

Sample &

SLVS749C-NOVEMBER 2008-REVISED JANUARY 2015

TPS2292x 3.6-V, 2-A, 14-mΩ ON-Resistance Load Switch With Controlled Turnon

Technical

Documents

1 Features

- Integrated P-Channel Load Switch
- Input Voltage: 0.9 V to 3.6 V
- **ON-Resistance (Typical Values)**
 - r_{ON} = 14 m Ω at V_{IN} = 3.6 V
 - r_{ON} = 20 m Ω at V_{IN} = 2.5 V
 - r_{ON} = 33 mΩ at V_{IN} = 1.8 V
 - $r_{ON} = 67 \text{ m}\Omega \text{ at } V_{IN} = 1.2 \text{ V}$
 - r_{ON} = 116 m Ω at V_{IN} = 1.0 V
- 2-A Maximum Continuous Switch Current
- Quiescent Current:
 - Typical 78 nA at 1.8 V
- Shutdown Current:
 - Typical 35 nA at 1.8 V
- Low Threshold Control Input Enable the use of 1.2 V, 1.8 V, 2.5 V, or 3.3 V Logic
- Controlled Slew Rate to Avoid Inrush Currents
 - $t_R = 30 \ \mu s \ at \ V_{IN} = 1.8 \ V \ (TPS22921/2)$
 - t_R = 200 μs at V_{IN} = 1.8 V (TPS22922B)
- Quick Output Discharge (TPS22922/2B)
- ESD Performance Tested Per JESD 22
 - 3000-V Human Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)
- Six Terminal Wafer-Chip-Scale DSBGA Package (nominal dimensions shown - see Mechanical, Packaging, and Orderable Information for details)
 - 0.9-mm × 1.4-mm, 0.5-mm Pitch, 0.5 mm Height (YZP)
 - 0.9-mm × 1.4-mm, 0.5-mm Pitch, 0.625 mm Height (YZT)
 - 0.8-mm × 1.2-mm, 0.4-mm Pitch, 0.5-mm Height (YFP)

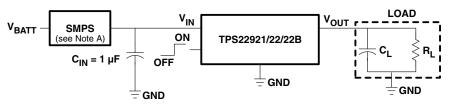
2 Applications

Tools &

Software

- **PDAs**
- **Cell Phones**
- **GPS** Devices
- MP3 Players
- **Peripheral Ports**
- Portable Media Players
- **RF Modules**

3 Description


TPS22921, TPS22922, and TPS22922B are small, low r_{ON} load switches with controlled turnon. The TPS22921/2/2B contains a P-channel MOSFET that can operate over an input voltage range of 0.9 V to 3.6 V. The switch is controlled by an on/off input (ON), which can interface directly with low-voltage control signals. In TPS22922 and in TPS22922B, a $65-\Omega$ on-chip load resistor is added for output quick discharge when the switch is turned off. The rise time (slew rate) of the device is internally controlled in order to avoid inrush current: TPS22921 and TPS22922 feature a 30-µs rise time, whereas TPS22922B is 200 µs.

TPS22921, TPS22922, and TPS22922B feature low quiescent and shutdown currents and are available in space-saving 6-pin wafer-chip-scale packages DSBGA (WCSP: YZP and YZT with 0.5-mm pitch and YFP with 0.4-mm pitch) which make them ideal for portable electronics. The devices are characterized for operation over the free-air temperature range of -40°C to 85°C.

Device Information("						
PART NUMBER PACKAGE BODY SIZE (NOM)						
TPS22921 ⁽¹⁾	YZT	0.0 mm + 1.4 mm				
	YZP	0.9 mm × 1.4 mm				
	YFP	0.8 mm × 1.2 mm				
TPS22922	YZP	0.9 mm × 1.4 mm				
TPS22922B	YFP	0.8 mm × 1.2 mm				

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Typical Application

Switched-mode power supply Α.

Support &

Community

29

Page

Table of Contents

1	Feat	ures 1
2	App	lications1
3	Desc	cription1
4	Турі	cal Application 1
5	Revi	sion History2
6	Devi	ce Comparison Table 3
7	Pin (Configuration and Functions 3
8	Spee	cifications 4
	8.1	Absolute Maximum Ratings 4
	8.2	ESD Ratings 4
	8.3	Recommended Operating Conditions 4
	8.4	Thermal Information 4
	8.5	Electrical Characteristics 5
	8.6	Switching Characteristics: $V_{IN} = 0.9 V$
	8.7	Switching Characteristics: V _{IN} = 1 V 6
	8.8	Switching Characteristics: $V_{IN} = 1.1 V$ 7
	8.9	Switching Characteristics: $V_{IN} = 1.2 V$
	8.10	Switching Characteristics: V _{IN} = 1.8 V8
	8.11	Switching Characteristics: V _{IN} = 2.5 V 8
	8.12	Switching Characteristics: V _{IN} = 3 V 9
	8.13	Switching Characteristics: $V_{IN} = 3.6 V$

	8.14	Typical Characteristics	10
9	Para	meter Measurement Information	19
10	Deta	iled Description	20
	10.1	Overview	20
	10.2	Functional Block Diagram	20
	10.3	Feature Description	20
	10.4	Device Functional Modes	20
11	Appl	ication and Implementation	21
	11.1	Application Information	21
	11.2	Typical Application	21
12	Pow	er Supply Recommendations	24
13	Layo	out	24
	13.1	Layout Guidelines	24
	13.2	Layout Example	24
14	Devi	ce and Documentation Support	25
	14.1	Related Links	25
	14.2	Trademarks	25
	14.3	Electrostatic Discharge Caution	25
	14.4	Glossary	25
15	Mech	hanical, Packaging, and Orderable	
		mation	25

5 Revision History

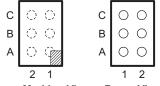
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (May 2012) to Revision C

C	hanges from Revision A (December 2008) to Revision B	Page
•	Changed Feature From: Ultra-Low Quiescent Current: 78 nA at 1.8 V To: Ultra-Low Quiescent Current: Typical 78 nA at 1.8 V	1
•	Changed Feature From: Typical 78 nA at 1.8 V To: Ultra-Low Shutdown Current: Typical 35 nA at 1.8 V	1
•	Changed Feature From: Six Terminal Wafer-Chip-Scale Package To: Six Terminal Wafer-Chip-Scale Package (nominal dimensions shown - see addendum for details	1
•	Changed Feature From: 0.5-mm Height To: 0.5-mm Height (YFP)	1
•	Changed TPS22921 QUICK OUTPUT DISCHARGE From: - To: No	3
•	Changed the format of the ELECTRICAL CHARACTERISTICS Test Conditions From: $V_{IN} = 1 - V$ to $V_{IN} = 1 - V$	5
•	Deleted Note 1 - RL_CHIP = 120 Ω from all SWITCHING CHARACTERISTICS tables	<mark>6</mark>
•	Changed Figure 50 title From: t _{OFF} Response To: t _{ON} Response	17

Cł	hanges from Original (November 2008) to Revision A	Page
•	Added Note A to the TYPICAL APPLICATION circuit	1

Copyright © 2008–2015, Texas Instruments Incorporated


6 Device Comparison Table

	R _{ON} AT 1.8 V (TYP)	RISE TIME (TYP at 1.8 V)	QUICK OUTPUT DISCHARGE ⁽¹⁾	MAX OUTPUT CURRENT	ENABLE
TPS22921	33 mΩ	30 µs	No	2 A	Active high
TPS22922	33 mΩ	30 µs	Yes	2 A	Active high
TPS22922B	33 mΩ	200 µs	Yes	2 A	Active high

⁽¹⁾ This feature discharges the output of the switch to ground through a $120-\Omega$ resistor, preventing the output from floating.

7 Pin Configuration and Functions

YFP, YZP, AND YZT PACKAGES

Laser Marking View Bump View

Pin Assignments

С	ON	GND
В	V _{IN}	V _{OUT}
Α	V _{IN}	V _{OUT}
	2	1

Pin Functions

PIN		1/O	DESCRIPTION	
NO.	NAME	1/0	DESCRIPTION	
A1	V _{OUT}	0	Switch output	
A2	V _{IN}	I	Switch input. Use a bypass capacitor to ground (ceramic)	
B1	V _{OUT}	0	Switch output	
B2	V _{IN}	I	Switch input. Use a bypass capacitor to ground (ceramic)	
C1	GND	-	Ground	
C2	ON	I	Switch control input, active high. Do not leave floating	

8 Specifications

8.1 Absolute Maximum Ratings⁽¹⁾

		MIN	MAX	UNIT
V _{IN}	Input voltage	-0.3	4	V
V _{OUT}	Output voltage		V _{IN} + 0.3	V
V _{ON}	Input voltage	-0.3	4	V
Р	Power dissipation at $T_A = 25^{\circ}C$		0.645	W
I _{MAX}	Maximum continuous switch current		2	А
T _A	Operating free-air temperature	-40	85	°C
T _{lead}	Maximum lead temperature (10-s soldering time)		300	°C
T _{stg}	Storage temperature	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

8.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±3000	
V _(ESD) Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V	
	disonargo	Machine model (MM)	±300	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

8.3 Recommended Operating Conditions

		MIN	MAX	UNIT
V _{IN}	Input voltage range	0.9	3.6	V
V _{OUT}	Output voltage range		V _{IN}	V
VIH	High-level input voltage, ON	0.85	3.6	V
VIL	Low-level input voltage, ON		0.4	V
C _{IN}	Input capacitor	1 ⁽¹⁾		μF

(1) Refer to Application Information.

8.4 Thermal Information

			, TPS22922, 22922B	TPS22921	
THERMAL METRIC ⁽¹⁾		YFP	YZP	YZT	UNIT
			6 PINS		
R_{\thetaJA}	Junction-to-ambient thermal resistance	125.1	131	120.7	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	1.4	1.3	2.1	
$R_{\theta JB}$	Junction-to-board thermal resistance	26	22.6	26.4	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.3	5.2	3.7	
ψ_{JB}	Junction-to-board characterization parameter	26	22.6	26.4	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

8.5 Electrical Characteristics

 V_{IN} = 0.9 V to 3.6 V, T_{A} = –40°C to 85°C (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS	T _A	MIN TYP ⁽¹⁾	MAX	UNIT
			$V_{IN} = 1 V$	Full	30	120	
l _Q	Quiescent current	$I_{OUT} = 0 \text{ mA}$	V _{IN} = 1.8 V	Full	78	235	nA
			V _{IN} = 3.6 V	Full	200	880	
			$V_{IN} = 1 V$	Full	10	210	
I _{IN(OFF)}	OFF-state supply current	V _{ON} = GND, OUT = Open	V _{IN} = 1.8 V	Full	35	260	nA
			V _{IN} = 3.6 V	Full	120	700	
			$V_{IN} = 1 V$	Full	12	140	
I _{IN(LEAKAGE)}	OFF-state switch current	V _{ON} = GND, V _{OUT} = 0 V	V _{IN} = 1.8 V	Full	50	230	nA
		V001 - 0 V	V _{IN} = 3.6 V	Full	130	610	
				25°C	14	45	
			V _{IN} = 3.6 V	Full		50	
			N 05.V	25°C	20	55	
			V _{IN} = 2.5 V	Full		60	
				25°C	33	65	
		000	V _{IN} = 1.8 V	Full		75	
r _{ON}	ON-state resistance	I _{OUT} = -200 mA		25°C	67	100	mΩ
			V _{IN} = 1.2 V	Full		120	
				25°C	82	150	
			V _{IN} = 1.1 V	Full		160	
				25°C	116	160	
			$V_{IN} = 1 V$	Full		170	
r _{PD}	Output pulldown resistance	V _{IN} = 3.3 V, V _{ON} = 0 V, I _{OUT} = 30 mA (TPS22922 and TPS22922B only)		25°C	65	120	Ω
I _{ON}	ON input leakage current	$V_{ON} = 1.1 \text{ V to } 3.6 \text{ V or G}$	IND	Full		25	nA

(1) Typical values are at the specified V_{IN} and T_{A} = 25°C.

TPS22921, TPS22922, TPS22922B

SLVS749C-NOVEMBER 2008-REVISED JANUARY 2015

8.6 Switching Characteristics: $V_{IN} = 0.9 V$

 $V_{IN} = 0.9 \text{ V}, \text{ } \text{T}_{A} = 25^{\circ}\text{C}$ (unless otherwise noted)

		TEST CO		T	PS22921		TF	PS2292	22	TPS22922B		3		
	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
			$C_L = 0.1 \ \mu F$		121			121			638			
t _{ON}	Turn-ON time	R _L = 500 Ω	$C_L = 1 \ \mu F$		160			160			712		μs	
			$C_L = 3 \ \mu F$		188			188			799			
			$C_L = 0.1 \ \mu F$		46			40			40			
t _{OFF}	t _{OFF} Turn-OFF time	R _L = 500 Ω	$C_L = 1 \ \mu F$		308			279			279		μs	
			$C_L = 3 \ \mu F$		975			807			807			
			$C_L = 0.1 \ \mu F$		60			60			462			
t _r	V _{OUT} rise time	$R_L = 500 \ \Omega$	$C_L = 1 \ \mu F$		85			85			465		μs	
			$C_L = 3 \ \mu F$		107			107			507			
			$C_L = 0.1 \ \mu F$		119			51			51			
t _f	V _{OUT} fall time		$C_L = 1 \ \mu F$		969			434			434		μs	
			$C_L = 3 \ \mu F$		3174			1264			1264			

8.7 Switching Characteristics: $V_{IN} = 1 V$

 $V_{IN} = 1 \text{ V}, \text{ } \text{T}_{A} = 25^{\circ}\text{C} \text{ (unless otherwise noted)}$

		TEST CON		TPS22921		TPS2	2922	TPS2292	2B	UNUT	
	PARAMETER	TEST CON	IDITIONS	MIN TYP	MAX	MIN TY	P MAX	MIN TY	P MAX	UNIT	
			$C_L = 0.1 \ \mu F$	105		1)5	54	9		
t _{ON}	Turn-ON time	$R_L = 500 \ \Omega$	$C_L = 1 \ \mu F$	136		1:	36	61	3	μs	
			$C_L = 3 \ \mu F$	157		1	57	68	3		
			$C_L = 0.1 \ \mu F$	46			28	2	8		
t _{OFF}	t _{OFF} Turn-OFF time	R _L = 500 Ω	$C_L = 1 \ \mu F$	309		18	36	18	6	μs	
			$C_L = 3 \ \mu F$	983		5	1	51	1		
		R _L = 500 Ω	$C_L = 0.1 \ \mu F$	51			51	38	6		
t_r V _{OUT} rise time $R_L = 500 \Omega$ $C_L = 1 \mu F$ 78	V _{OUT} rise time		R _L = 500 Ω	$R_L = 500 \ \Omega$	$R_L = 500 \ \Omega$	$R_L = 500 \ \Omega$		78	38	8	μs
			$C_L = 3 \ \mu F$	88			38	41	9		
			$C_L = 0.1 \ \mu F$	121		:	34	3	4		
t _f	t _f V _{OUT} fall time F	-	$C_L = 1 \ \mu F$	986		3)6	30	6	μs	
			$C_L = 3 \ \mu F$	3300		9)8	90	8	Ĩ	

6

8.8 Switching Characteristics: $V_{IN} = 1.1 V$

 V_{IN} = 1.1 V, T_{A} = 25°C (unless otherwise noted)

		TEST CO		TPS22921		TPS2292	22	TPS22922	2B	
	PARAMETER	TEST CO	NDITIONS	MIN TYP M	AX	MIN TYP	MAX	MIN TYP	MAX	UNIT
			$C_L = 0.1 \ \mu F$	91		93		484		
t _{ON}	Turn-ON time	$R_L = 500 \ \Omega$	$C_L = 1 \ \mu F$	118		118		540		μs
			$C_L = 3 \ \mu F$	137		137		599		
			$C_L = 0.1 \ \mu F$	44		21		21		
t _{OFF}	t _{OFF} Turn-OFF time	$R_L = 500 \ \Omega$	$C_L = 1 \ \mu F$	311		144		144		μs
			$C_L = 3 \ \mu F$	99		383		383		
			$C_L = 0.1 \ \mu F$	46		46		335		
t _r	V _{OUT} rise time	$R_L = 500 \ \Omega$	$C_L = 1 \ \mu F$	60		60		336		μs
			$C_L = 3 \ \mu F$	76		76		363		
			$C_L = 0.1 \ \mu F$	122		29		29		
t _f	_f V _{OUT} fall time R	R _L = 500 Ω C	$C_L = 1 \ \mu F$	1000		224		224		μs
			$C_L = 3 \ \mu F$	3300		732		732		

8.9 Switching Characteristics: $V_{IN} = 1.2 V$

 V_{IN} = 1.2 V, T_A = 25°C (unless otherwise noted)

		TEST CON	DITIONS	TPS22921		TPS22	922	TPS22922	В	UNIT				
	PARAMETER	TEST CON	DITIONS	MIN TYP	MAX	MIN TY	P MAX	MIN TYP	MAX	UNIT				
			$C_L = 0.1 \ \mu F$	83		8	3	435						
t _{ON}	Turn-ON time	$R_L = 500 \ \Omega$	$C_L = 1 \ \mu F$	103		10	3	485		μs				
			$C_L = 3 \ \mu F$	122		12	2	536						
			$C_L = 0.1 \ \mu F$	44		1	7	17						
t _{OFF}	t _{OFF} Turn-OFF time	R _L = 500 Ω	$C_L = 1 \ \mu F$	312		11	7	117		μs				
			$C_L = 3 \ \mu F$	1000		31	Э	319						
			R _L = 500 Ω	R _L = 500 Ω	$C_L = 0.1 \ \mu F$	41		4	41	301				
t _r	V _{OUT} rise time	V _{OUT} rise time			$R_L = 500 \ \Omega$	$R_L = 500 \ \Omega$	$R_L = 500 \ \Omega$	R _L = 500 Ω	R _L = 500 Ω	$R_L = 500 \ \Omega$	$_{\text{UT}}$ rise time $R_{\text{L}} = 500 \ \Omega$ $C_{\text{L}} = 1 \ \mu\text{F}$ 54		54	302
			$C_L = 3 \ \mu F$	67		6	7	325						
			$C_L = 0.1 \ \mu F$	123		2	5	25	25					
t _f	V _{OUT} fall time	$R_L = 500 \ \Omega$	$C_L = 1 \ \mu F$	1000		21	4	214		μs				
		-	$C_L = 3 \ \mu F$	3400		63	2	632						

SLVS749C - NOVEMBER 2008 - REVISED JANUARY 2015

8.10 Switching Characteristics: $V_{IN} = 1.8 V$

 V_{IN} = 1.8 V, T_A = 25°C (unless otherwise noted)

		TEST CON		TPS22921		TPS	S2292	22	TPS	22922B			
l	PARAMETER	TEST CON	IDITIONS	MIN TYP	MAX	MIN	ТҮР	MAX	MIN	TYP	MAX	UNIT	
			$C_L = 0.1 \ \mu F$	54			54			282			
t _{ON}	Turn-ON time	$R_L = 500 \ \Omega$	$C_L = 1 \ \mu F$	67			67			314		μs	
			$C_L = 3 \ \mu F$	78			78			344			
			$C_L = 0.1 \ \mu F$	41			10			10			
t _{OFF}	t _{OFF} Turn-OFF time	$R_L = 500 \ \Omega$	$C_L = 1 \ \mu F$	312			67			67		μs	
			$C_L = 3 \ \mu F$	1000			181			181			
				$C_L = 0.1 \ \mu F$	30			30			200		
t _r	V _{OUT} rise time	$R_L = 500 \ \Omega$	$C_L = 1 \ \mu F$	37			37			202		μs	
			$C_L = 3 \ \mu F$	47			47			219			
	t _f V _{OUT} fall time R			$C_L = 0.1 \ \mu F$	121			17			17		
t _f		I time $R_L = 500 \Omega$ C_I	$C_L = 1 \ \mu F$	1000			158			158		μs	
			$C_L = 3 \ \mu F$	3450			461			461			

8.11 Switching Characteristics: $V_{IN} = 2.5 V$

 V_{IN} = 2.5 V, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS	TPS22921		TPS22	922	TPS22922	В	UNIT										
	PARAMETER	TEST CON	TEST CONDITIONS		MAX	MIN TY	P MAX	MIN TYP	MAX	UNIT										
			$C_L = 0.1 \ \mu F$	40		4	D	211												
t _{ON}	Turn-ON time	$R_L = 500 \ \Omega$	$C_L = 1 \ \mu F$	50		5	D	233		μs										
			$C_L = 3 \ \mu F$	59		5	9	256												
			$C_L = 0.1 \ \mu F$	41		1	D	10												
t _{OFF}	Turn-OFF time RL	-	$C_L = 1 \ \mu F$	316		5	6	56		μs										
			$C_L = 3 \ \mu F$	1000		15	3	153												
			$C_L = 0.1 \ \mu F$	23		2	3	164												
t _r	V _{OUT} rise time	V _{OUT} rise time	V _{OUT} rise time		-	-			$R_L = 500 \ \Omega$	-	R _L = 500 Ω	V_{OUT} rise time $R_{L} = 500 \Omega$	$C_L = 1 \ \mu F$	29		2	9	165		μs
			$C_L = 3 \ \mu F$	38		3	8	177												
			$C_L = 0.1 \ \mu F$	122		1	6	16												
t _f	t _f V _{OUT} fall time R	R _L = 500 Ω C	$C_L = 1 \ \mu F$	1086		14	7	147		μs										
			$C_L = 3 \ \mu F$	3600		43	D	430												

8

www.ti.com

8.12 Switching Characteristics: $V_{IN} = 3 V$

 $V_{IN} = 3 V$, $T_A = 25^{\circ}C$ (unless otherwise noted)

		TEST CON		TPS22921		TPS22	922	TPS229228	3																
	PARAMETER	TEST CON	DITIONS	MIN TYP	MAX	MIN TY	P MAX	MIN TYP	MAX	UNIT															
			$C_L = 0.1 \ \mu F$	30		3	0	182																	
t _{ON}	Turn-ON time	$R_L = 500 \ \Omega$	$C_L = 1 \ \mu F$	38		3	8	201		μs															
			$C_L = 3 \ \mu F$	45		4	5	221																	
			$C_L = 0.1 \ \mu F$	40		1	0	10																	
t _{OFF}	t _{OFF} Turn-OFF time	R _L = 500 Ω	$C_L = 1 \ \mu F$	353		5	1	51		μs															
			$C_L = 3 \ \mu F$	1036		13	9	139																	
	V _{OUT} rise time				$C_L = 0.1 \ \mu F$	20		2	0	149															
t _r		V_{OUT} rise time	V _{OUT} rise time	V_{OUT} rise time	V_{OUT} rise time	V _{OUT} rise time	R _L = 500 Ω	$R_L = 500 \ \Omega$	R _L = 500 Ω	$R_L = 500 \ \Omega$	$R_L = 500 \ \Omega$	$R_L = 500 \ \Omega$	$C_L = 1 \ \mu F$	25		2	5	150							
			$C_L = 3 \ \mu F$	33		3	3	161																	
			$C_L = 0.1 \ \mu F$	104		1	5	15																	
t _f	V _{OUT} fall time R		$C_L = 1 \ \mu F$	1030		14	3	143		μs															
			$C_L = 3 \ \mu F$	3230		41	9	419																	

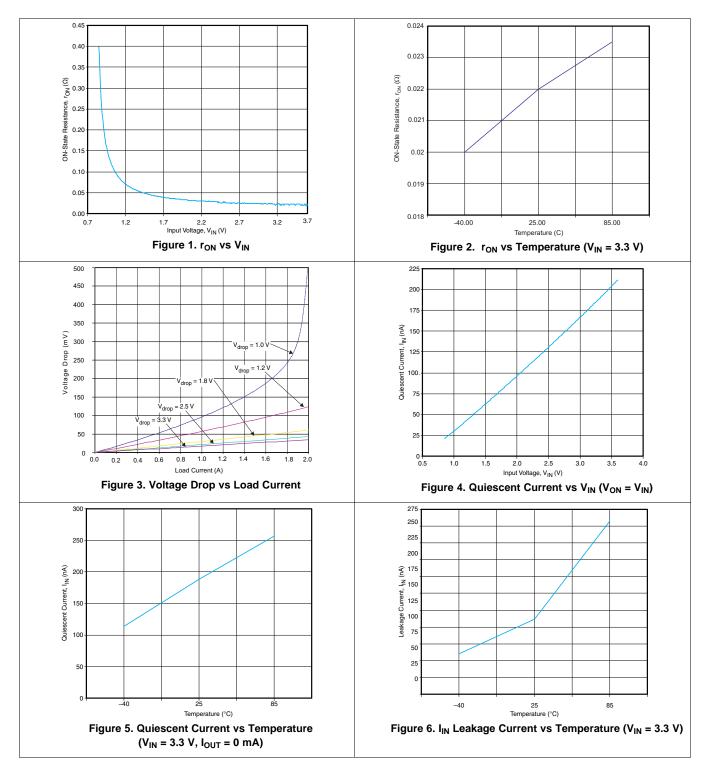
8.13 Switching Characteristics: $V_{IN} = 3.6 V$

 V_{IN} = 3.6 V, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS	TPS22921		TPS22	922	TPS22922	B	UNIT												
	PARAMETER	TEST CON	TEST CONDITIONS		MAX	MIN TY	P MAX	MIN TY	P MAX	UNIT												
			$C_L = 0.1 \ \mu F$	30		3	0	15	9													
t _{ON}	Turn-ON time	$R_L = 500 \ \Omega$	$C_L = 1 \ \mu F$	38		3	8	17	5	μs												
			$C_L = 3 \ \mu F$	45		4	5	19	3													
			$C_L = 0.1 \ \mu F$	42		1	0	1)													
t _{OFF}	Turn-OFF time R _L	$R_L = 500 \ \Omega$	$C_L = 1 \ \mu F$	310		5	1	5	51 µs													
			$C_L = 3 \ \mu F$	988		13	9	13	9													
			$C_L = 0.1 \ \mu F$	20		2	0	13	7													
t _r	V_{OUT} rise time	V_{OUT} rise time	V_{OUT} rise time	V_{OUT} rise time	V _{OUT} rise time	R _L = 500 Ω	$R_L = 500 \ \Omega$	-				R _L = 500 Ω	$R_L = 500 \ \Omega$	me $R_L = 500 \Omega$ $C_L =$	$C_L = 1 \ \mu F$	25		2	5	13	3	μs
			$C_L = 3 \ \mu F$	33		3	3	14	3													
	t _f V _{OUT} fall time R		$C_L = 0.1 \ \mu F$	120		1	5	1	5													
t _f		R _L = 500 Ω C	$C_L = 1 \ \mu F$	1100		14	3	14	3	μs												
			$C_L = 3 \ \mu F$	3600		41	9	41	9	Ĩ												

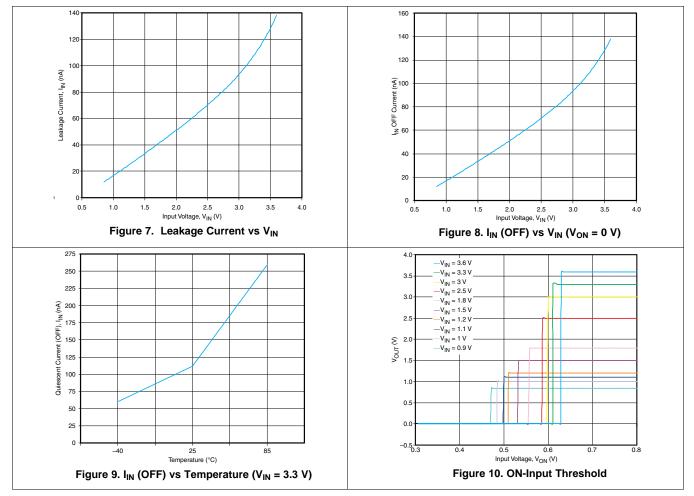
TPS22921, TPS22922, TPS22922B

SLVS749C-NOVEMBER 2008-REVISED JANUARY 2015

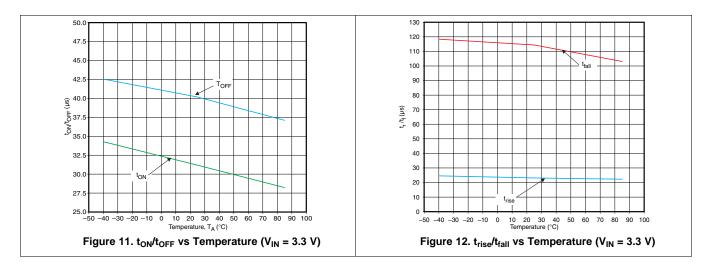

www.ti.com

ISTRUMENTS

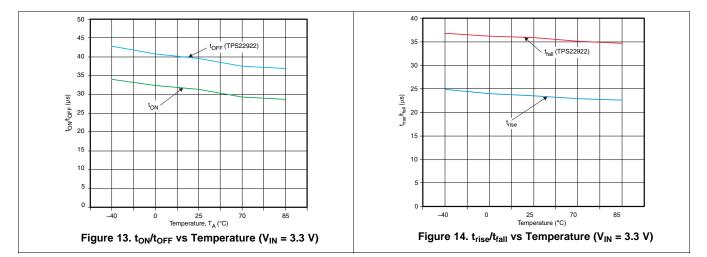
ÈXAS


8.14 Typical Characteristics

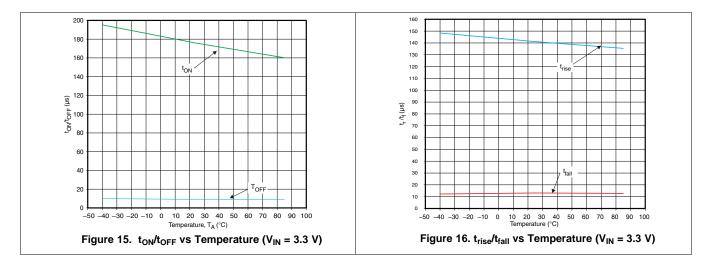
8.14.1 Typical DC Characteristics

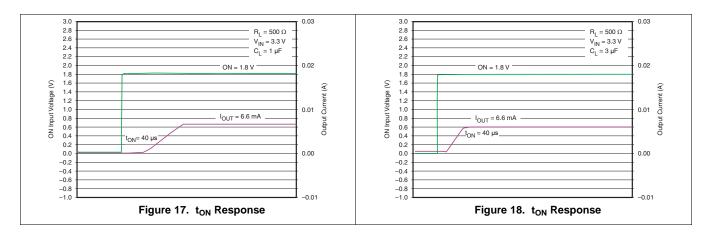


Typical DC Characteristics (continued)

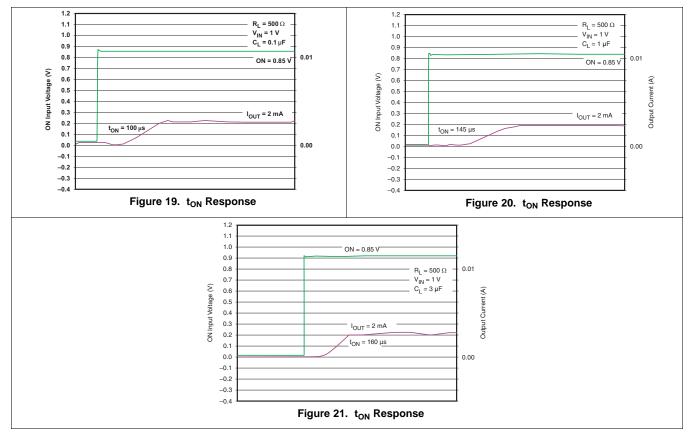


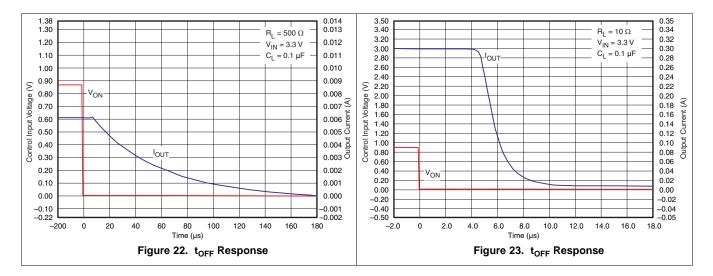
8.14.2 Typical AC Characteristics (TPS22921)



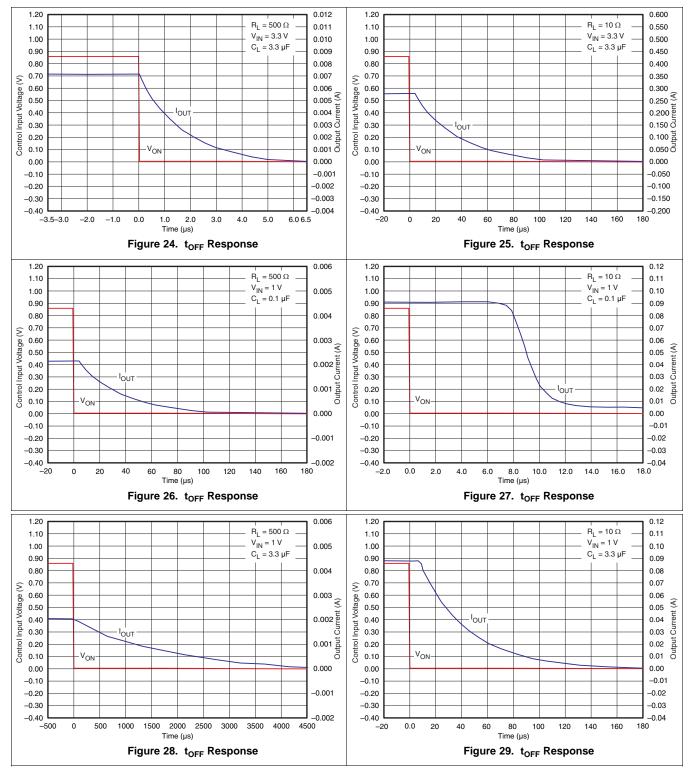

8.14.3 Typical AC Characteristics (TPS22922)

8.14.4 Typical AC Characteristics (TPS22922B)

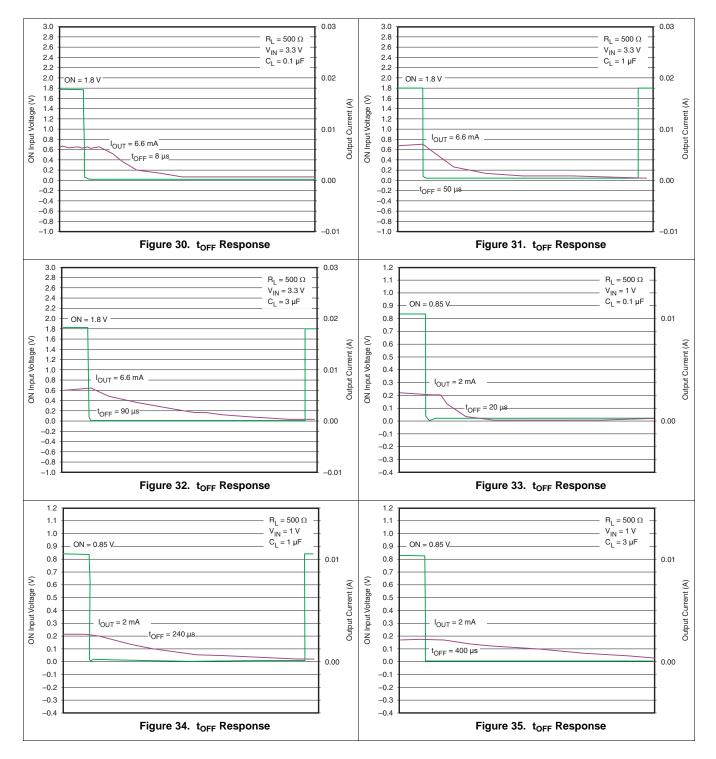




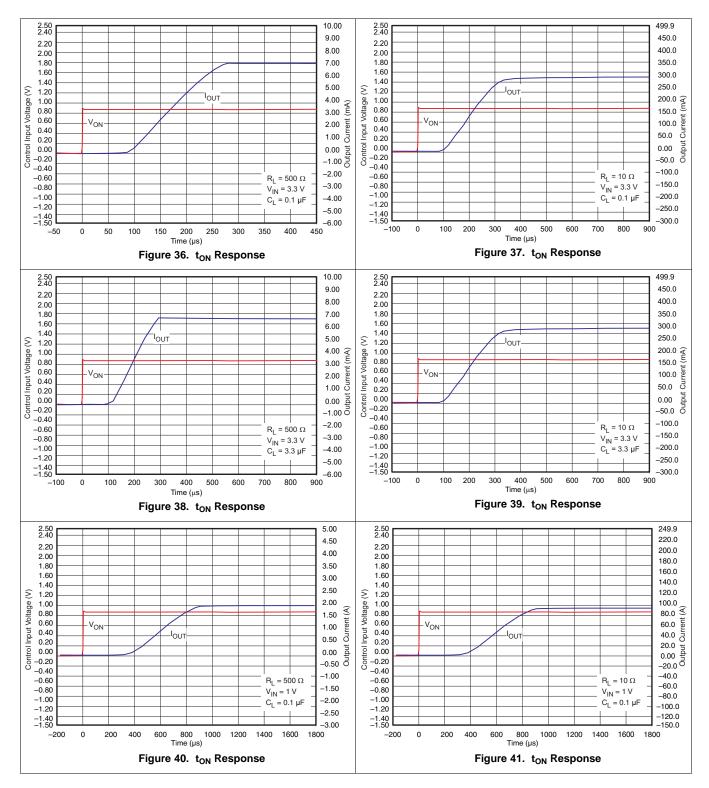
Typical AC Characteristics (TPS22921 and TPS22922) (continued)



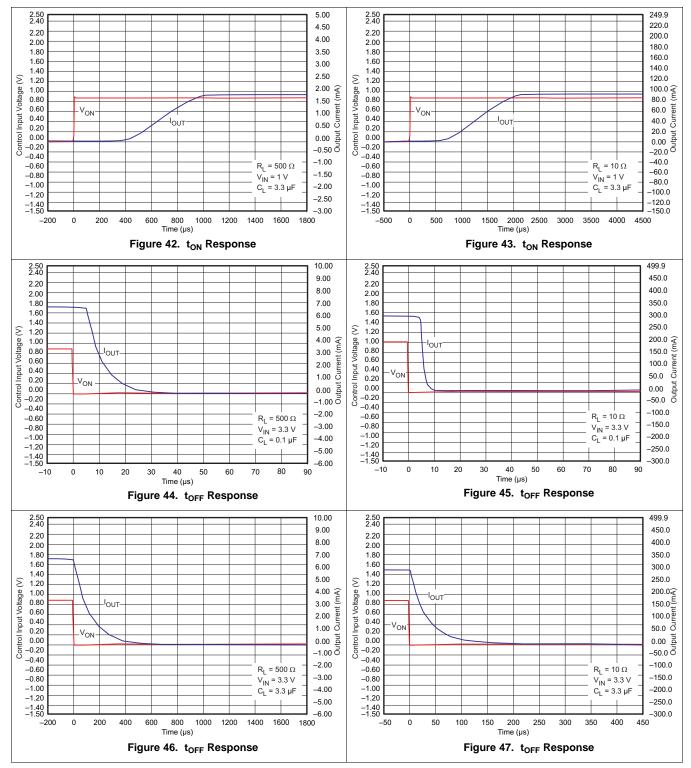
8.14.6 Typical AC Characteristics (TPS22921)



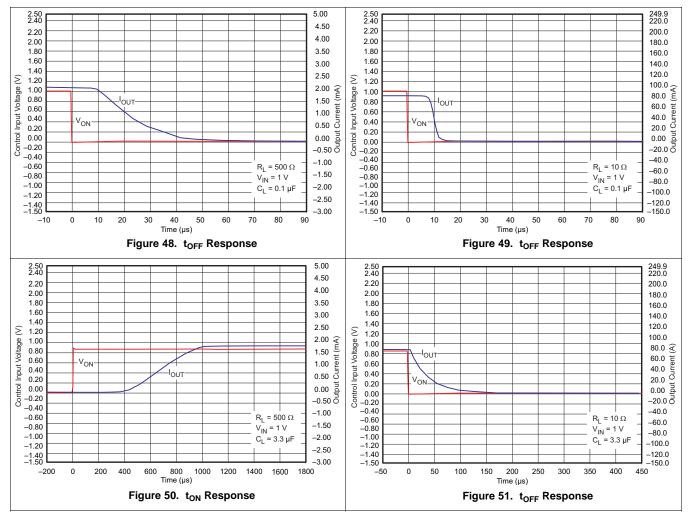
Typical AC Characteristics (TPS22921) (continued)



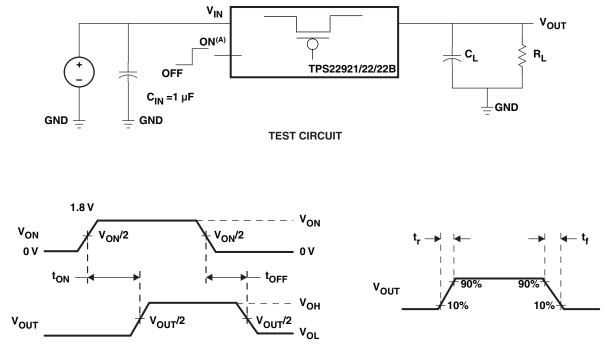
8.14.7 Typical AC Characteristics (TPS22922)



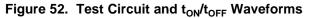
8.14.8 Typical AC Characteristics (TPS22922B)



Typical AC Characteristics (TPS22922B) (continued)


Typical AC Characteristics (TPS22922B) (continued)

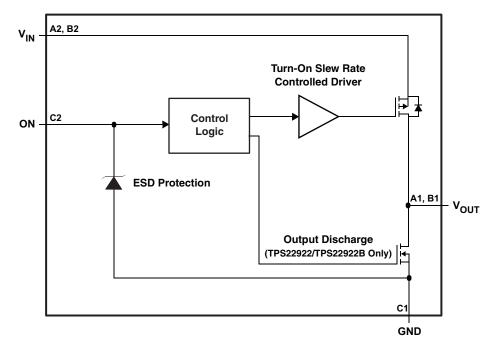
www.ti.com



9 Parameter Measurement Information

t_{ON}/t_{OFF} WAVEFORMS

A. t_{rise} and t_{fall} of the control signal is 100 ns.



10 Detailed Description

10.1 Overview

The TPS2292x is a single-channel, 2-A load switch in a small, space-saving CSP-6 package. These devices implement a P-channel MOSFET to provide a low ON-resistance for a low voltage drop across the device. A controlled rise time is used in applications to limit the inrush current.

10.2 Functional Block Diagram

10.3 Feature Description

10.3.1 ON/OFF Control

The ON pin controls the state of the switch. Activating ON continuously holds the switch in the on state. ON is active high and has a low threshold making it capable of interfacing with low-voltage signals. The ON pin is compatible with standard GPIO logic threshold, and it can be used with any microcontroller with 1.2-V, 1.8-V, 2.5-V or 3.3-V GPIOs.

10.3.2 Quick Output Discharge

The TPS22922 and TPS22922B includes the Quick Output Discharge (QOD) feature. When the switch is disabled, a discharge resistance with a typical value of 65 Ω is connected between the output and ground. This resistance pulls down the output and prevents it from floating when the device is disabled.

10.4 Device Functional Modes

Table 1 lists the VOUT pin connections to for a particular device as determined by the ON pin.

ON	TPS22921	TPS22922/2B
L	Open	GND
Н	VIN	VIN

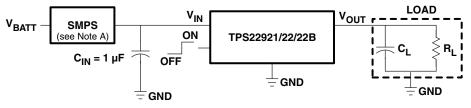
Table 1. VOUT Function Table

11 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

11.1 Application Information


11.1.1 Input Capacitor (Optional)

To limit the voltage drop on the input supply caused by transient inrush currents when the switch turns on into a discharged load capacitor, a capacitor must be placed between V_{IN} and GND. A 1- μ F ceramic capacitor, C_{IN} , placed close to the pins is usually sufficient. Higher values of C_{IN} can be used to further reduce the voltage drop during higher current application. When switching a heavy load, TI recommends using an input capacitor about 10 or more times higher than the output capacitor in order to avoid any supply drop.

11.1.2 Output Capacitor (Optional)

Because of the integral body diode in the PMOS switch, a C_{IN} greater than C_L is highly recommended. A C_L greater than C_{IN} can cause V_{OUT} to exceed V_{IN} when the system supply is removed. This could result in current flow through the body diode from V_{OUT} to V_{IN} .

11.2 Typical Application

A. Switched-mode power supply

Figure 53. Typical Application

11.2.1 Design Requirements

DESIGN PARAMETER	EXAMPLE VALUE
V _{IN}	1.8 V
CL	4.7 µF
Load current	2 A
Ambient Temperature	25 °C
Maximum inrush current	200 mA

Table 2. Design Parameters

11.2.2 Detailed Design Procedure

11.2.2.1 Managing Inrush Current

When the switch is enabled, the output capacitors must be charged up from 0 V to the set value (1.8 V in this example). This charge arrives in the form of inrush current. Inrush current can be calculated using the following equation:

$$I_{\text{INRUSH}} = C_{\text{L}} \times \frac{dV_{\text{OUT}}}{dt}$$

where

- C_L = Output capacitance
- dV_{OUT} = Output voltage
- dt = Rise time

The TPS22921/2/2B offers a controlled rise time for minimizing inrush current. This device can be selected based upon the minimum acceptable rise time which can be calculated using the design requirements and the inrush current equation. An output capacitance of 4.7 μ F will be used because the amount of inrush current increases with output capacitance:

200 mA = 4.7 µF × 1.8V / dt

where

• dt = 42.3 µs

To ensure an inrush current of less than 200 mA, a device with a rise time greater than 42.3 μ s must be used. The TPS22922B has a typical rise time of 200 μ s at 1.8 V which meets the above design requirements. The TPS22921/2 has a faster rise time of 30 μ s at 1.8 V, and this would result in an inrush current larger than desired.

11.2.2.2 VIN to VOUT Voltage Drop

The voltage drop from VIN to VOUT is determined by the ON-resistance of the device and the load current. R_{ON} can be found in *Electrical Characteristics* and is dependent on temperature. When the value of R_{ON} is found, the following equation can be used to calculate the voltage drop across the device:

 $\Delta V = I_{LOAD} \times R_{ON}$

where

- $\Delta V = Voltage drop across the device$
- I_{LOAD} = Load current
- R_{ON} = ON-resistance of the device

At V_{IN} = 1.8 V, the TPS22921/2/2B has an R_{ON} value of 33 m Ω . Using this value and the defined load current, the above equation can be evaluated:

 $\Delta V = 2 A \times 33 m\Omega$

where

•
$$\Delta V = 66 \text{ mV}$$

Therefore, the voltage drop across the device will be 66 mV.

Copyright © 2008–2015, Texas Instruments Incorporated

(3)

(1)

(2)

11.2.3 Application Curve

Figure 54 shows the expected voltage drop across the device for different load currents and input voltages.

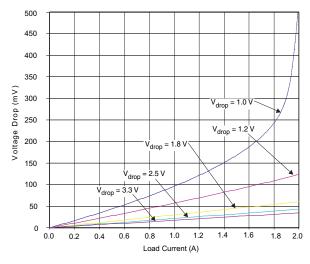


Figure 54. Voltage Drop vs Load Current

12 Power Supply Recommendations

The device is designed to operate with a VIN range of 0.9 V to 3.6 V. This supply must be well regulated and placed as close to the device terminals as possible. It must also be able to withstand all transient and load currents, using a recommended input capacitance of 1 μ F if necessary. If the supply is located more than a few inches from the device terminals, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. If additional bulk capacitance is required, an electrolytic, tantalum, or ceramic capacitor of 10 μ F may be sufficient.

13 Layout

13.1 Layout Guidelines

For best performance, V_{IN} , V_{OUT} , and GND traces should be as short and wide as possible to help minimize the parasitic electrical effects. To be most effective, the input and output capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have on normal operation.

For higher reliability, the maximum IC junction temperature, $T_{J(max)}$, should be restricted to 125°C under normal operating conditions. Junction temperature is directly proportional to power dissipation in the device and the two are related by

$$T_{J} = T_{A} + \theta_{JA} \times P_{D}$$

where

- T_J = Junction temperature of the device
- T_A = Ambient temperature
- P_D = Power dissipation inside the device

VIA to Power Ground Plane

• θ_{JA} = Junction to ambient thermal resistance. See Thermal Information section of the data sheet. This parameter is highly dependent on board layout.

(5)

13.2 Layout Example

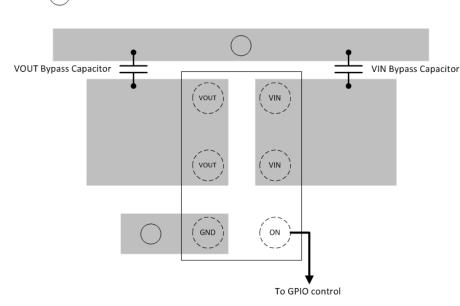


Figure 55. Layout Recommendation

14 Device and Documentation Support

14.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
TPS22921	Click here	Click here	Click here	Click here	Click here
TPS22922	Click here	Click here	Click here	Click here	Click here
TPS22922B	Click here	Click here	Click here	Click here	Click here

Table 3. Related Links

14.2 Trademarks

All trademarks are the property of their respective owners.

14.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

14.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

15 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

1-Dec-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TPS22921YFPR	ACTIVE	DSBGA	YFP	6	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	(3Y ~ 3Y3)	Samples
TPS22921YZPR	ACTIVE	DSBGA	YZP	6	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	(3Y3 ~ 3Y5)	Samples
TPS22921YZTR	ACTIVE	DSBGA	YZT	6	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	(3Y3 ~ 3Y5)	Samples
TPS22922BYFPR	ACTIVE	DSBGA	YFP	6	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM		(3Z ~ 3Z3)	Samples
TPS22922BYZPR	ACTIVE	DSBGA	YZP	6	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	(3Z ~ 3Z3)	Samples
TPS22922YFPR	ACTIVE	DSBGA	YFP	6	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM		(2Z ~ 2Z3)	Samples
TPS22922YZPR	ACTIVE	DSBGA	YZP	6	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	(2Z ~ 2Z3)	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

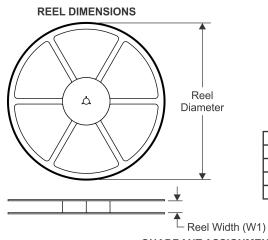
PACKAGE OPTION ADDENDUM

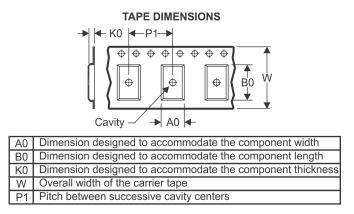
1-Dec-2015

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

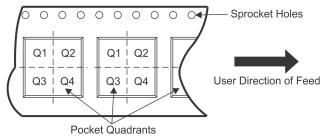
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

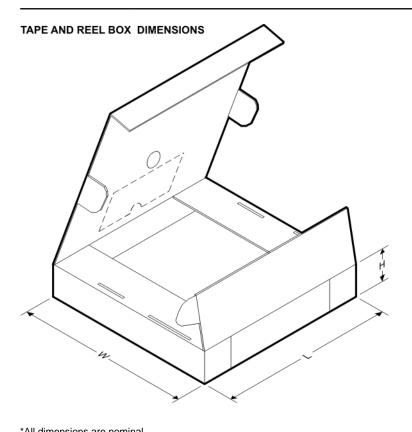

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

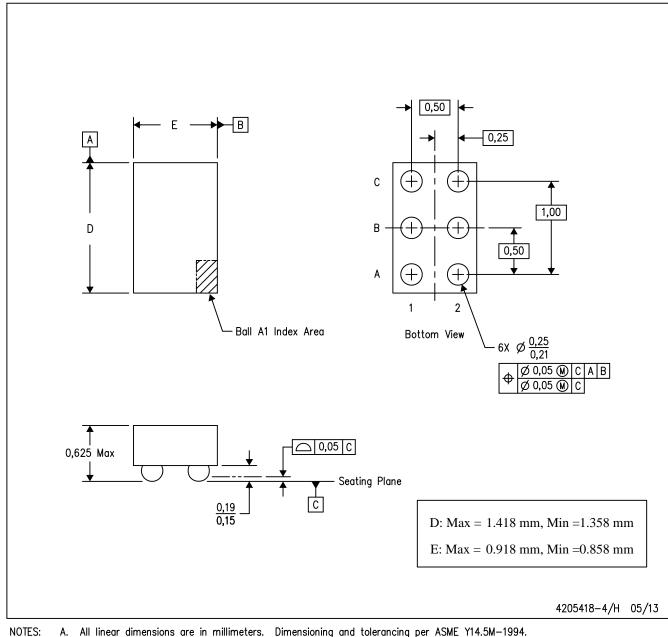
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS22921YFPR	DSBGA	YFP	6	3000	180.0	8.4	0.89	1.29	0.62	4.0	8.0	Q1
TPS22921YZPR	DSBGA	YZP	6	3000	178.0	9.2	1.02	1.52	0.63	4.0	8.0	Q1
TPS22921YZTR	DSBGA	YZT	6	3000	178.0	9.2	1.02	1.52	0.75	4.0	8.0	Q1
TPS22922BYFPR	DSBGA	YFP	6	3000	178.0	9.2	0.89	1.29	0.62	4.0	8.0	Q1
TPS22922BYZPR	DSBGA	YZP	6	3000	178.0	9.2	1.02	1.52	0.63	4.0	8.0	Q1
TPS22922BYZPR	DSBGA	YZP	6	3000	180.0	8.4	1.02	1.52	0.63	4.0	8.0	Q1
TPS22922YFPR	DSBGA	YFP	6	3000	180.0	8.4	0.89	1.29	0.62	4.0	8.0	Q1
TPS22922YZPR	DSBGA	YZP	6	3000	178.0	9.2	1.02	1.52	0.63	4.0	8.0	Q1

Texas Instruments

www.ti.com

PACKAGE MATERIALS INFORMATION


22-Mar-2017

*All dimensions are nominal								
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
TPS22921YFPR	DSBGA	YFP	6	3000	182.0	182.0	20.0	
TPS22921YZPR	DSBGA	YZP	6	3000	220.0	220.0	35.0	
TPS22921YZTR	DSBGA	YZT	6	3000	220.0	220.0	35.0	
TPS22922BYFPR	DSBGA	YFP	6	3000	220.0	220.0	35.0	
TPS22922BYZPR	DSBGA	YZP	6	3000	220.0	220.0	35.0	
TPS22922BYZPR	DSBGA	YZP	6	3000	220.0	220.0	34.0	
TPS22922YFPR	DSBGA	YFP	6	3000	182.0	182.0	20.0	
TPS22922YZPR	DSBGA	YZP	6	3000	220.0	220.0	35.0	

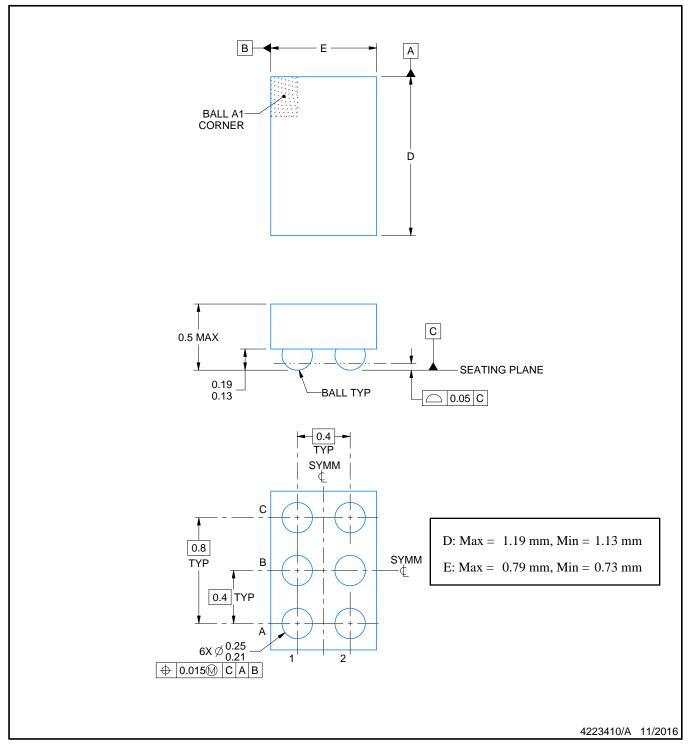
YZT (R-XBGA-N6)

DIE-SIZE BALL GRID ARRAY

B. This drawing is subject to change without notice.

C. NanoFree™ package configuration.

NanoFree is a trademark of Texas Instruments.


YFP0006

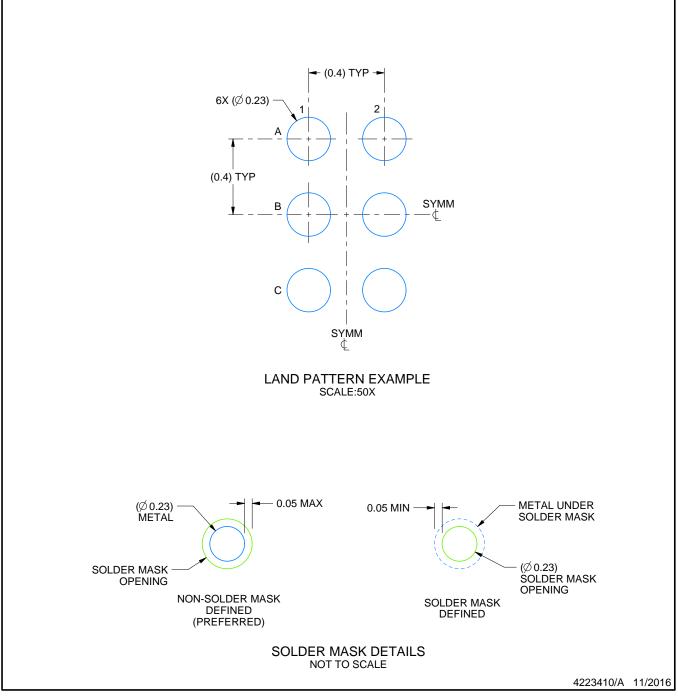
PACKAGE OUTLINE

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.



YFP0006

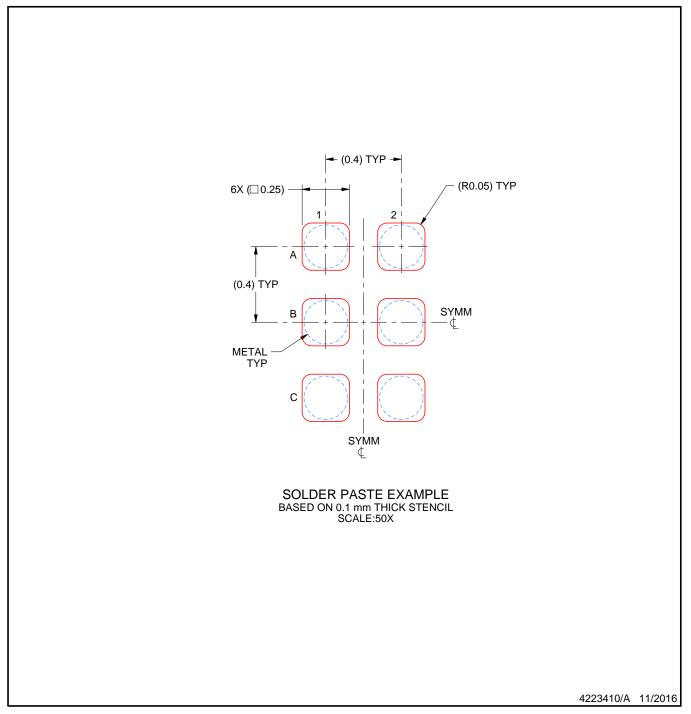
EXAMPLE BOARD LAYOUT

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).



YFP0006

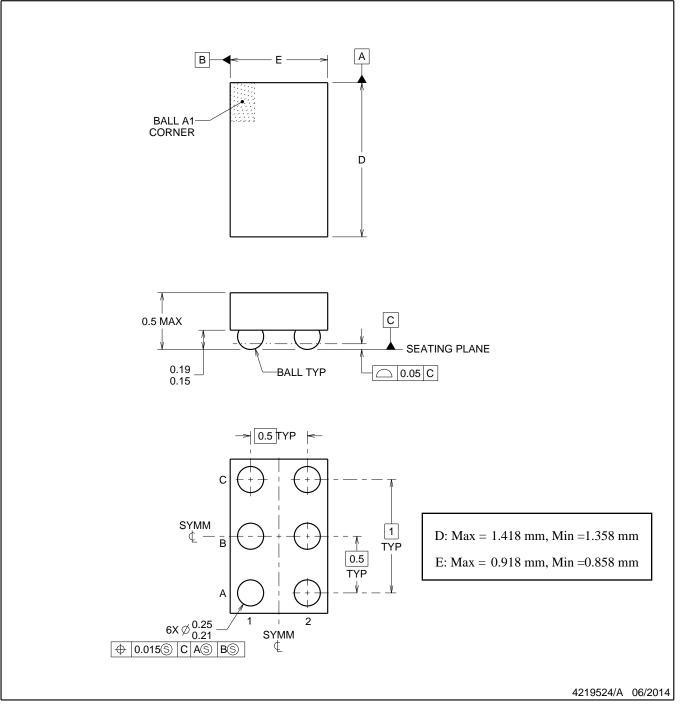
EXAMPLE STENCIL DESIGN

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.


YZP0006

PACKAGE OUTLINE

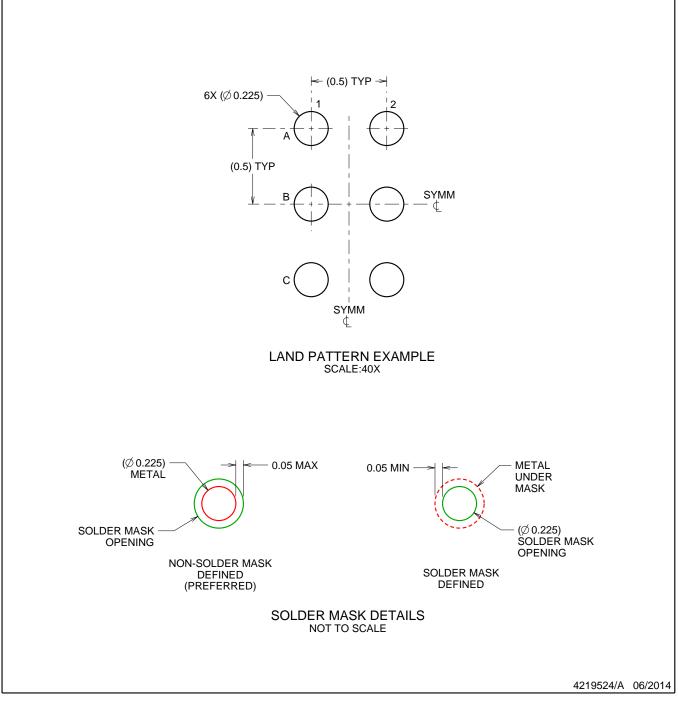
DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:

NanoFree Is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. NanoFree[™] package configuration.



YZP0006

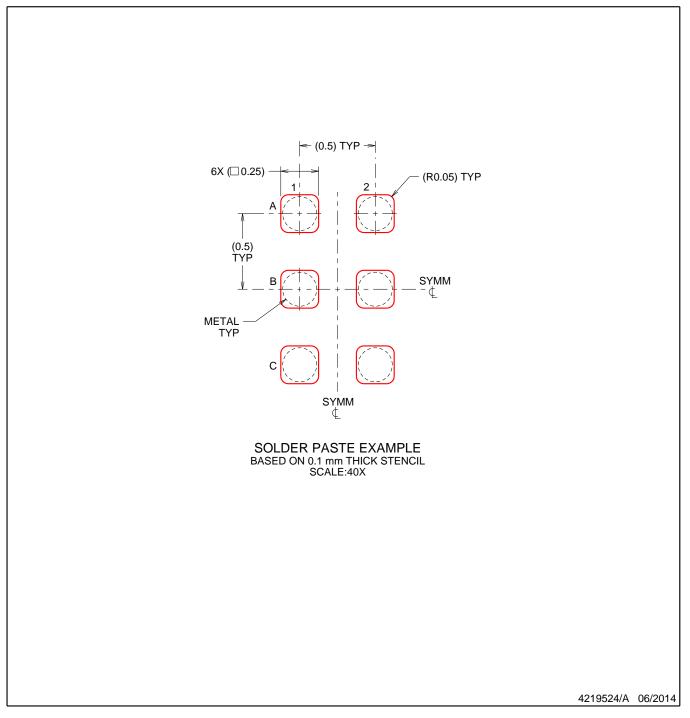
EXAMPLE BOARD LAYOUT

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017).



YZP0006

EXAMPLE STENCIL DESIGN

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:

Click to view products by Texas Instruments manufacturer:

Other Similar products are found below :

TLE6232GP NCP45520IMNTWG-L FPF1018 DS1222 BSP762TXT NCV380HMUAJAATBG TCK2065G,LF SZNCP3712ASNT3G NCP45520IMNTWG-H VND5004ATR-E ITS5215LXT AP22811BW5-7 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG NCP4545IMNTWG-L FPF2260ATMX SLG5NT1765V SLG5NT1757V NCP45780IMN24RTWG AP2151AMP-13 NCP45540IMNTWG-L TPS2022P FPF2495BUCX NCP45650IMNTWG NCV8412ADDR2G DK5V100R20S JW7111SSOTB#TRPBF RY2121 TPNTGD1100LT1G TPS27081ADDCR-TP FDC6331L-TP FDC6329L-TP FDC6323L-TP SI3865DDV TPS2116DRLR U3213 BTS7020-2EPA BTT6100-2ERA BTS71220-4ESA RS2588CYF5 RS2580XTDE8 LP5308B6F ME1502AM5G SGM2576YN5G/TR DK5V100R15M SY6287CDEC