of cycles indicated as follows before being turned off:
 - 16 cycles, when DIVSEL = 00 or 01
 - 32 cycles, when DIVSEL = 10
 - 64 cycles, when DIVSEL = 11

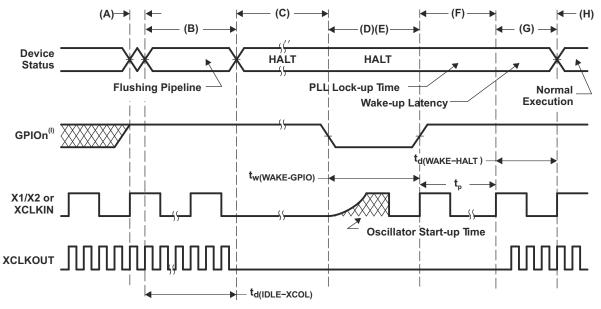
This delay enables the CPU pipeline and any other pending operations to flush properly.

- C. Clock to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in STANDBY mode. After the IDLE instruction is executed, a delay of 5 OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted.
- D. The external wake-up signal is driven active.
- E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the device will not be deterministic and the device may not exit low-power mode for subsequent wake-up pulses.
- F. After a latency period, the STANDBY mode is exited.
- G. Normal execution resumes. The device will respond to the interrupt (if enabled).
- H. From the time the IDLE instruction is executed to place the device into low-power mode, wakeup should not be initiated until at least 4 OSCCLK cycles have elapsed.

图 8-49. STANDBY Entry and Exit Timing Diagram

8.9.12.3.4.5 HALT Mode Timing Requirements

		MIN MAX	UNIT
t _{w(WAKE-GPIO)}	Pulse duration, GPIO wake-up signal	$t_{oscst} + 2t_{c(OSCCLK)}$	cycles
t _{w(WAKE-XRS)}	Pulse duration, XRS wake-up signal	$t_{oscst} + 8t_{c(OSCCLK)}$	cycles


8.9.12.3.4.6 HALT Mode Switching Characteristics

over recommended operating conditions (unless otherwise noted)

	PARAMETER	MIN	MAX	UNIT
t _{d(IDLE-XCOL)}	Delay time, IDLE instruction executed to XCLKOUT low	32t _{c(SCO)}	45t _{c(SCO)}	cycles
tp	PLL lock-up time		1	ms
t _{d(WAKE-HALT)}	 Delay time, PLL lock to program execution resume Wake up from flash Flash module in sleep state 		1125t _{c(SCO)}	cycles
	Wake up from SARAM		35t _{c(SCO)}	cycles

TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053 TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050 ZHCSAH6F - NOVEMBER 2012 - REVISED SEPTEMBER 2021

- A. IDLE instruction is executed to put the device into HALT mode.
- B. The PLL block responds to the HALT signal. SYSCLKOUT is held for the number of cycles indicated as follows before oscillator is turned off and the CLKIN to the core is stopped:
 - 16 cycles, when DIVSEL = 00 or 01
 - 32 cycles, when DIVSEL = 10
 - 64 cycles, when DIVSEL = 11

This delay enables the CPU pipeline and any other pending operations to flush properly.

- C. Clocks to the peripherals are turned off and the PLL is shut down. If a quartz crystal or ceramic resonator is used as the clock source, the internal oscillator is shut down as well. The device is now in HALT mode and consumes absolute minimum power. It is possible to keep the zero-pin internal oscillators (INTOSC1 and INTOSC2) and the watchdog alive in HALT mode. Keeping INTOSC1, INTOSC2, and the watchdog alive in HALT mode is done by writing to the appropriate bits in the CLKCTL register. After the IDLE instruction is executed, a delay of 5 OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted.
- D. When the GPIOn pin (used to bring the device out of HALT) is driven low, the oscillator is turned on and the oscillator wake-up sequence is initiated. The GPIO pin should be driven high only after the oscillator has stabilized, which enables the provision of a clean clock signal during the PLL lock sequence. Because the falling edge of the GPIO pin asynchronously begins the wake-up procedure, care should be taken to maintain a low noise environment prior to entering and during HALT mode.
- E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the device will not be deterministic and the device may not exit low-power mode for subsequent wake-up pulses.
- F. Once the oscillator has stabilized, the PLL lock sequence is initiated, which takes 1 ms.
- G. When CLKIN to the core is enabled, the device will respond to the interrupt (if enabled), after a latency. The HALT mode is now exited.
- H. Normal operation resumes.
- I. From the time the IDLE instruction is executed to place the device into low-power mode, wakeup should not be initiated until at least 4 OSCCLK cycles have elapsed.

图 8-50. HALT Wake-Up Using GPIOn

9 Applications, Implementation, and Layout

Note

以下应用部分中的信息不属于 TI 器件规格的范围, TI 不担保其准确性和完整性。TI 的客 户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

9.1 TI Reference Design

The TI Reference Design Library is a robust reference design library spanning analog, embedded processor, and connectivity. Created by TI experts to help you jump start your system design, all reference designs include schematic or block diagrams, BOMs, and design files to speed your time to market. Search and download designs at the Select TI reference designs page.

Single-axis Motor Control Reference Design with Integrated Power Factor Correction

This reference design demonstrates best practices for integrating both single-axis motor control and power factor correction (PFC) into a single microcontroller. This practice is popular when designing variable-frequency compressors, particularly for HVAC systems. This implementation is optimized to perform using a sensorless Field Oriented Control (FOC) algorithm to drive a permanent magnet synchronous motor (PMSM) and two phase interleaved PFC on the TMS320F2805x microcontroller. The FOC algorithm maintains efficiency in a wide range of speeds and considers torque changes with transient phases by processing a dynamic model of the motor.

10 Device and Documentation Support

10.1 Getting Started

To get started with C2000 real-time microcontrollers, see the C2000 real-time microcontrollers - Design & development page.

10.2 Device and Development Support Tool Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all TMS320 [™] MCU devices and support tools. Each TMS320 MCU commercial family member has one of three prefixes: TMX, TMP, or TMS (for example, **TMS**320F28055). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (with TMX for devices and TMDX for tools) through fully qualified production devices and tools (with TMS for devices and TMDS for tools).

Device development evolutionary flow:

- **TMX** Experimental device that is not necessarily representative of the final device's electrical specifications and may not use production assembly flow.
- **TMP** Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical specifications.
- TMS Production version of the silicon die that is fully qualified.

Support tool development evolutionary flow:

TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.

TMDS Fully-qualified development-support product.

TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

Production devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (X or P) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, PN) and temperature range (for example, T). (10-1) provides a legend for reading the complete device name for any family member.

For device part numbers and further ordering information, see the TI website (www.ti.com) or contact your TI sales representative.

For additional description of the device nomenclature markings on the die, see the *TMS320F2805x Real-Time MCUs Silicon Errata*.

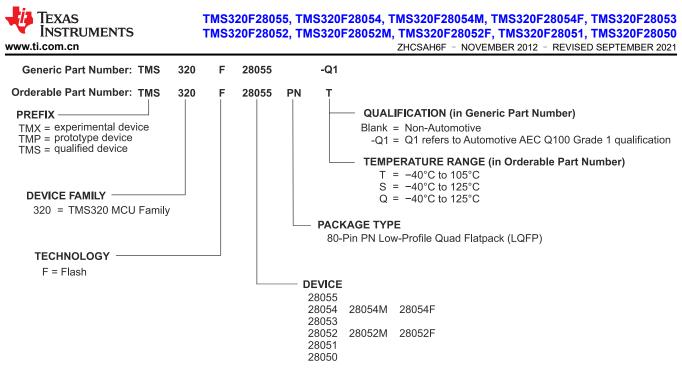


图 10-1. Device Nomenclature

10.3 Tools and Software

TI offers an extensive line of development tools. Some of the tools and software to evaluate the performance of the device, generate code, and develop solutions are listed here. To view all available tools and software for C2000[™] real-time control MCUs, visit the C2000 real-time control MCUs – Design & development page.

Development Tools

controlCARD with TMS320F28054MPNT, InstaSPIN-FOC and InstaSPIN-MOTION enabled

Featuring the TMS320F28054M MCU, capable of running the InstaSPIN-FOC[™] and InstaSPIN-MOTION[™] solutions from on-chip ROM, the TMDSCNCD28054MISO controlCARD provides a convenient and standardized hardware interface to begin experimentation with the latest motor control technology from Texas Instruments.

F2805x Isolated USB controlCARD

C2000[™] controlCARDs from Texas Instruments are a unique set of daughtercards enabling experimentation with C2000' s broad portfolio of MCUs for device evaluation and application development. Designed with a DIM100 or larger, plug-in connector, controlCARDs are easily interchangeable throughout C2000' s collection of development kits, giving users the ability to experiment with various C2000 MCUs to find the correct MCU fit for an application. controlCARDs give access to all digital I/Os, analog I/Os, and JTAG signals from the C2000 MCU, providing a simple, modular, and standardized board-level interface to the C2000 MCU. Software, support, and documentation, are provided completely free through C2000' s C2000 MCUs page.

F2805x Experimenter Kit

C2000[™] Experimenters Kits from Texas Instruments are device evaluation kits, providing a platform for initial device exploration and prototyping. Each Experimenters Kit includes a docking station and a plug-in compatible controlCARD, which docks directly onto the docking station. The docking station features onboard USB JTAG emulation, access to all C2000 MCU signals from the controlCARD, breadboard areas for experimentation, and JTAG and RS-232 connectors. For software development, Code Composer Studio (CCS) Integrated Development Environment (IDE) is included for free with use of the onboard XDS100 USB JTAG debug probe. Device software, support, example projects, libraries, and documentation are provided completely free through the C2000 C2000Ware software platform. Learn more and download C2000Ware today by visiting the C2000Ware for C2000 MCUs page.

Copyright © 2021 Texas Instruments Incorporated

Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053 TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050

Software Tools

C2000Ware for C2000 MCUs

C2000Ware for C2000 microcontrollers is a cohesive set of development software and documentation designed to minimize software development time. From device-specific drivers and libraries to device peripheral examples, C2000Ware provides a solid foundation to begin development and evaluation. C2000Ware is the recommended content delivery tool versus controlSUITE[™].

Code Composer Studio (CCS) Integrated Development Environment (IDE) for C2000 Microcontrollers

Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller and Embedded Processors portfolio. CCS comprises a suite of tools used to develop and debug embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking the user through each step of the application development flow. Familiar tools and interfaces let users get started faster than ever before. CCS combines the advantages of the Eclipse software framework with advanced embedded debug capabilities from TI resulting in a compelling feature-rich development environment for embedded developers.

Pin Mux Tool

The Pin Mux Utility is a software tool which provides a Graphical User Interface for configuring pin multiplexing settings, resolving conflicts and specifying I/O cell characteristics for TI MPUs.

UniFlash Standalone Flash Tool

UniFlash is a standalone tool used to program on-chip flash memory through a GUI, command line, or scripting interface.

C2000 Third-party search tool TI has partnered with multiple companies to offer a wide range of solutions and services for TI C2000 devices. These companies can accelerate your path to production using C2000 devices. Download this search tool to quickly browse third-party details and find the right third-party to meet your needs.

Models

Various models are available for download from the product Tools & Software pages. These include I/O Buffer Information Specification (IBIS) Models and Boundary-Scan Description Language (BSDL) Models. To view all available models, visit the Models section of the Tools & Software page for each device.

Training

To help assist design engineers in taking full advantage of the C2000 microcontroller features and performance, TI has developed a variety of training resources. Utilizing the online training materials and downloadable handson workshops provides an easy means for gaining a complete working knowledge of the C2000 microcontroller family. These training resources have been designed to decrease the learning curve, while reducing development time, and accelerating product time to market. For more information on the various training resources, visit the C2000[™] real-time control MCUs − Support & training site.

10.4 Documentation Support

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

The current documentation that describes the processor, related peripherals, and other technical collateral is listed here.

Errata

TMS320F2805x Real-Time MCUs Silicon Errata describes known advisories on silicon and provides workarounds.

InstaSPIN Technical Reference Manuals

InstaSPIN-FOC[™] and InstaSPIN-MOTION[™] User's Guide describes the InstaSPIN-FOC and InstaSPIN-MOTION devices.

TMS320F28054F, TMS320F28052F InstaSPIN-FOC ™ Software Technical Reference Manual describes TMS320F28054F and TMS320F28052F InstaSPIN-FOC software.

TMS320F28054M, TMS320F28052M InstaSPIN-MOTION™ Software Technical Reference Manual describes TMS320F28054M and TMS320F28052M InstaSPIN-MOTION software.

CPU User's Guides

TMS320C28x CPU and Instruction Set Reference Guide describes the central processing unit (CPU) and the assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). This reference guide also describes emulation features available on these DSPs.

Peripheral Guides and Technical Reference Manuals

C2000 Real-Time Control Peripherals Reference Guide describes the peripheral reference guides of the 28x digital signal processors (DSPs).

TMS320x2805x Real-Time Microcontrollers Technical Reference Manual details the integration, the environment, the functional description, and the programming models for each peripheral and subsystem in the 2805x microcontrollers.

Tools Guides

TMS320C28x Assembly Language Tools v21.6.0.LTS User's Guide describes the assembly language tools (assembler and other tools used to develop assembly language code), assembler directives, macros, common object file format, and symbolic debugging directives for the TMS320C28x device.

TMS320C28x Optimizing C/C++ Compiler v21.6.0.LTS User's Guide describes the TMS320C28x C/C++ compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly language source code for the TMS320C28x device.

Application Reports

Semiconductor Packing Methodology describes the packing methodologies employed to prepare semiconductor devices for shipment to end users.

Calculating Useful Lifetimes of Embedded Processors provides a methodology for calculating the useful lifetime of TI embedded processors (EPs) under power when used in electronic systems. It is aimed at general engineers who wish to determine if the reliability of the TI EP meets the end system reliability requirement.

Semiconductor and IC Package Thermal Metrics describes traditional and new thermal metrics and puts their application in perspective with respect to system-level junction temperature estimation.

Copyright © 2021 Texas Instruments Incorporated

MCU CAN Module Operation Using the On-Chip Zero-Pin Oscillator.

The TMS320F2803x/TMS320F2805x/TMS320F2806x series of microcontrollers have an on-chip zero-pin oscillator that needs no external components. This application report describes how to use the CAN module with this oscillator to operate at the maximum bit rate and bus length without the added cost of an external clock source.

An Introduction to IBIS (I/O Buffer Information Specification) Modeling discusses various aspects of IBIS including its history, advantages, compatibility, model generation flow, data requirements in modeling the input/ output structures and future trends.

Serial Flash Programming of C2000[™] Microcontrollers discusses using a flash kernel and ROM loaders for serial programming a device.

10.5 支持资源

TI E2E[™] 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解 答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

10.6 Trademarks

TMS320C2000[™], DSP/BIOS[™], TMS320[™], InstaSPIN-FOC[™], InstaSPIN-MOTION[™], controlSUITE[™], and TI E2E [™] are trademarks of Texas Instruments.

所有商标均为其各自所有者的财产。

10.7 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.8 术语表

TI术语表 本术语表列出并解释了术语、首字母缩略词和定义。

146 Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

11 Mechanical, Packaging, and Orderable Information

11.1 Packaging Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2021 Texas Instruments Incorporated

重要声明和免责声明

TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没 有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受TI 的销售条款 (https://www.ti.com/legal/termsofsale.html) 或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改TI 针对TI 产品发布的适用的担保或担保免责声明。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021,德州仪器 (TI) 公司

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TMS320F28050PNS	ACTIVE	LQFP	PN	80	119	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	F28050PNS TMS320	Samples
TMS320F28051PNS	ACTIVE	LQFP	PN	80	119	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	F28051PNS TMS320	Samples
TMS320F28051PNT	ACTIVE	LQFP	PN	80	119	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 105	F28051PNT TMS320	Samples
TMS320F28052FPNQ	ACTIVE	LQFP	PN	80	119	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	F28052FPNQ TMS320	Samples
TMS320F28052FPNT	ACTIVE	LQFP	PN	80	119	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 105	F28052FPNT TMS320	Samples
TMS320F28052MPNQ	ACTIVE	LQFP	PN	80	119	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	F28052MPNQ TMS320	Samples
TMS320F28052MPNT	ACTIVE	LQFP	PN	80	119	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 105	F28052MPNT TMS320	Samples
TMS320F28052PNQ	ACTIVE	LQFP	PN	80	119	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	F28052PNQ TMS320	Samples
TMS320F28052PNS	ACTIVE	LQFP	PN	80	119	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	F28052PNS TMS320	Samples
TMS320F28052PNT	ACTIVE	LQFP	PN	80	119	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 105	F28052PNT TMS320	Samples
TMS320F28053PNS	ACTIVE	LQFP	PN	80	119	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	F28053PNS TMS320	Samples
TMS320F28054FPNQ	ACTIVE	LQFP	PN	80	119	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	F28054FPNQ TMS320	Samples
TMS320F28054FPNT	ACTIVE	LQFP	PN	80	119	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 105	F28054FPNT TMS320	Samples
TMS320F28054MPNQ	ACTIVE	LQFP	PN	80	119	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	F28054MPNQ TMS320	Samples
TMS320F28054MPNT	ACTIVE	LQFP	PN	80	119	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 105	F28054MPNT TMS320	Samples
TMS320F28054PNQ	ACTIVE	LQFP	PN	80	119	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	F28054PNQ TMS320	Samples
TMS320F28054PNS	ACTIVE	LQFP	PN	80	119	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	F28054PNS	Samples

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TMS320F28055PNS	ACTIVE	LQFP	PN	80	119	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	TMS320 F28055PNS	Samalar
 TMS320F28055PNT	ACTIVE	LQFP	PN	80	119	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 105	TMS320 F28055PNT	Samples Samples
TMS320F28055PNT	ACTIVE	LQFP	PN	80	119	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 105		

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

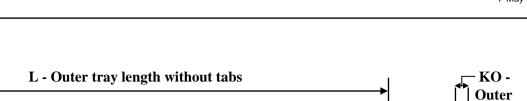
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

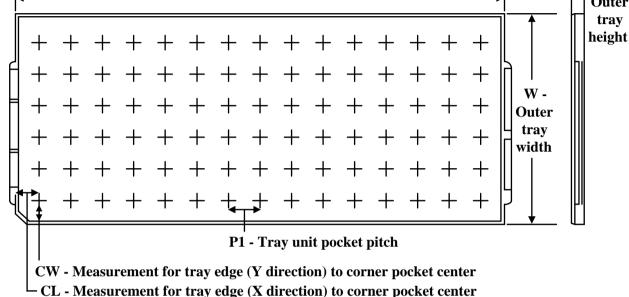
PACKAGE OPTION ADDENDUM

OTHER QUALIFIED VERSIONS OF TMS320F28052, TMS320F28052-Q1, TMS320F28052F, TMS320F28052F-Q1, TMS320F28052M, TMS320F28052M-Q1, TMS320F28054F, T

• Automotive : TMS320F28052-Q1, TMS320F28052F-Q1, TMS320F28052M-Q1, TMS320F28054-Q1, TMS320F28054F-Q1, TMS320F28054M-Q1


NOTE: Qualified Version Definitions:

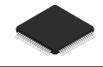
- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects


TEXAS INSTRUMENTS

www.ti.com

TRAY

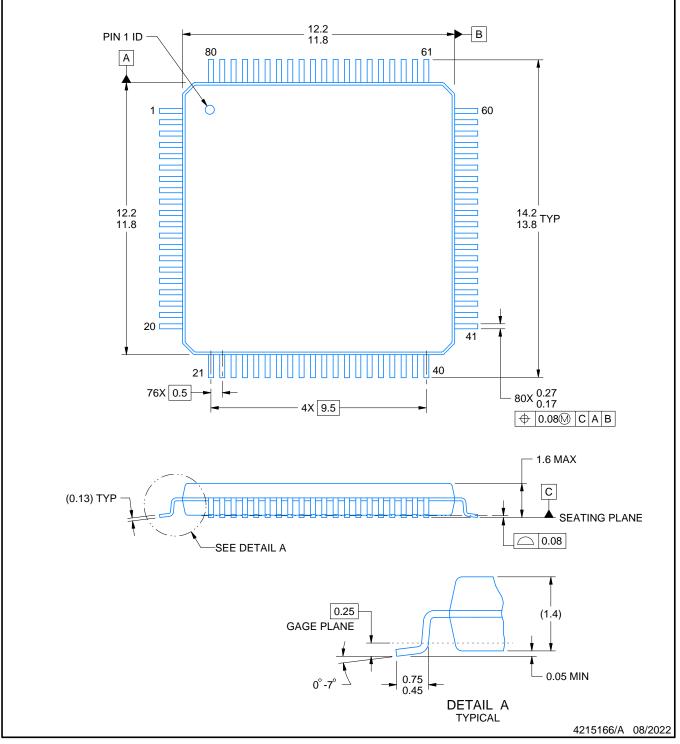
PACKAGE MATERIALS INFORMATION



Chamfer on Tray corner indicates Pin 1 orientation of packed units.

Device	Package Name	Package Type	Pins	SPQ	Unit array matrix	Max temperature (°C)	L (mm)	W (mm)	K0 (µm)	P1 (mm)	CL (mm)	CW (mm)
TMS320F28050PNS	PN	LQFP	80	119	7 X 17	150	315	135.9	7620	17.9	14.3	13.95
TMS320F28052FPNQ	PN	LQFP	80	119	7 X 17	150	315	135.9	7620	17.9	14.3	13.95
TMS320F28052FPNT	PN	LQFP	80	119	7 X 17	150	315	135.9	7620	17.9	14.3	13.95
TMS320F28052MPNQ	PN	LQFP	80	119	7 X 17	150	315	135.9	7620	17.9	14.3	13.95
TMS320F28052MPNT	PN	LQFP	80	119	7 X 17	150	315	135.9	7620	17.9	14.3	13.95
TMS320F28052PNQ	PN	LQFP	80	119	7 X 17	150	315	135.9	7620	17.9	14.3	13.95
TMS320F28052PNT	PN	LQFP	80	119	7 X 17	150	315	135.9	7620	17.9	14.3	13.95
TMS320F28053PNS	PN	LQFP	80	119	7 X 17	150	315	135.9	7620	17.9	14.3	13.95
TMS320F28054FPNQ	PN	LQFP	80	119	7 X 17	150	315	135.9	7620	17.9	14.3	13.95
TMS320F28054FPNT	PN	LQFP	80	119	7 X 17	150	315	135.9	7620	17.9	14.3	13.95
TMS320F28054MPNQ	PN	LQFP	80	119	7 X 17	150	315	135.9	7620	17.9	14.3	13.95
TMS320F28054MPNT	PN	LQFP	80	119	7 X 17	150	315	135.9	7620	17.9	14.3	13.95
TMS320F28054PNQ	PN	LQFP	80	119	7 X 17	150	315	135.9	7620	17.9	14.3	13.95
TMS320F28054PNS	PN	LQFP	80	119	7 X 17	150	315	135.9	7620	17.9	14.3	13.95
TMS320F28055PNS	PN	LQFP	80	119	7 X 17	150	315	135.9	7620	17.9	14.3	13.95
TMS320F28055PNT	PN	LQFP	80	119	7 X 17	150	315	135.9	7620	17.9	14.3	13.95

7-May-2022


PN0080A

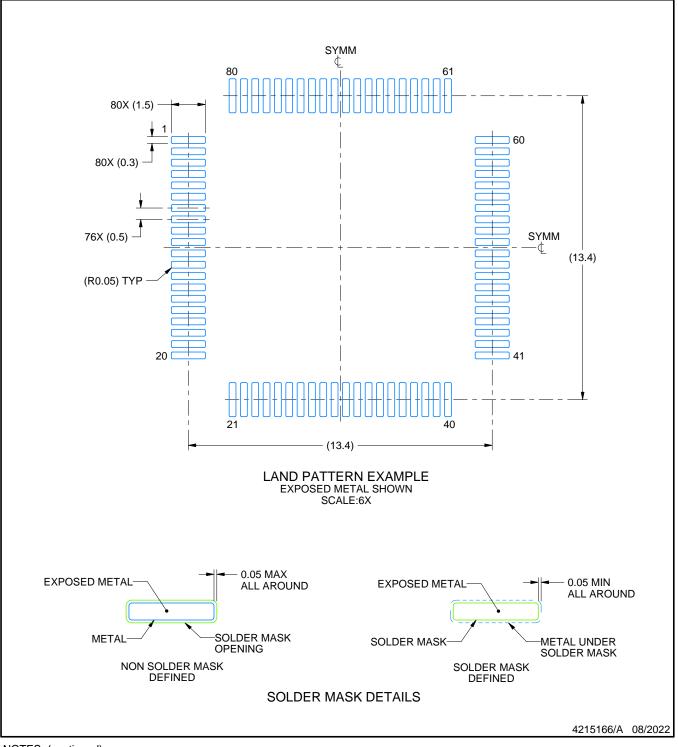
PACKAGE OUTLINE

LQFP - 1.6 mm max height

PLASTIC QUAD FLATPACK

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing All lifear differsions are in minimeters, vary amore per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC registration MS-026.



PN0080A

EXAMPLE BOARD LAYOUT

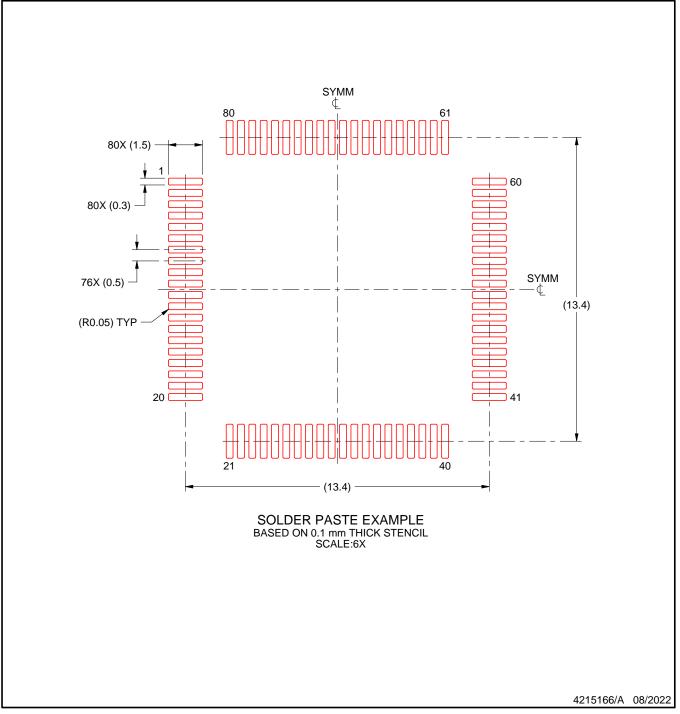
LQFP - 1.6 mm max height

PLASTIC QUAD FLATPACK

NOTES: (continued)

4. Publication IPC-7351 may have alternate designs.

Solder mask tolerances between and around signal pads can vary based on board fabrication site.
 For more information, see Texas Instruments literature number SLMA004 (www.ti.com/lit/slma004).



PN0080A

EXAMPLE STENCIL DESIGN

LQFP - 1.6 mm max height

PLASTIC QUAD FLATPACK

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

8. Board assembly site may have different recommendations for stencil design.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for 32-bit Microcontrollers - MCU category:

Click to view products by Texas Instruments manufacturer:

Other Similar products are found below :

MCF51AC256AVFUE MCF51AC256BCFUE MCF51AC256BVFUE MB91F464AAPMC-GSE2 R5S726B0D216FP#V0 MB91F248PFV-GE1 MB91243PFV-GS-136E1 SAK-TC1782F-320F180HR BA TC364DP64F300WAAKXUMA1 R5F566NNDDFP#30 R5F566NNDDFC#30 R5F566NNDDBD#20 MC96F8216ADBN A96G181HDN A96G140KNN A96G174FDN A31G213CL2N A96G148KNN A96G174AEN AC33M3064TLBN-01 V3s T3 A40i-H V526 A83T R11 V851s A133 V833 F1C100S T3L T507 A33 A63 T113-i H616 V853 V533 R16-J V536-H A64-H V831 V3LP T113-S3 F1C200S F133-A R128-S2 D1-H ADUCM360BCPZ128-TR APT32S003F8PT