

TMUX6136 ZHCSJ28A - NOVEMBER 2018 - REVISED OCTOBER 2022

TMUX6136 ±16.5V、低电容、低漏电流、 双路 SPDT 开关

1 特性

宽电源电压范围: ±5V至 ±16.5V(双电源)或 10V至 16.5V(单电源)

• 所有引脚的闩锁性能都达到 100mA, 符合 JESD78 Ⅱ 类 A 级要求

• 低导通电容:5.5pF • 低输入漏电流: 0.5pA • 低电荷注入:-0.4 pC

轨到轨运行

低导通电阻:**120**Ω 快速转换时间:66ns • 先断后合开关操作

SELx 引脚可连接至带集成下拉电阻器的 V_{DD}

逻辑电平: 2V 至 V_{DD} 低电源电流:17µA

人体放电模型 (HBM) ESD 保护: 所有引脚上均为 ±2kV

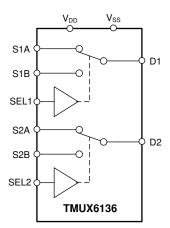
· 业界通用 TSSOP 封装

2 应用

- 工厂自动化和工业过程控制
- 可编程逻辑控制器 (PLC)
- 模拟输入模块
- ATE 测试设备
- 数字万用表
- 电池监控系统

3 说明

TMUX6136 是一款具有两个独立可选 SPDT 开关的互 补金属氧化物半导体 (CMOS) 模拟开关。该器件在双 电源(±5V至±16.5V)、单电源(10V至16.5V)或 非对称电源供电时均能正常运行。数字选择引脚 (SELx) 具有兼容晶体管到晶体管逻辑 (TTL) 的阈值, 这些阈值可确保 TTL/CMOS 逻辑兼容性。


TMUX6136 会根据 SELx 引脚的状态将两个输入 (Sx) 之一切换为共模输出 (D)。每个开关在"ON"位置时 在两个方向上表现得都很好,而且支持最高到电源的输 入信号范围。在 OFF 状态下,则会阻止最高到电源的 信号电平。所有开关都具有先断后合 (BBM) 开关操 作。

TMUX6136 是德州仪器 (TI) 精密开关和多路复用器系 列中的一款产品。该器件具有非常低的漏电流和电荷注 入,因此可用于高精度测量应用。当开关处于 OFF 位 置时,该器件还可通过阻断到达电源的信号电平来提供 出色的隔离能力。17 µ A 的低电源电流使其可用于多 种便携式应用。

封装信息(1)

器件型号		封装	封装尺寸(标称值)		
	TMUX6136	PW (TSSOP, 16)	5.00mm × 4.40mm		

要了解所有可用封装,请参见数据表末尾的封装选项附录。

Copyright © 2018, Texas Instruments Incorporated

简化版原理图

Table of Contents

1 特性 1	7.4 Device Functional Modes	19
7 <u> </u>	8 Application and Implementation	20
3 说明 1	8.1 Application Information	20
4 Revision History2	8.2 Typical Application	20
5 Pin Configuration and Functions3	9 Power Supply Recommendations	<mark>2</mark> 2
6 Specifications4	10 Layout	
6.1 Absolute Maximum Ratings4	10.1 Layout Guidelines	23
6.2 ESD Ratings	10.2 Layout Example	
6.3 Thermal Information	11 Device and Documentation Support	
6.4 Recommended Operating Conditions5	11.1 Documentation Support	
6.5 Electrical Characteristics (Dual Supplies: ±15 V)5	11.2 接收文档更新通知	
6.6 Switching Characteristics (Dual Supplies: ±15 V)6	11.3 支持资源	
6.7 Electrical Characteristics (Single Supply: 12 V)7	11.4 Trademarks	
6.8 Switching Characteristics (Single Supply: 12 V)7	11.5 Electrostatic Discharge Caution	
7 Detailed Description12	11.6 术语表	
7.1 Overview	12 Mechanical, Packaging, and Orderable	
7.2 Functional Block Diagram18	Information	24
7.3 Feature Description18		

4 Revision History 注:以前版本的页码可能与当前版本的页码不同

C	hanges from Revision * (November 2018) to Revision A (October 2022)	Page
•	更新了整个文档中的表格、图和交叉参考的编号格式	1
•	Updated the Transition-Time Measurement Setup figure	13

5 Pin Configuration and Functions

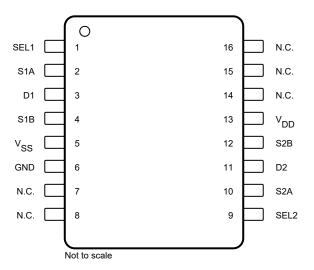


图 5-1. PW Package, 16-Pin TSSOP (Top View)

表 5-1. Pin Functions

	PIN TYPE(1)		DESCRIPTION			
NAME NO.		ITPE\"	DESCRIPTION			
SEL1	1	I	Select line 0			
S1A	2	I/O	Source pin 1A. Can be an input or output.			
D1	3	I/O	oin D1. Can be an input or output.			
S1B	4	I/O	Source pin 1B. Can be an input or output.			
V _{SS}	5	Р	Negative power supply. This pin is the most negative power-supply potential. In single-supply applications, this pin can be connected to ground. For reliable operation, connect a decoupling capacitor ranging from 0.1 μ F to 10 μ F between V _{SS} and GND.			
GND	6		Ground (0 V) reference			
N.C.	7, 8, 14, 15, 16	No Connect	No internal connection			
SEL2	9	I	Select line 1			
S2A	10	I/O	Source pin 2A. Can be an input or output.			
D2	11	I/O	Drain pin D2. Can be an input or output.			
S2B	12	I/O	Source pin 2B. Can be an input or output.			
V _{DD}	13	Р	Positive power supply. This pin is the most positive power-supply potential. For reliable operation, connect a decoupling capacitor ranging from 0.1 μ F to 10 μ F between V _{DD} and GND.			

(1) I = input, O = output, P = power

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
V _{DD} to V _{SS}			36	V
V _{DD} to GND	Supply voltage	- 0.3	18	V
V _{SS} to GND		- 18	0.3	V
V_{DIG}	Digital input pin (SEL1, SEL2) voltage	GND - 0.3	V _{DD} +0.3	V
I _{DIG}	Digital input pin (SEL1, SEL2) current	- 30	30	mA
V _{ANA_IN}	Analog input pin (Sx) voltage	V _{SS} - 0.3	V _{DD} +0.3	V
I _{ANA_IN}	Analog input pin (Sx) current	- 30	30	mA
V _{ANA_OUT}	Analog output pin (D) voltage	V _{SS} - 0.3	V _{DD} +0.3	V
I _{ANA_OUT}	Analog output pin (D) current	- 30	30	mA
T _A	Ambient temperature	- 55	140	°C
T _J	Junction temperature		150	°C
T _{stg}	Storage temperature	- 65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

				VALUE	UNIT
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all pins ⁽¹⁾	±2000	\ \ \	
	V _(ESD)		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±500	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Thermal Information

		TMUX6136	
	THERMAL METRIC ⁽¹⁾	PW (TSSOP)	UNIT
		16 PINS	
R ₀ JA	Junction-to-ambient thermal resistance	111.0	°C/W
R _{θ JC(top)}	Junction-to-case (top) thermal resistance	41.7	°C/W
R ₀ JB	Junction-to-board thermal resistance	57.2	°C/W
Ψ ЈТ	Junction-to-top characterization parameter	4.1	°C/W
Ψ ЈВ	Junction-to-board characterization parameter	56.6	°C/W
R ₀ JC(bot)	Junction-to-case (bottom) thermal resistance	N/A	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Product Folder Links: TMUX6136

6.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	5 1 5 ()	MIN	NOM MAX	UNIT
V _{DD} to V _{SS}	Power supply voltage differential	10	33	V
V _{DD} to GND	Positive power supply voltage (singlle supply, V _{SS} = 0 V)	10	16.5	V
V _{DD} to GND	Positive power supply voltage (dual supply)	5	16.5	V
V _{SS} to GND	Negative power supply voltage (dual supply)	- 16.5	- 5	V
V _S ⁽¹⁾	Source pins voltage	V _{SS}	V_{DD}	V
V _D	Drain pin voltage	V _{SS}	V_{DD}	V
V_{DIG}	Digital input pin (SEL1, SEL2) voltage	0	V_{DD}	V
I _{CH}	Channel current (T _A = 25°C)	- 25	25	mA
T _A	Ambient temperature	- 40	125	°C

⁽¹⁾ $~V_{DD}$ and V_{SS} can be any value as long as 10 V \leqslant (V $_{DD}~$ – $~V_{SS}) \leqslant$ 33 V.

6.5 Electrical Characteristics (Dual Supplies: ±15 V)

at T_A = 25°C, V_{DD} = 15 V, and V_{SS} = -15 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
ANALOG	SWITCH							
V _A	Analog signal range		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	V _{SS}		V_{DD}	V	
		V _S = 0 V, I _S = 1 mA			120	135	Ω	
Б	On marietaman				140	160	Ω	
R _{ON}	On-resistance	$V_S = \pm 10 \text{ V}, I_S = 1 \text{ mA}$	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			210	Ω	
			$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			245	Ω	
					2.5	6	Ω	
ΔR_{ON}	On-resistance mismatch between channels	$V_S = \pm 10 \text{ V}, I_S = 1 \text{ mA}$	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			9	Ω	
	between enamed		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			11	Ω	
	On-resistance flatness					23	33	Ω
R _{ON_FLAT}		V _S = -10 V, 0 V, +10 V, I _S = 1 mA	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			35	Ω	
			$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			37	Ω	
R _{ON_DRIFT}	On-resistance drift	V _S = 0 V			0.42		%/°C	
	Source off leakage current ⁽¹⁾	Switch state is off, V _S = +10 V/ - 10 V, V _D = -10 V/ + 10 V		- 0.05	0.005	0.05	nA	
I _{S(OFF)}		Switch state is off, V _S = +10 V/ - 10 V, V _D = -10 V/ + 10 V	T _A = -40°C to +85°C	- 0.17		0.1	nA	
		Switch state is off, V _S = +10 V/ - 10 V, V _D = -10 V/ + 10 V	T _A = -40°C to +125°C	- 1		0.25	nA	
		Switch state is on, V _S =		- 0.06	0.008	0.06	nA	
$I_{D(ON)}$	Drain on leakage current	+10 V/ - 10 V, V _D = - 10	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	- 0.25		0.15	nA	
		V/ +10 V	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	- 1.6		0.4	nA	
DIGITAL II	NPUT (SELx pins)	- 1	1	1				
V _{IH}	Logic voltage high			2			V	
V _{IL}	Logic voltage low					0.8	V	

6.5 Electrical Characteristics (Dual Supplies: ±15 V) (continued)

at T_A = 25°C, V_{DD} = 15 V, and V_{SS} = -15 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
R _{PD(SELx)}	Pull-down resistance on SELx pins				6		МΩ
POWER SU	PPLY					,	
					17	21	μΑ
I _{DD}	V _{DD} supply current	$V_A = 0 \text{ V or } 3.3 \text{ V, } V_S = 0 \text{ V}$	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			22	μA
			$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			23	μΑ
					8	10	μΑ
I _{SS}	V _{SS} supply current	$V_A = 0 \text{ V or } 3.3 \text{ V, } V_S = 0 \text{ V}$	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			11	μΑ
			$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			12	μΑ

⁽¹⁾ When V_S is positive, V_D is negative, and vice versa.

6.6 Switching Characteristics (Dual Supplies: ±15 V)

at T_A = 25°C, V_{DD} = 15 V, and V_{SS} = -15 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		V_S = 10 V, R_L = 300 Ω , C_L = 35 pF		66	78	ns
t _{TRAN}	Transition time	$\mbox{V}_{\mbox{S}}$ = 10 V, $\mbox{R}_{\mbox{L}}$ = 300 Ω , $\mbox{C}_{\mbox{L}}$ = 35 pF, $\mbox{T}_{\mbox{A}}$ = $-40^{\circ}\mbox{C}$ to +85°C			107	ns
		$\rm V_S$ = 10 V, $\rm R_L$ = 300 $ \Omega$, $\rm C_L$ = 35 pF, $\rm T_A$ = $$ – 40°C to +125°C			117	ns
tBBM	Break-before-make time delay	$\mbox{V}_{\mbox{S}}$ = 10 V, $\mbox{R}_{\mbox{L}}$ = 300 Ω , $\mbox{C}_{\mbox{L}}$ = 35 pF, $\mbox{T}_{\mbox{A}}$ = $-$ 40°C to +125°C	20	40		ns
Q _J	Charge injection	V_S = 0 V, R_S = 0 Ω , C_L = 1 nF		- 0.4		рC
O _{ISO}	Off-isolation	R_L = 50 Ω , C_L = 5 pF, f = 1 MHz		- 85		dB
v	Channel-to-channel crosstalk	R_L = 50 Ω , C_L = 5 pF, f = 1 MHz (Inter-channel: S1x and S2x)		- 105		dB
X _{TALK}		R _L = 50 $^{\Omega}$, C _L = 5 pF, f = 1 MHz (Intra-channel: SxA and SxB)		- 92		dB
IL	Insertion loss	R_L = 50 Ω , C_L = 5 pF, f = 1 MHz		- 7		dB
ACPSRR	AC Power Supply Rejection	R _L = 10 k Ω , C _L = 5 pF, V _{PP} = 0.62 V on V _{DD} , f= 1 MHz		- 59		dB
ACFORK	Ratio	R_L = 10 k Ω , C_L = 5 pF, V_{PP} = 0.62 V on V_{SS} , f= 1 MHz		- 59		dB
BW	-3dB Bandwidth	$R_L = 50 \Omega$, $C_L = 5 pF$		670		MHz
THD	Total harmonic distortion + noise	$R_L = 10 \text{ k}\Omega$, $C_L = 5 \text{ pF}$, $f = 20 \text{ Hz}$ to 20 kHz		0.08		%
C _{IN}	Digital input capacitance	$V_{IN} = 0 \text{ V or } V_{DD}$		1.5		pF
C _{S(OFF)}	Source off-capacitance	V _S = 0 V, f = 1 MHz		2.4	3.3	pF
C _{S(ON),} C _{D(ON)}	Source and drain on- capacitance	V _S = 0 V, f = 1 MHz		5.5	7.5	pF

Product Folder Links: *TMUX6136*

6.7 Electrical Characteristics (Single Supply: 12 V)

at $T_A = 25$ °C, $V_{DD} = 12$ V, and $V_{SS} = 0$ V (unless otherwise noted)

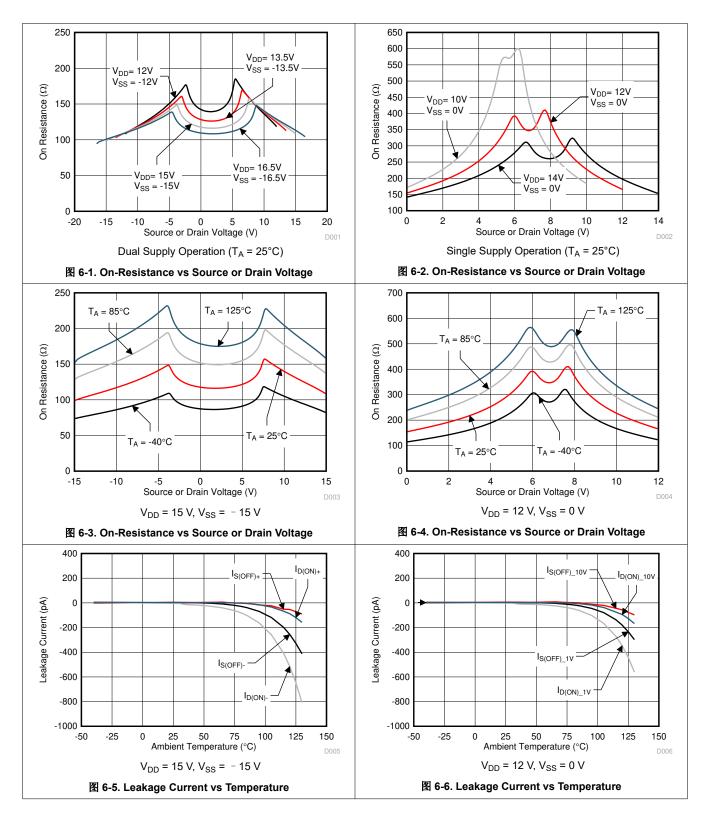
	PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
ANALOG S	SWITCH						
V _A	Analog signal range			V _{SS}		V_{DD}	V
					235	345	Ω
R _{ON}	On-resistance	V _S = 10 V, I _S = 1 mA	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			400	Ω
			$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			440	Ω
					4	12	Ω
ΔR_{ON}	On-resistance mismatch between channels	V _S = 10 V, I _S = 1 mA	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			19	Ω
R_{ON} ΔR_{ON} R_{ON_DRIFT} $I_{S(OFF)}$	botween enamines		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			23	Ω
R _{ON_DRIFT}	On-resistance drift	V _S = 0 V			0.47		%/°C
I _{S(OFF)}	Source off leakage current ⁽¹⁾	Switch state is off, V _S = 10 V/ 1 V, V _D = 1 V/ 10 V		- 0.03	0.005	0.03	nA
			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	- 0.1		0.07	nA
			$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	- 0.8		0.2	nA
	Drain on leakage current	Switch state is on, $V_S =$ floating, $V_D = 1 \text{ V/ } 10 \text{ V}$		- 0.04	0.01	0.04	nA
$I_{D(ON)}$			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	- 0.16		0.09	nA
			$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	- 1.2		0.3	nA
DIGITAL IN	IPUT (SELx pins)						
V _{IH}	Logic voltage high			2			V
V _{IL}	Logic voltage low					0.8	V
R _{PD(SELx)}	Pull-down resistance on SELx pins				6		ΜΩ
POWER SU	JPPLY					'	
					13	16	μΑ
I_{DD}	V _{DD} supply current	$V_A = 0 \text{ V or } 3.3 \text{ V}, V_S = 0 \text{ V}$	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			17	μΑ
			T _A = -40°C to +125°C			18	μA

⁽¹⁾ When V_S is positive, V_D is negative, and vice versa.

6.8 Switching Characteristics (Single Supply: 12 V)

at T_A = 25°C, V_{DD} = 12 V, and V_{SS} = 0 V (unless otherwise noted)

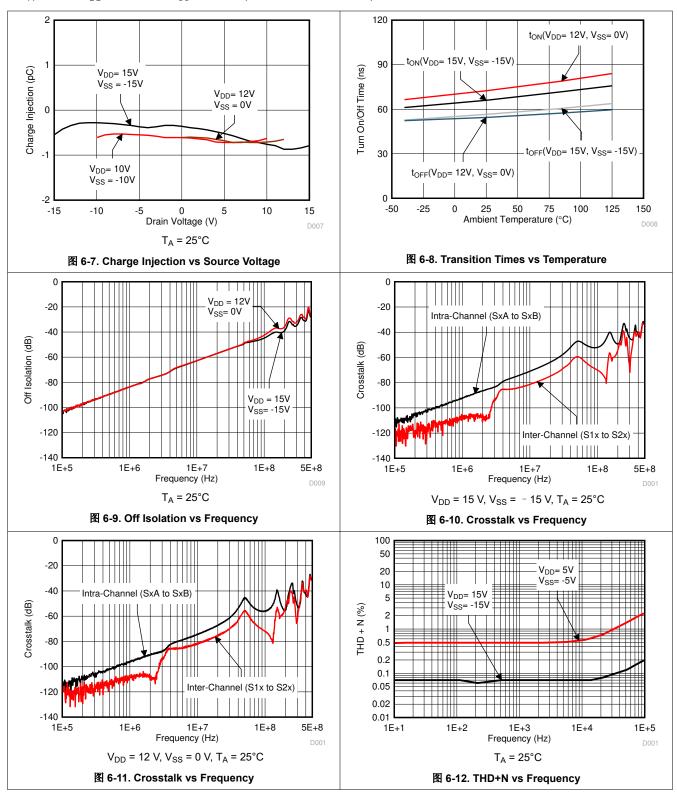
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		V_S = 8 V, R_L = 300 Ω , C_L = 35 pF		72	84	ns
t _{TRAN}	Transition time	V_{S} = 8 V, R_{L} = 300 Ω , C_{L} = 35 pF, T_{A} = $$ – 40°C to +85°C			117	ns
		V_S = 8 V, R_L = 300 Ω , C_L = 35 pF, T_A = $$ – 40°C to +125°C		,	128	ns
t _{BBM}	Break-before-make time delay	V_S = 8 V, R_L = 300 Ω , C_L = 35 pF, T_A = $$ – 40°C to +125°C	20	40		ns
QJ	Charge injection	V_S = 6 V, R_S = 0 Ω , C_L = 1 nF		- 0.7		рС
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$		-85		dB
Y	Channel-to-channel crosstalk	R_{L} = 50 Ω , C_{L} = 5 pF, f = 1 MHz (Inter-channel: S1x and S2x)		- 110		dB
X _{TALK}	Grianner-to-Grianner Gosstan	R_{L} = 50 Ω , C_{L} = 5 pF, f = 1 MHz (Intra-channel: SxA and SxB)		- 95		dB
IL	Insertion loss	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$		- 13		dB


6.8 Switching Characteristics (Single Supply: 12 V) (continued)

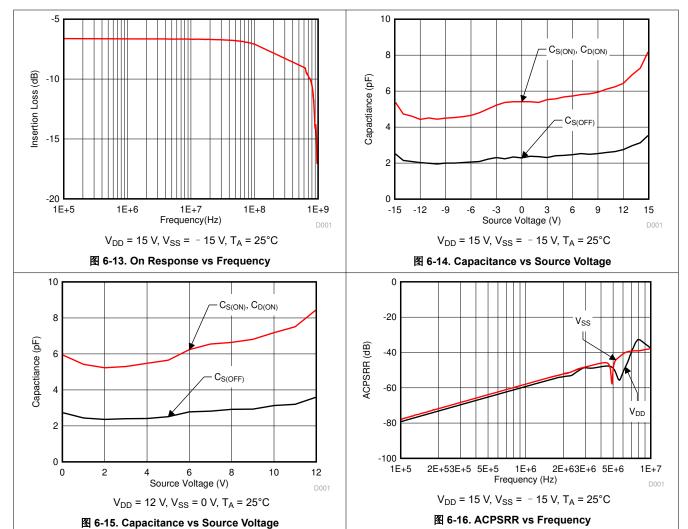
at T_A = 25°C, V_{DD} = 12 V, and V_{SS} = 0 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ACPSRR AC Power Supply Rejection Ratio		R_L = 10 k Ω , C_L = 5 pF, V_{PP} = 0.62 V, f= 1 MHz		- 58		dB
BW -3dB Bandwidth		$R_L = 50 \Omega$, $C_L = 5 pF$		650		MHz
C _{IN} Digital input capacitance		$V_{IN} = 0 \text{ V or } V_{DD}$		1.7		pF
C _{S(OFF)}	Source off-capacitance	$V_S = 6 V, f = 1 MHz$		2.6	3.7	pF
C _{S(ON)} , C _{D(ON)}	Source and drain on- capacitance	V _S = 6 V, f = 1 MHz		6.3	8.5	pF

Typical Characteristics


at T_A = 25°C, V_{DD} = 15 V, and V_{SS} = -15 V (unless otherwise noted)

Typical Characteristics


at T_A = 25°C, V_{DD} = 15 V, and V_{SS} = - 15 V (unless otherwise noted)

Typical Characteristics

at $T_A = 25$ °C, $V_{DD} = 15$ V, and $V_{SS} = -15$ V (unless otherwise noted)

7 Detailed Description

7.1 Overview

7.1.1 On-Resistance

The on-resistance of the TMUX6136 is the ohmic resistance across the source (Sx) and drain (D) pins of the device. The on-resistance varies with input voltage and supply voltage. The symbol R_{ON} is used to denote on-resistance. The measurement setup used to measure R_{ON} is shown in 图 7-1. Voltage (V) and current (I_{CH}) are measured using this setup, and R_{ON} is computed as shown in 方程式 1.

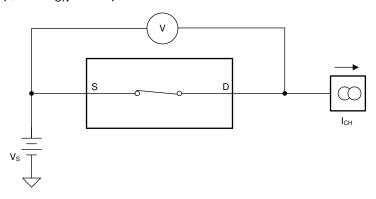


图 7-1. On-Resistance Measurement Setup

$$R_{ON} = V / I_{CH}$$
 (1)

7.1.2 Off-Leakage Current

Source off-leakage current is defined as the leakage current that flows into or out of the source pin when the switch is in the off state. This current is denoted by the symbol $I_{S(OFF)}$. Drain off-leakage measurement is not characterization since the drain pin is always connected to one of the two source pins.

The setup used to measure both off-leakage currents is shown in \textstyle 7-2.

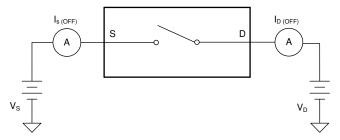


图 7-2. Off-Leakage Measurement Setup

7.1.3 On-Leakage Current

On-leakage current is defined as the leakage current that flows into or out of the drain pin when the switch is in the on state. The source pin is left floating during the measurement. \boxtimes 7-3 shows the circuit used for measuring the on-leakage current, denoted by $I_{D(ON)}$.

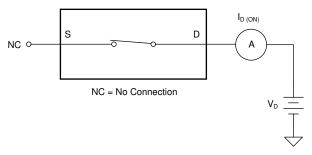


图 7-3. On-Leakage Measurement Setup

7.1.4 Transition Time

Transition time is defined as the time taken by the output of the TMUX6136 to rise or fall to 90% of the transition after the digital address signal has fallen or risen to 50% of the transition. $\boxed{8}$ 7-4 shows the setup used to measure transition time, denoted by the symbol t_{TRAN} .

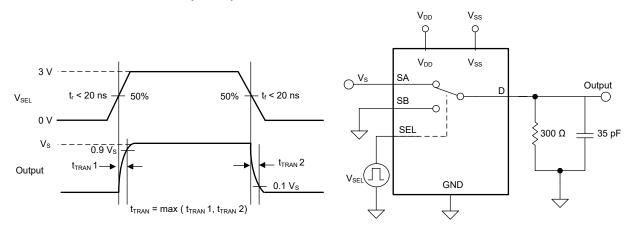


图 7-4. Transition-Time Measurement Setup

7.1.5 Break-Before-Make Delay

Break-before-make delay is a safety feature that prevents two inputs from connecting when the TMUX6136 is switching. The TMUX6136 output first breaks from the on-state switch before making the connection with the next on-state switch. The time delay between the *break* and the *make* is known as break-before-make delay. 8 shows the setup used to measure break-before-make delay, denoted by the symbol t_{BBM}.

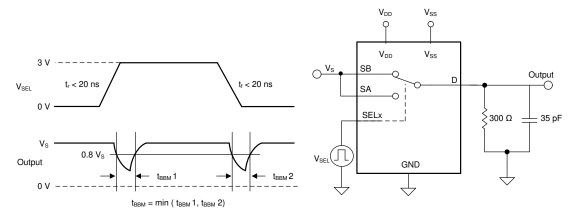


图 7-5. Break-Before-Make Delay Measurement Setup

7.1.6 Charge Injection

The TMUX6136 have a simple transmission-gate topology. Any mismatch in capacitance between the NMOS and PMOS transistors results in a charge injected into the drain or source during the falling or rising edge of the gate signal. The amount of charge injected into the source of the device is known as charge injection, and is denoted by the symbol Q_{INJ} . $\boxed{3}$ 7-6 shows the setup used to measure charge injection from drain (D) to source (Sx).

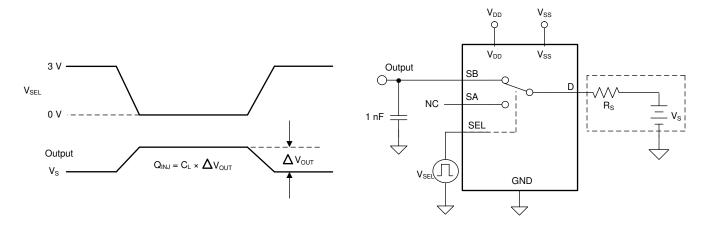


图 7-6. Charge-Injection Measurement Setup

7.1.7 Off Isolation

Off isolation is defined as the voltage at the drain pin (D) of the TMUX6136 when a 1- V_{RMS} signal is applied to the source pin (Sx) of an off-channel. 图 7-7 shows the setup used to measure off isolation. Use 方程式 2 to compute off isolation.

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

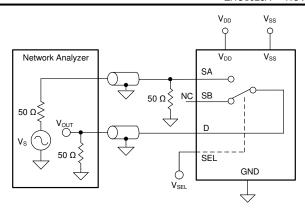


图 7-7. Off Isolation Measurement Setup

Off Isolation =
$$20 \cdot Log\left(\frac{V_{OUT}}{V_{S}}\right)$$
 (2)

7.1.8 Channel-to-Channel Crosstalk

There are two types of crosstalk that can be defined for the TMUX6136:

- 1. Intra-channel crosstalk: the voltage at the source pin (Sx) of an off-switch input, when a 1-VRMS signal is applied at the source pin of an on-switch input in the same channel, as shown in 🖺 7-8.
- 2. Inter-channel crosstalk: the voltage at the source pin (Sx) of an on-switch input, when a 1-VRMS signal is applied at the source pin of an on-switch input in a different channel, as shown in

 7-9.

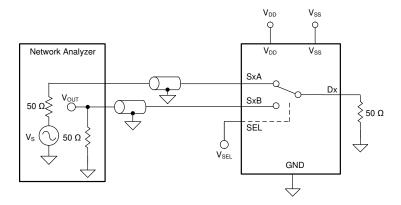


图 7-8. Intra-Channel Crosstalk Measurement Setup

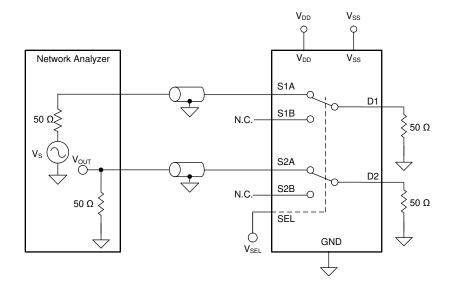


图 7-9. Inter-Channel Crosstalk Measurement Setup

Channel-to-Channel Crosstalk =
$$20 \cdot Log\left(\frac{V_{OUT}}{V_{S}}\right)$$
 (3)

7.1.9 Bandwidth

Bandwidth is defined as the range of frequencies that are attenuated by < 3 dB when the input is applied to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D) of the TMUX6136. 图 7-10 shows the setup used to measure bandwidth of the mux. Use <math> 方程式 4 to compute the attenuation.

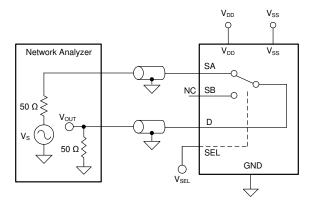


图 7-10. Bandwidth Measurement Setup

Attenuation =
$$20 \cdot Log\left(\frac{V_2}{V_1}\right)$$
 (4)

7.1.10 THD + Noise

The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined as the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency at the mux output. The on-resistance of the TMUX6136 varies with the amplitude of the input signal and results in distortion when the drain pin is connected to a low-impedance load. Total harmonic distortion plus noise is denoted as THD+N.

Submit Document Feedback

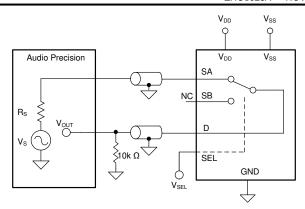


图 7-11. THD+N Measurement Setup

7.1.11 AC Power Supply Rejection Ratio (AC PSRR)

AC PSRR measures the ability of a device to prevent noise and spurious signals that appear on the supply voltage pin from coupling to the output of the switch. The DC voltage on the device supply is modulated by a sine wave of 620 mV $_{\rm PP}$. The ratio of the amplitude of signal on the output to the amplitude of the modulated signal is the AC PSRR.

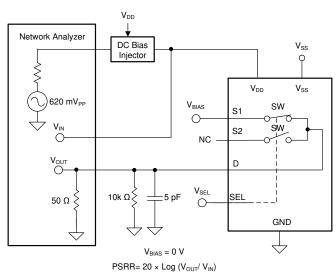
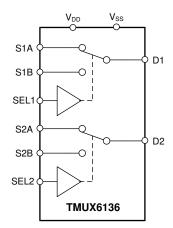



图 7-12. AC PSRR Measurement Setup

For a top-level block diagram of the TMUX6136, see † 7.2. The TMUX6136 is a 4-channel, single-ended, analog multiplexer. Each channel is turned on or turned off based on the state of the address lines and enable pin.

7.2 Functional Block Diagram

Copyright © 2018, Texas Instruments Incorporated

7.3 Feature Description

7.3.1 Ultralow Leakage Current

The TMUX6136 provides extremely low on- and off-leakage currents. The TMUX6136 is capable of switching signals from high source-impedance inputs into a high input-impedance op amp with minimal offset error because of the ultralow leakage currents.

7-13 shows typical leakage currents of the TMUX6136 versus temperature.

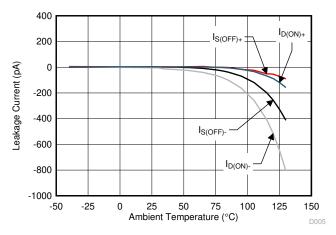


图 7-13. Leakage Current vs Temperature

7.3.2 Ultralow Charge Injection

The TMUX6136 is implemented with simple transmission gate topology, as shown in 🗵 7-14. Any mismatch in the stray capacitance associated with the NMOS and PMOS causes an output level change whenever the switch is opened or closed.

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

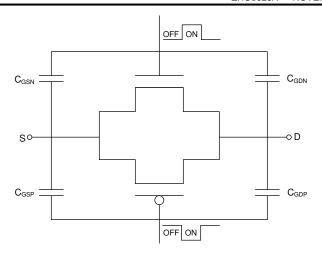


图 7-14. Transmission Gate Topology

The TMUX6136 utilizes special charge-injection cancellation circuitry that reduces the drain (D)-to-source (Sx) charge injection to as low as -0.4 pC at $V_S = 0$ V, as shown in $\boxed{8}$ 7-15.

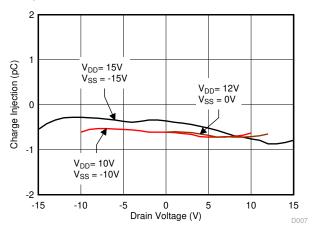


图 7-15. Charge Injection vs Drain Voltage

7.3.3 Bidirectional and Rail-to-Rail Operation

The TMUX6136 conducts equally well from source (Sx) to drain (D) or from drain (D) to source (Sx). Each TMUX6136 channel has very similar characteristics in both directions. The valid analog signal for TMUX6136 ranges from V_{SS} to V_{DD} . The input signal to the TMUX6136 swings from V_{SS} to V_{DD} without any significant degradation in performance.

7.4 Device Functional Modes

7.4.1 Truth Table

表 7-1. TMUX6136 Truth Table

SELx	Switch A (S1A to D1 or S2A to D2)	Switch B (S1B to D1 or S2B to D2)
0	OFF	ON
1	ON	OFF

8 Application and Implementation

备注

以下应用部分中的信息不属于 TI 器件规格的范围, TI 不担保其准确性和完整性。TI 的客户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

8.1 Application Information

The TMUX6136 offers outstanding input and output leakage currents and ultralow charge injection. The device operates up to 33 V (V_{DD} to V_{SS} dual supply) or 16.5 V (V_{DD} single supply), and offers true rail-to-rail input and output. The on-capacitance of the TMUX6136 is low. These features make the TMUX6136 a precision, robust, high-performance analog multiplexer for high-voltage, industrial applications.

8.2 Typical Application

One example of the TMUX6136 precision performance to take advantage of is the implementation of parametric measurement unit (PMU) in the semiconductor automatic test equipment (ATE) application. The PMU is frequently used to characterize and measure the digital pin's DC characteristics of a device under test (DUT). Among all the PMU's capabilities, force voltage measure current (FVMC) and force current measure voltage (FCMV) are the two most typical configurations in DC characterizations.

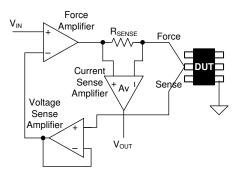


图 8-1. FVMC Measurement in PMU

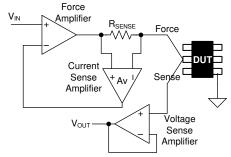


图 8-2. FCMV Measurement in PMU

8-1 shows a simplified diagram of the PMU in FVMC configuration. The control loop consists of the force amplifier with the voltage sense amplifier (unity gain in this example) making up the feedback path. Current flowing through the DUT is measured by sensing the current flowing through a sense resistor (R_{SENSE}) in series with the DUT. The current sense amplifier with a gain of Av generates a voltage (V_{OUT}) at its output and the voltage can then be measured by an ADC. The voltage produced at the DUT pin stays at the input voltage level (IN) as long as the force amplifier does not rail out (for example, $I_{DUT} \times R_{SENSE} \times Av$ stays within the input voltage range of the force amplifier). Depending on the level of the DUT current to be measured, different gain settings need to be configured for the current sense amplifier.

8-2 shows a simplified diagram of the PMU in FCMV mode. The voltage V_{IN} is now converted to a current through the following relationship:

Force Current =
$$V_{IN}$$
 / (R_{SENSE} x Av) (5)

The control loop consists of the force amplifier with the current sense amplifier making up the feedback path. The voltage at the DUT is sensed across the voltage sense amplifier (unity gain in this example) and presented at the output for sample.

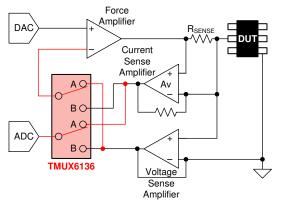
8.2.1 Design Requirements

The goal of this design example is to simplify the FVMC and FCMV functions of a PMU design using a SPDT switch. The FVMC configuration is useful to test a device being used as a power supply, or in continuity or

Submit Document Feedback

leakage testing. In this configuration, the input voltage is directly applied to the DUT pin, and the current into or out of the DUT pin is converted to a voltage by a sense resistor and measured by an analog to digital converter (ADC). In the FCMV mode, an input current is forced to the DUT and the produced voltage on the DUT pin is directly measured. In this example, the PMU design is required to meet the following specifications:

Force voltage range: - 15 volts to +15 volts


Force current range: ±5 µA to ±50 mA

Measure voltage range: - 15 volts to +15 volts

Measure current range: ±5 μA to ±50 mA

In addition to the voltage and current requirements, fast throughput is also a key requirement in ATE because it relates directly to the cost of manufacturing the DUT.

8.2.2 Detailed Design Procedure

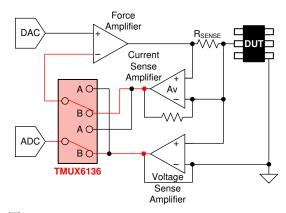


图 8-3. FVMC Implementation in PMU Using the TMUX6136

图 8-4. FCMV Implementation in PMU Using the TMUX6136

The implementation of the FVMC and FCMV modes can be combined with the use of a dual SPDT switch such as the TMUX6136. 8-3 and 8-4 shows simplified diagrams of such implementations. In the FVMC mode, the switch is toggled to position A and this allows the voltage sense amplifier to become part of the feedback loop and the voltage output of the current sense amplifier to be sampled by the ADC. In the FCMV mode, the switch is toggled to position B, and this allows the current sense amplifier to become part of the feedback loop and the voltage output of the voltage sense amplifier to be sampled by the ADC.

8.2.3 Application Curve

The fast transition time of the TMUX6136 and low input or output parasitic capacitance help minimize the settling time, making the TMUX6136 an excellent candidate to implement the FVMC and FCMV functions of the PMU. 8-5 shows the plot for the transition time versus temperature for the TMUX6136.

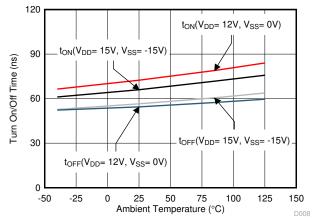


图 8-5. Transition Time vs Temperature for TMUX6136

9 Power Supply Recommendations

The TMUX6136 operates across a wide supply range of ± 5 V to ± 16.5 V (10 V to ± 6.5 V in single-supply mode). The device also performs well with unsymmetric supplies such as V_{DD} = 12 V and V_{SS} – 5 V. For reliable operation, use a supply decoupling capacitor ranging between 0.1 μ F to 10 μ F at both the V_{DD} and V_{SS} pins to ground.

10 Layout

10.1 Layout Guidelines

10-1 shows an example of a PCB layout with the TMUX6136.

Some key considerations are as follows:

- 1. Decouple the V_{DD} and V_{SS} pins with a 0.1- μ F capacitor, placed as close to the pin as possible. Make sure that the capacitor voltage rating is sufficient for the V_{DD} and V_{SS} supplies.
- 2. Keep the input lines as short as possible.
- 3. Use a solid ground plane to help distribute heat and reduce electromagnetic interference (EMI) noise pickup.
- 4. Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible, and only make perpendicular crossings when necessary.

10.2 Layout Example

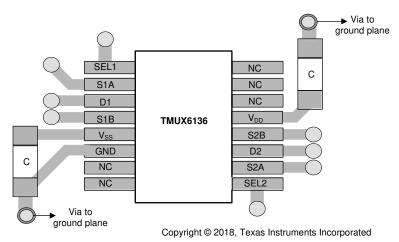


图 10-1. TMUX6136 Layout Example

11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

For related documentation, see the following:

- Texas Instruments, ADS8664 12-Bit, 500-kSPS, 4- and 8-Channel, Single-Supply, SAR ADCs with Bipolar Input Ranges
- Texas Instruments, OPA192 36-V, Precision, Rail-to-Rail Input/Output, Low Offset Voltage, Low Input Bias Current Op Amp with e-Trim™

11.2 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

11.3 支持资源

TI E2E[™] 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

11.4 Trademarks

TI E2E™ is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

11.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.6 术语表

TI术语表本术语表列出并解释了术语、首字母缩略词和定义。

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

www.ti.com 30-Sep-2022

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
TMUX6136PWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	MUX6136	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

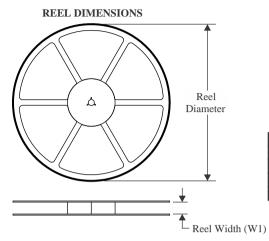
OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

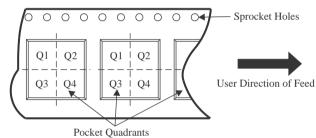
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

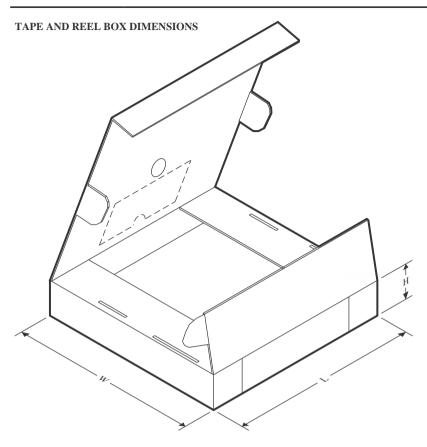
www.ti.com 30-Sep-2022


TAPE AND REEL INFORMATION

TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

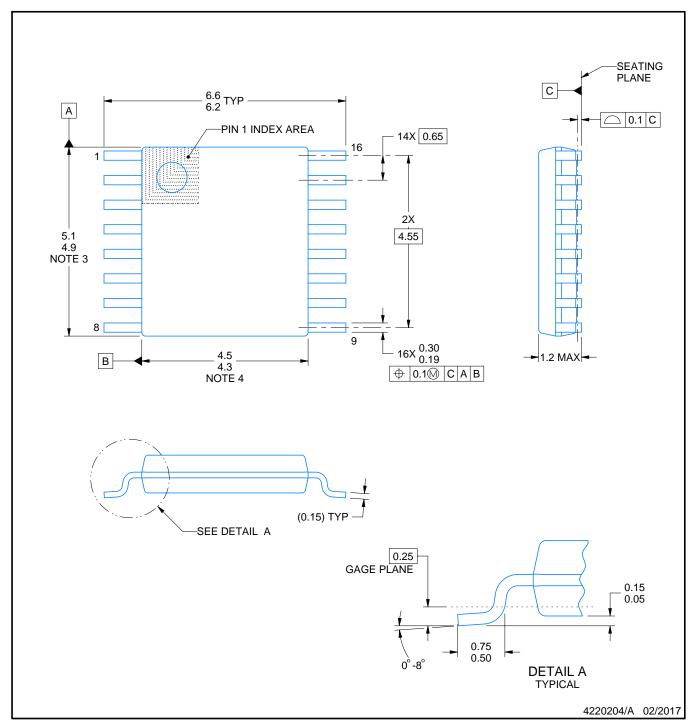


*All dimensions are nominal

	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ı	TMUX6136PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 30-Sep-2022

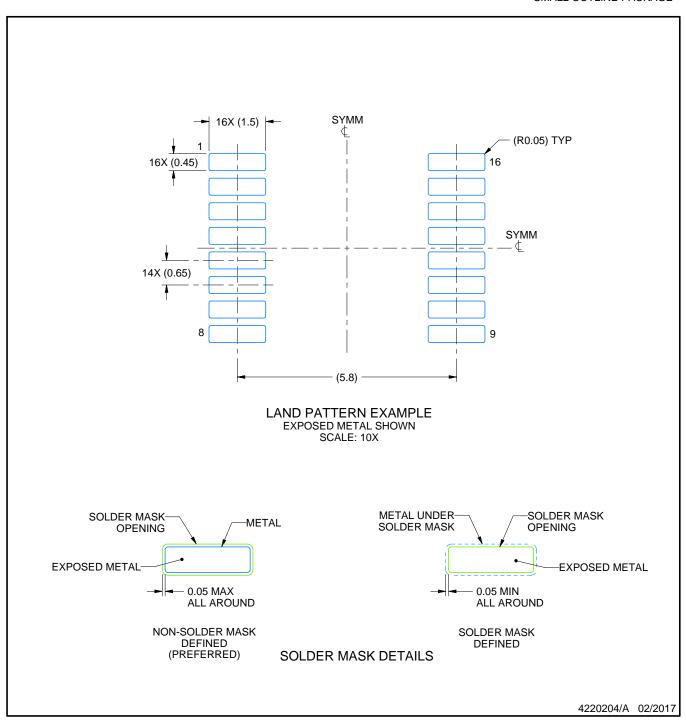


*All dimensions are nominal

	Device Package Type		Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
ı	TMUX6136PWR	TSSOP	PW	16	2000	356.0	356.0	35.0	

SMALL OUTLINE PACKAGE

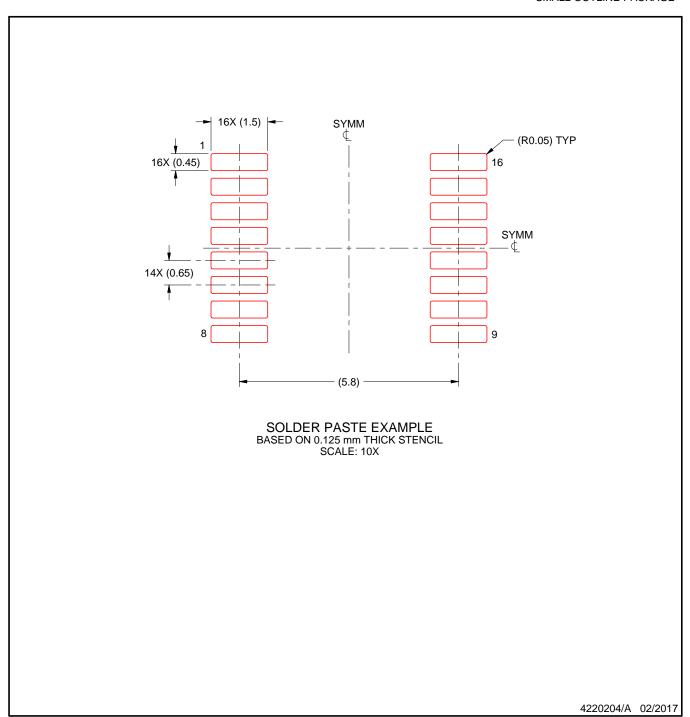
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analogue Switch ICs category:

Click to view products by Texas Instruments manufacturer:

Other Similar products are found below:

FSA3051TMX NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB DG403DY 099044FB MAX4762ETB+ NLAS3799BMNR2G

NLAS5123MNR2G ISL84684IR PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE

DG333ALDW-T1-E3 ISL43113IB ISL43140IB ISL43140IBZ-T ISL43143IR ISL43L120IR ISL43L121IR ISL43L122IR ISL43L220IR

ISL43L410IR ISL43L420IR ISL43L710IR ISL43L711IR ISL43L712IR ISL84053IA ISL84514IB ISL84516IB ISL84684IUZ-T

LNLASB3157DFT2G NLAS324US NLASTV4599DFT2G TPW4053-SR WAS4642Q-24/TR ADG842YKSZ-REEL7 WAS4766C-9/TR

WAS7227Q-10/TR WAS4646C-36/TR WAS4735Q-16/TR BL1532TQFN RS2233YS16 CH483M TMUX646ZECR TMUX1248DCKR

TMUX7236RUMR