



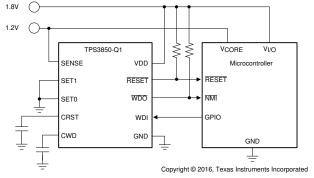







TPS3850-Q1

ZHCSFY8B - JANUARY 2017 - REVISED SEPTEMBER 2021


## TPS3850-Q1 具备可编程窗口看门狗定时器的高精度电压监控器

## 1 特性

- 具有符合 AEC-Q100 标准的下列特性:
  - 器件温度等级 1:-40°C 至 125°C 环境工作温度
  - 器件 HBM ESD 分类等级 2
  - 器件 CDM ESD 分类等级 C4B
- 提供功能安全
  - 可帮助进行功能安全系统设计的文档
- 输入电压范围: V<sub>DD</sub> = 1.6V 至 6.5V
- 0.8% 电压阈值精度(最大值)
- 低电源电流: I<sub>DD</sub> = 10µA(典型值)
- 用户可编程看门狗超时
- 用户可编程复位延迟
- 出厂编程的精密看门狗和复位计时器
- 开漏输出
- 精密过压和欠压监测:
  - 支持 0.9V 到 5.0V 常见电压轨
  - 提供 4% 和 7% 故障窗口
  - 0.5% 迟滞
- 看门狗禁用功能
- 采用小型 3mm × 3mm 10 引脚 VSON 封装

## 2 应用

- 车载充电器 (OBC) 和无线充电器
- 驾驶员监控
- 数字驾驶舱处理单元
- Adas 域控制器
- 汽车远程信息处理控制单元

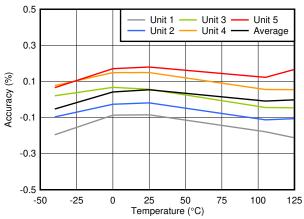


典型应用电路

## 3 说明

TPS3850-Q1 将可编程窗口看门狗定时器与高精度电 压监控器相结合。TPS3850-Q1 窗口比较器在 SENSE 引脚上可针对过压 (VIT+(OV)) 和欠压 (VIT-(UV)) 阈值实 现 0.8% 的精度 ( - 40°C 至 +125°C )。TPS3850-Q1 在两种阈值条件下还可提供高精度迟滞,因此非常适用 于容差要求严苛的系统。该监控器的 RESET 延迟可通 过经出厂编程的默认延迟设置进行设定,也可以通过外 部电容以编程方式设定。出厂编程的 RESET 延迟具备 9.5% 精度、高精度延迟时间。

TPS3850-Q1 具备适用于多种应用的可编程窗口看门 狗计时器。专用看门狗输出 (WDO) 有助于提高分辨 率,从而帮助确定出现故障情况的根本原因。窗口看门 狗超时可通过经出厂编程的默认延迟设置进行设定,也 可以通过外部电容以编程方式设定。可通过逻辑引脚禁 用看门狗,避免在开发过程中出现意外的看门狗超时。


#### TPS3850-Q1 采用小型 3.00mm ×

3.00mm、10 引脚 VSON 封装。TPS3850-Q1 具有可 湿性侧面,可轻松进行光学检查。

#### 器件信息

|            | WW 1 1 1 1 1 1 - C |                 |
|------------|--------------------|-----------------|
| 器件型号       | 封装 <sup>(1)</sup>  | 封装尺寸 ( 标称值 )    |
| TPS3850-Q1 | VSON (10)          | 3.00mm × 3.00mm |

如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。



过压阈值 (V<sub>IT+(OV)</sub>) 精度与温度间的关系



## **Table of Contents**

| 1 特性                                 | 1 | 7.4 Device Functional Modes             | 21              |
|--------------------------------------|---|-----------------------------------------|-----------------|
| 2 应用                                 |   | 8 Application and Implementation        |                 |
| 3 说明                                 |   | 8.1 Application Information             | 22              |
| 4 Revision History                   |   | 8.2 Typical Applications                |                 |
| 5 Pin Configuration and Functions    |   | 9 Power Supply Recommendations          | <mark>33</mark> |
| 6 Specifications                     |   | 10 Layout                               | 34              |
| 6.1 Absolute Maximum Ratings         |   | 10.1 Layout Guidelines                  |                 |
| 6.2 ESD Ratings                      |   | 10.2 Layout Example                     | 34              |
| 6.3 Recommended Operating Conditions |   | 11 Device and Documentation Support     | 35              |
| 6.4 Thermal Information              |   | 11.1 Device Support                     | 35              |
| 6.5 Electrical Characteristics.      |   | 11.2 Documentation Support              | 35              |
| 6.6 Timing Requirements              |   | 11.3 接收文档更新通知                           | 35              |
| 6.7 Timing Diagrams                  |   | 11.4 支持资源                               |                 |
| 6.8 Typical Characteristics          |   | 11.5 Trademarks                         | 36              |
| 7 Detailed Description               |   | 11.6 Electrostatic Discharge Caution    | 36              |
| 7.1 Overview                         |   | 11.7 术语表                                |                 |
| 7.2 Functional Block Diagrams        |   | 12 Mechanical, Packaging, and Orderable |                 |
| 7.3 Feature Description              |   | Information                             | 36              |
| -                                    |   |                                         |                 |

4 Revision History 注:以前版本的页码可能与当前版本的页码不同

| C | hanges from Revision A (April 2017) to Revision B (July 2021)                                             | Page |
|---|-----------------------------------------------------------------------------------------------------------|------|
| • | 更新了整个文档中的表格、图和交叉参考的编号格式                                                                                   | 1    |
| • | 删除了 "±15% 精度的 WDT 和 RST 延迟"                                                                               | 1    |
| • | 添加了"提供功能安全"要点                                                                                             |      |
| • | 更新了"应用"以链接到网站                                                                                             |      |
| • | 添加了"在 SENSE 引脚上"以进行澄清                                                                                     |      |
| • | Updated ESD Ratings                                                                                       |      |
| • | Changed I <sub>CWD</sub> min and max spec                                                                 |      |
| • | Changed V <sub>CWD</sub> min and max spec                                                                 |      |
| • | Added a footnote to for t <sub>INIT</sub>                                                                 |      |
| • | Created a separate section for Timing Diagram                                                             |      |
| • | Added explanation about capacitors for tWDU.                                                              |      |
| • | Changed minimum and maximum limits on t <sub>WDU</sub> from 0.85 and 1.15 to 0.905 and 1.095 respectively |      |
| • | Changed 0.85 to 0.905 in Equation 14 and 1.15 to 1.05 in Equation 15                                      |      |
| С | hanges from Revision * (January 2017) to Revision A (April 2017)                                          | Page |
| • | Changed 0.000381 to 0.000324 in Equation 11                                                               | 28   |
| • | Changed Equation 17 and Equation 18 so that I <sub>SENSE</sub> is no longer in the denominator            |      |
| • | Deleted J row from Device Nomenclature table                                                              |      |

Product Folder Links: TPS3850-Q1

Submit Document Feedback



## **5 Pin Configuration and Functions**

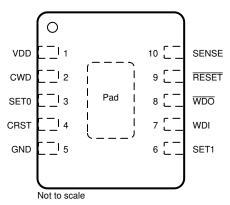



图 5-1. DRC Package 3-mm × 3-mm VSON-10 Top View

表 5-1. Pin Functions

| PIN         |     |     | DECORIDEION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|-------------|-----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| NAME        | NO. | I/O | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| CRST        | 4   | I   | Programmable reset timeout pin. Connect a capacitor between this pin and GND to program the reset timeout period. This pin can also be connected by a 10-k $\Omega$ pullup resistor to VDD, or left unconnected (NC) for various factory-programmed reset timeout options; see the <i>CRST Delay</i> section. When using an external capacitor, use 方程式 3 to determine the reset timeout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| CWD 2 I     |     | ı   | Programmable watchdog timeout input. Watchdog timeout is set by connecting a capacitor between this pin and ground. Furthermore, this pin can also be connected by a $10$ -k $\Omega$ resistor to VDD, or leaving unconnected (NC) further enables the selection of the preset watchdog timeouts; see the $\#$ 6.6 table. When using a capacitor, the TPS3850-Q1 determines the window watchdog upper boundary with $\#$ 6. The lower watchdog boundary is set by the SET pins, see $\#$ 8-5 and the CWD Functionality section for additional information.                                                                                                                                                                                                                                                                                                                                      |  |  |
| GND         | 5   | _   | Ground pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| RESET       | 9   | 0   | Reset output. Connect $\overline{\text{RESET}}$ using a 1-k $^{\Omega}$ to 100-k $^{\Omega}$ resistor to VDD. $\overline{\text{RESET}}$ goes low when the voltage at the SENSE pin goes below the undervoltage threshold $(V_{\text{IT-(UV)}})$ or above the overvoltage threshold $(V_{\text{IT-(OV)}})$ . When the voltage level at the SENSE pin is within the normal operating range, the $\overline{\text{RESET}}$ timeout counter starts. At timer completion, $\overline{\text{RESET}}$ goes high. During startup, the state of $\overline{\text{RESET}}$ is undefined below the specified power-on-reset voltage $(V_{POR})$ . Above $V_{POR}$ , $\overline{\text{RESET}}$ goes low and remains low until the monitored voltage is within the correct operating range (between $V_{\text{IT-(UV)}}$ ) and $V_{\text{IT(+OV)}}$ ) and the $\overline{\text{RESET}}$ timeout is complete. |  |  |
| SENSE       | 10  | 1   | SENSE input to monitor the voltage rail. Connect this pin to the supply rail that must be monitored.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| SET0        | 3   | I   | Logic input. SET0, SET1, and CWD select the watchdog window ratios, timeouts, and disable the watchdog see the #6.6 table.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| SET1        | 6   | ı   | Logic input. SET0, SET1, and CWD select the watchdog window ratios, timeouts, and disable the watchdog; see the $\#$ 6.6 table.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| VDD         | 1   | ı   | Supply voltage pin. For noisy systems, connecting a 0.1-µF bypass capacitor is recommended.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| WDI 7 I     |     | ı   | Watchdog input. A falling transition (edge) must occur at this pin between the lower (t <sub>WDL(max)</sub> ) and upper (t <sub>WDL(min)</sub> ) window boundaries in order for WDO to not assert.  When the watchdog is not in use, the SETx pins can be used to disable the watchdog. The input at WDI is ignored when RESET or WDO are low (asserted) and also when the watchdog is disabled. If the watchdog is disabled, then WDI cannot be left unconnected and must be driven to either VDD or GND.                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| WDO 8 O     |     | 0   | Watchdog output. Connect \$\overline{WDO}\$ with a 1-k \$\Omega\$ to 100-k \$\Omega\$ resistor to VDD. \$\overline{WDO}\$ goes low (asserts) when a watchdog timeout occurs, \$\overline{WDO}\$ only asserts when \$\overline{RESET}\$ is high. When a watchdog timeout occurs, \$\overline{WDO}\$ goes low (asserts) for the set \$\overline{RESET}\$ timeout delay (t <sub>RST</sub> ). When \$\overline{RESET}\$ goes low, \$\overline{WDO}\$ is in a high-impedance state.                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Thermal pad |     | _   | Connect the thermal pad to a large-area ground plane. The thermal pad is internally connected to GND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |

Copyright © 2021 Texas Instruments Incorporated

Submit Document Feedback



## **6 Specifications**

## **6.1 Absolute Maximum Ratings**

over operating free-air temperature range (unless otherwise noted)(1)

|                                    |                                                   | MIN   | MAX                      | UNIT |  |
|------------------------------------|---------------------------------------------------|-------|--------------------------|------|--|
| Supply voltage                     | VDD                                               | - 0.3 | 7                        | V    |  |
| Output voltage                     | RESET, WDO                                        | - 0.3 | 7                        | V    |  |
| Voltage ranges                     | SET0, SET1, WDI, SENSE                            | - 0.3 | 7                        | V    |  |
| Voltage ranges                     | CWD, CRST                                         | - 0.3 | VDD + 0.3 <sup>(3)</sup> |      |  |
| Output pin current                 | RESET, WDO                                        |       | ±20                      | mA   |  |
| Input current (all pins)           | ·                                                 |       | ±20                      | mA   |  |
| Continuous total power dissipation |                                                   | See   | <b># 6.4</b>             |      |  |
|                                    | Operating junction, T <sub>J</sub> <sup>(2)</sup> | - 40  | 150                      |      |  |
| Temperature                        | Operating free-air, T <sub>A</sub> (2)            | - 40  | 150                      | °C   |  |
|                                    | Storage, T <sub>stg</sub>                         | - 65  | 150                      |      |  |

<sup>(1)</sup> Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2)  $T_J = T_A$  as a result of the low dissipated power in this device.
- (3) The absolute maximum rating is V<sub>DD</sub> + 0.3 V or 7.0 V, whichever is smaller.

## 6.2 ESD Ratings

|                    |                          |                                                         | VALUE | UNIT |
|--------------------|--------------------------|---------------------------------------------------------|-------|------|
| V                  | Electrostatic discharge  | Human-body model (HBM), per AEC Q100-002 <sup>(1)</sup> | ±4000 | V    |
| V <sub>(ESD)</sub> | Liectiostatic discriarge | Charged-device model (CDM), per AEC Q100-011            | ±1000 | V    |

<sup>(1)</sup> AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

## **6.3 Recommended Operating Conditions**

over operating free-air temperature range (unless otherwise noted)

|                    |                                | MIN                | NOM | MAX     | UNIT                |
|--------------------|--------------------------------|--------------------|-----|---------|---------------------|
| VDD                | Supply pin voltage             | 1.6                |     | 6.5     | V                   |
| V <sub>SENSE</sub> | Input pin voltage              | 0                  |     | 6.5     | V                   |
| V <sub>SET0</sub>  | SET0 pin voltage               | 0                  |     | 6.5     | V                   |
| V <sub>SET1</sub>  | SET1 pin voltage               | 0                  |     | 6.5     | V                   |
| C <sub>CRST</sub>  | RESET delay capacitor          | 0.1 <sup>(1)</sup> |     | 1000(1) | nF                  |
| CRST               | Pullup resistor to VDD         | 9                  | 10  | 11      | $\mathbf{k} \Omega$ |
| C <sub>CWD</sub>   | Watchdog timing capacitor      | 0.1(2)             |     | 1000(2) | nF                  |
| CWD                | Pullup resistor to VDD         | 9                  | 10  | 11      | kΩ                  |
| R <sub>PU</sub>    | Pullup resistor, RESET and WDO | 1                  | 10  | 100     | <b>k</b> Ω          |
| I <sub>RST</sub>   | RESET pin current              |                    |     | 10      | mA                  |
| I <sub>WDO</sub>   | Watchdog output current        |                    |     | 10      | mA                  |
| TJ                 | Junction temperature           | - 40               |     | 125     | °C                  |

- (1) Using a C<sub>CRST</sub> capacitor of 0.1 nF or 1000 nF gives a reset delay of 703 µs or 3.22 seconds, respectively.
- (2) Using a C<sub>CWD</sub> capacitor of 0.1 nF or 1000 nF gives a t<sub>WDU(tvo)</sub> of 62.74 ms or 77.45 seconds, respectively.

Product Folder Links: TPS3850-Q1



## **6.4 Thermal Information**

|                        |                                              | TPS3850-Q1 |      |
|------------------------|----------------------------------------------|------------|------|
|                        | THERMAL METRIC <sup>(1)</sup>                | DRC (VSON) | UNIT |
|                        |                                              | 10 PINS    |      |
| R <sub>0</sub> JA      | Junction-to-ambient thermal resistance       | 47.6       | °C/W |
| R <sub>θ JC(top)</sub> | Junction-to-case (top) thermal resistance    | 52.4       | °C/W |
| R <sub>θ JB</sub>      | Junction-to-board thermal resistance         | 22.3       | °C/W |
| ψ JT                   | Junction-to-top characterization parameter   | 1.4        | °C/W |
| ψ ЈВ                   | Junction-to-board characterization parameter | 22.4       | °C/W |
| R <sub>0</sub> JC(bot) | Junction-to-case (bottom) thermal resistance | 4.4        | °C/W |

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application (1)

## 6.5 Electrical Characteristics

at 1.6 V  $\leq$  V\_DD  $\leq$  6.5 V over the operating temperature range of  $^-$  40°C  $\leq$  T\_A, T\_J  $\leq$  +125°C (unless otherwise noted); the open-drain pullup resistors are 10 k  $\Omega$  for each output; typical values are at T\_J = 25°C

|                             | PARAMETER                                                | TEST CONDITIONS                                              | MIN                          | TYP  | MAX                         | UNIT |
|-----------------------------|----------------------------------------------------------|--------------------------------------------------------------|------------------------------|------|-----------------------------|------|
| GENERAL C                   | HARACTERISTICS                                           |                                                              |                              | '    |                             |      |
| V <sub>DD</sub> (1) (2) (3) | Supply voltage                                           |                                                              | 1.6                          |      | 6.5                         | V    |
| I <sub>DD</sub>             | Supply current                                           |                                                              |                              | 10   | 19                          | μA   |
| RESET FUN                   | CTION                                                    |                                                              |                              |      |                             |      |
| V <sub>POR</sub> (2)        | Power-on-reset voltage                                   | I <sub>RESET</sub> = 15 μA, V <sub>OL(MAX)</sub> = 0.25 V    |                              |      | 0.8                         | V    |
| V <sub>UVLO</sub> (1)       | Undervoltage lockout voltage                             |                                                              |                              | 1.35 |                             | V    |
| V <sub>IT+(OV)</sub>        | Overvoltage SENSE threshold accuracy, entering RESET     |                                                              | V <sub>IT+(nom)</sub> - 0.8% |      | V <sub>IT+(nom)</sub> +0.8% |      |
| V <sub>IT-(UV)</sub>        | Undervoltage SENSE threshold accuracy, entering RESET    |                                                              | V <sub>IT-(nom)</sub> - 0.8% |      | V <sub>IT-(nom)</sub> +0.8% |      |
| $V_{IT(ADJ)}$               | Falling SENSE threshold voltage, adjustable version only |                                                              | 0.3968                       | 0.4  | 0.4032                      | V    |
| V <sub>HYST</sub>           | Hysteresis voltage                                       |                                                              | 0.2%                         | 0.5% | 0.8%                        |      |
| I <sub>CRST</sub>           | CRST pin charge current                                  | CRST = 0.5 V                                                 | 337                          | 375  | 413                         | nA   |
| V <sub>CRST</sub>           | CRST pin threshold voltage                               |                                                              | 1.192                        | 1.21 | 1.228                       | V    |
| WINDOW W                    | ATCHDOG FUNCTION                                         |                                                              |                              |      |                             |      |
| I <sub>CWD</sub>            | CWD pin charge current                                   | CWD = 0.5 V                                                  | 347                          | 375  | 403                         | nA   |
| V <sub>CWD</sub>            | CWD pin threshold voltage                                |                                                              | 1.196                        | 1.21 | 1.224                       | V    |
| V <sub>OL</sub>             | RESET, WDO output low                                    | VDD = 5 V, I <sub>SINK</sub> = 3 mA                          |                              |      | 0.4                         | V    |
| I <sub>D</sub>              | RESET, WDO output leakage current                        | VDD = 1.6 V, V <sub>RESET</sub> , = V <sub>WDO</sub> = 6.5 V |                              |      | 1                           | μA   |
| V <sub>IL</sub>             | Low-level input voltage (SET0, SET1)                     |                                                              |                              |      | 0.25                        | V    |
| V <sub>IH</sub>             | High-level input voltage (SET0, SET1)                    |                                                              | 0.8                          |      |                             | V    |
| V <sub>IL(WDI)</sub>        | Low-level input voltage (WDI)                            |                                                              |                              |      | 0.3 × V <sub>DD</sub>       | V    |
| V <sub>IH(WDI)</sub>        | High-level input voltage (WDI)                           |                                                              | 0.8 × V <sub>DD</sub>        |      |                             | V    |
| 1                           |                                                          | TPS3850Xyy(y), V <sub>SENSE</sub> = 5.0 V,<br>VDD = 3.3 V    |                              | 2.1  | 2.5                         | μΑ   |
| SENSE                       | SENSE pin idle current                                   | TPS3850H01 only, V <sub>SENSE</sub> = 5.0 V,<br>VDD = 3.3 V  | - 50                         |      | 50                          | nA   |

- When V<sub>DD</sub> falls below V<sub>UVLO</sub>, RESET is driven low.
   When V<sub>DD</sub> falls below V<sub>POR</sub>, RESET and WDO are undefined.
   During power-on, V<sub>DD</sub> must be a minimum 1.6 V for at least 300 μs before the output corresponds to the SENSE voltage.

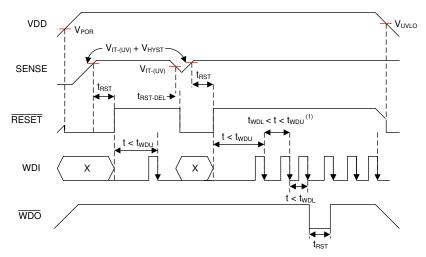


## 6.6 Timing Requirements

at 1.6 V  $\leq$  V<sub>DD</sub>  $\leq$  6.5 V over the operating temperature range of  $^-$  40°C  $\leq$  T<sub>A</sub>, T<sub>J</sub>  $\leq$  +125°C (unless otherwise noted); the open-drain pullup resistors are 10 k  $^\Omega$  for each output; typical values are at T<sub>J</sub> = 25°C

|                       |                                                                                     |                                                             | MIN               | TYP       | MAX    | UNIT |
|-----------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------|-----------|--------|------|
| GENERAI               | L                                                                                   |                                                             |                   |           |        |      |
| t <sub>INIT</sub>     | CWD, CRST pin evaluation                                                            | period <sup>(1)</sup>                                       |                   | 381       |        | μs   |
| t <sub>SET</sub>      | Time required between changing the SET0 and SET1 pins                               |                                                             |                   | 500       |        | μs   |
|                       | SET0, SET1 pin setup time                                                           |                                                             |                   | 1         |        | μs   |
|                       | Startup delay <sup>(2)</sup>                                                        |                                                             |                   | 300       |        | μs   |
| RESET F               | UNCTION                                                                             |                                                             |                   |           | ·      |      |
| t <sub>RST</sub>      | Reset timeout period                                                                | CRST = NC                                                   | 170               | 200       | 230    | ms   |
| <sup>4</sup> RST      | rteset timeout periou                                                               | CRST = 10 k $\Omega$ to VDD                                 | 8.5               | 10        | 11.5   | ms   |
| •                     | V <sub>SENSE</sub> to RESET delay                                                   | VDD = 5 V, V <sub>SENSE</sub> = V <sub>IT+(OV)</sub> + 2.5% |                   | 35        |        | 110  |
| <sup>t</sup> RST-DEL  | VSENSE to RESET delay                                                               | VDD = 5 V, V <sub>SENSE</sub> = V <sub>IT-(UV)</sub> - 2.5% |                   | 17        |        | μs   |
| WINDOW                | WATCHDOG FUNCTION                                                                   |                                                             |                   |           | ·      |      |
|                       | Window watchdog ratio of                                                            | CWD = programmable, SET0 = 0, SET1 = 0 <sup>(3)</sup>       |                   | 1/8       |        |      |
| WD ratio              | J                                                                                   | CWD = programmable, SET0 = 1, SET1 = 1 <sup>(3)</sup>       |                   | 1/2       |        |      |
|                       |                                                                                     | CWD = programmable, SET0 = 0, SET1 = 1 <sup>(3)</sup> (4)   |                   | 3/4       |        |      |
|                       |                                                                                     | CWD = NC, SET0 = 0, SET1 = 0                                | 19.1              | 22.5      | 25.9   | ms   |
|                       |                                                                                     | CWD = NC, SET0 = 0, SET1 = 1                                | 1.48              | 1.85      | 2.22   | ms   |
|                       |                                                                                     | CWD = NC, SET0 = 1, SET1 = 0                                | Watchdog disabled |           | led    |      |
|                       |                                                                                     | CWD = NC, SET0 = 1, SET1 = 1                                | 680               | 800       | 920    | ms   |
| t <sub>WDL</sub>      |                                                                                     | CWD = 10 k $\Omega$ to VDD, SET0 = 0, SET1 = 0              | 7.65              | 9.0       | 10.35  | ms   |
|                       |                                                                                     | CWD = 10 k $\Omega$ to VDD, SET0 = 0, SET1 = 1              | 7.65              | 9.0       | 10.35  | ms   |
|                       |                                                                                     | CWD = $10 \text{ k}\Omega$ to VDD, SET0 = 1, SET1 = 0       | Watchdog disabled |           | led    |      |
|                       |                                                                                     | CWD = 10 k Ω to VDD, SET0 = 1, SET1 = 1                     | 1.48              | 1.85      | 2.22   | ms   |
|                       |                                                                                     | CWD = NC, SET0 = 0, SET1 = 0                                | 46.8              | 55.0      | 63.3   | ms   |
|                       |                                                                                     | CWD = NC, SET0 = 0, SET1 = 1                                | 23.375            | 27.5      | 31.625 | ms   |
|                       |                                                                                     | CWD = NC, SET0 = 1, SET1 = 0                                | Watch             | dog disab | led    |      |
|                       | Window watchdog upper                                                               | CWD = NC, SET0 = 1, SET1 = 1                                | 1360              | 1600      | 1840   | ms   |
| t <sub>WDU</sub>      | boundary                                                                            | CWD = 10 k $\Omega$ to VDD, SET0 = 0, SET1 = 0              | 92.7              | 109.0     | 125.4  | ms   |
|                       |                                                                                     | CWD = 10 k $\Omega$ to VDD, SET0 = 0, SET1 = 1              | 165.8             | 195.0     | 224.3  | ms   |
|                       |                                                                                     | CWD = $10 \text{ k}\Omega$ to VDD, SET0 = 1, SET1 = 0       | Watchdog disabled |           |        |      |
|                       |                                                                                     | CWD = 10 k $\Omega$ to VDD, SET0 = 1, SET1 = 1              | 9.35              | 11.0      | 12.65  | ms   |
| t <sub>WD-setup</sub> | Setup time required for the device to respond to changes on WDI after being enabled |                                                             |                   | 150       |        | μs   |
|                       | Minimum WDI pulse duration                                                          | 1                                                           |                   | 50        |        | ns   |
| t <sub>WD-del</sub>   | WDI to WDO delay                                                                    |                                                             |                   | 50        |        | ns   |

Refer to **†** 8.1.1.2 (1)


Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

<sup>(2)</sup> During power-on, V<sub>DD</sub> must be a minimum 1.6 V for at least 300 µs before the output corresponds to the SENSE voltage.

 $<sup>\</sup>begin{array}{ll} \text{(3)} & \text{0 refers to V}_{\text{SET}} \leqslant \text{V}_{\text{IL}}, \text{1 refers to V}_{\text{SET}} \geqslant \text{V}_{\text{IH}}. \\ \text{(4)} & \text{If this watchdog ratio is used, then } t_{\text{WDL(max)}} \, \text{can overlap t}_{\text{WDU(min)}}. \\ \end{array}$ 

## **6.7 Timing Diagrams**



A. See **8** 6-2 for WDI timing requirements.

图 6-1. Timing Diagram



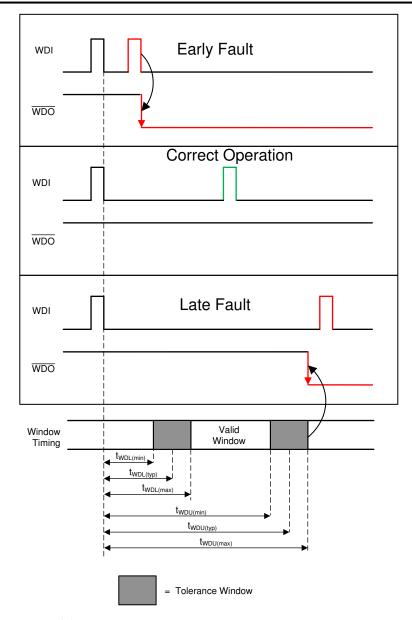



图 6-2. TPS3850-Q1 Window Watchdog Timing



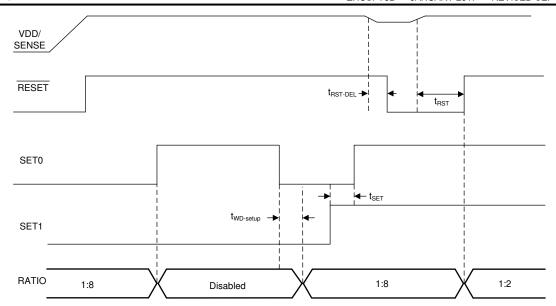
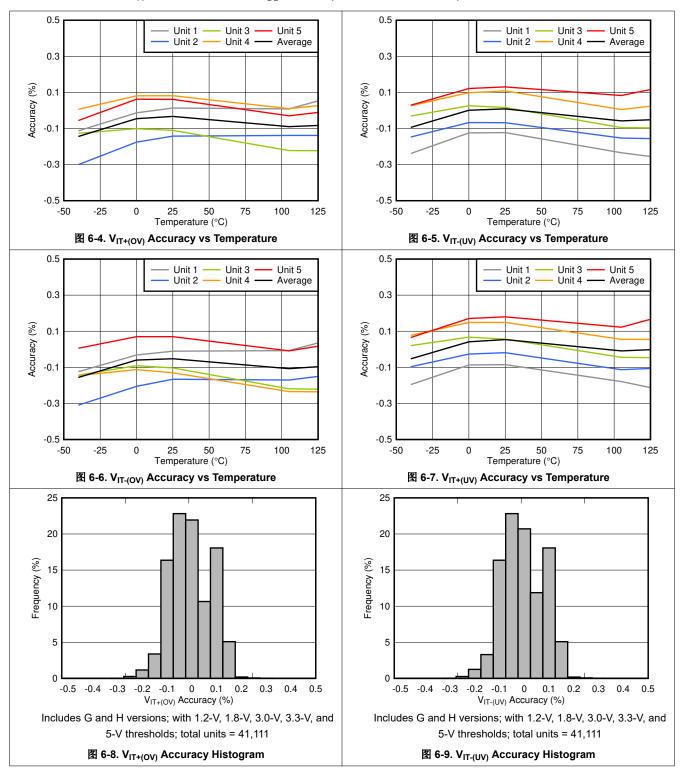



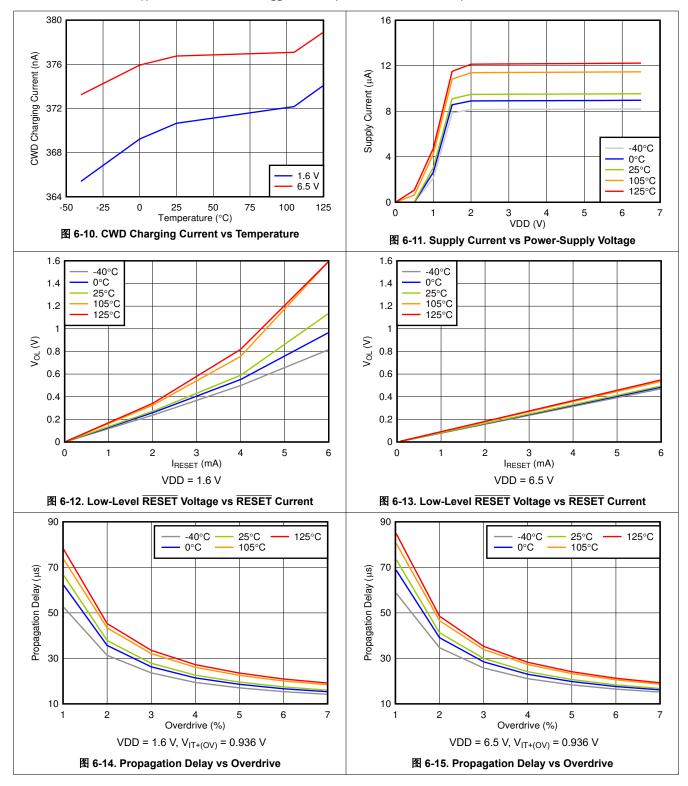

图 6-3. Changing SET0 and SET1 Pins



## **6.8 Typical Characteristics**

all curves are taken at  $T_A$  = 25°C with 1.6 V  $\leqslant$   $V_{DD}$   $\leqslant$  6.5 V (unless otherwise noted)

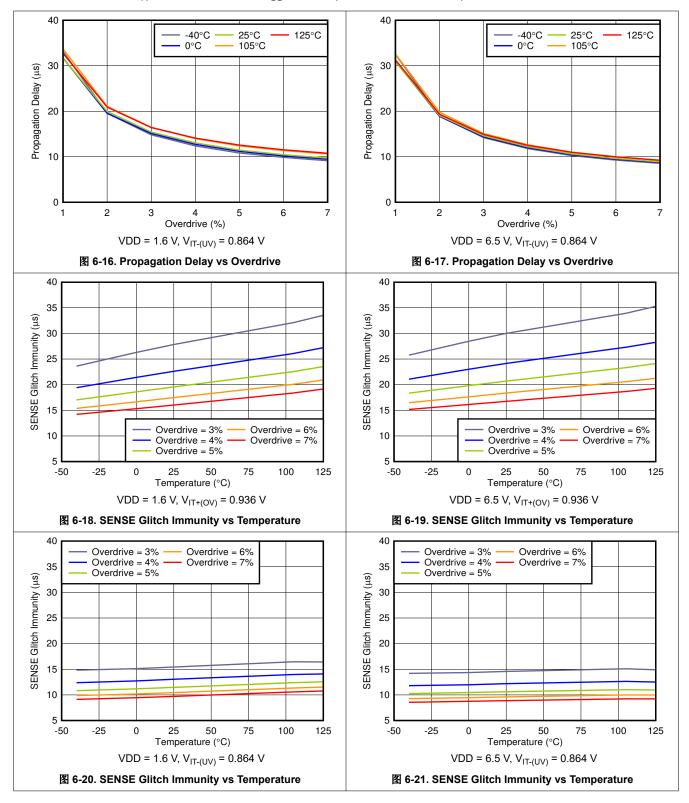



Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated



## **6.8 Typical Characteristics (continued)**


all curves are taken at  $T_A$  = 25°C with 1.6 V  $\leq$   $V_{DD} \leq$  6.5 V (unless otherwise noted)



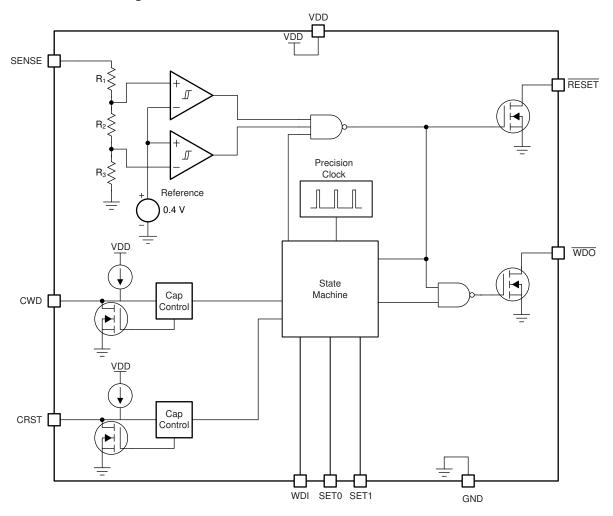


## **6.8 Typical Characteristics (continued)**

all curves are taken at  $T_A$  = 25°C with 1.6 V  $\leq$  V<sub>DD</sub>  $\leq$  6.5 V (unless otherwise noted)



Submit Document Feedback


Copyright © 2021 Texas Instruments Incorporated

## 7 Detailed Description

## 7.1 Overview

The TPS3850-Q1 is a high-accuracy voltage supervisor with an integrated watchdog timer. This device includes a precision voltage supervisor with both overvoltage ( $V_{\text{IT+(OV)}}$ ) and undervoltage ( $V_{\text{IT-(UV)}}$ ) thresholds that achieve 0.8% accuracy over the specified temperature range of  $-40^{\circ}\text{C}$  to  $+125^{\circ}\text{C}$ . In addition, the TPS3850-Q1 includes accurate hysteresis on both thresholds, making the device ideal for use with tight tolerance systems where voltage supervisors must ensure a RESET before the minimum and maximum supply tolerance of the microprocessor or system-on-a-chip (SoC) is reached.

## 7.2 Functional Block Diagrams



 $R_{TOTAL}$  =  $R_1$  +  $R_2$  +  $R_3$  = 4.5 M  $\Omega$  .

图 7-1. Fixed Version Block Diagram



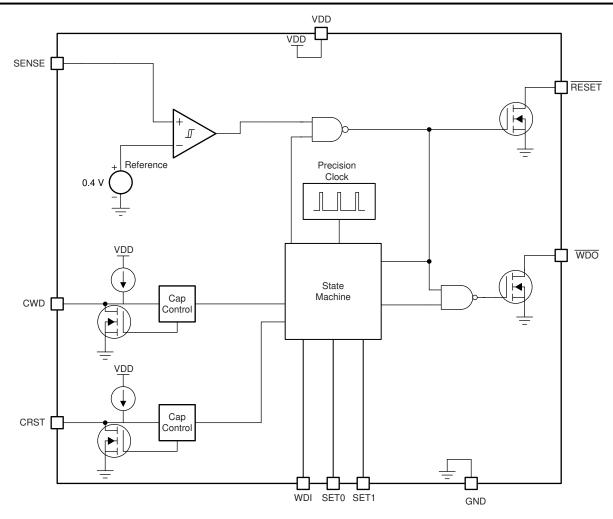



图 7-2. Adjustable Version Block Diagram

#### 7.3 Feature Description

#### 7.3.1 CRST

The CRST pin provides the user the functionality of both high-precision, factory-programmed, reset delay timing options and user-programmable, reset delay timing. The CRST pin can be pulled up to VDD through a resistor, have an external capacitor to ground, or can be left unconnected. The configuration of the CRST pin is reevaluated by the device every time the voltage on the SENSE line enters the valid window ( $V_{\text{IT+(UV)}} < V_{\text{SENSE}} < V_{\text{IT-(OV)}}$ ). The pin evaluation is controlled by an internal state machine that determines which option is connected to the CRST pin. The sequence of events takes 381  $\mu$ s ( $t_{\text{INIT}}$ ) to determine if the CRST pin is left unconnected, pulled up through a resistor, or connected to a capacitor. If the CRST pin is being pulled up to VDD, then a 10-k  $\Omega$  pullup resistor is required.

## **7.3.2 RESET**

The RESET pin features a programmable reset delay time that can be adjusted from 703  $\mu$ s to 3.22 seconds when using adjustable capacitor timing. RESET is an open-drain output that should be pulled up through a 1-k  $\Omega$  to 100-k  $\Omega$  pullup resistor. When  $V_{DD}$  is above  $V_{DD}$  (min), RESET remains high (not asserted) when the SENSE voltage is between the positive threshold ( $V_{IT+(OV)}$ ) and the negative threshold ( $V_{IT-(UV)}$ ). If SENSE falls below  $V_{IT-(UV)}$  or rises above  $V_{IT+(OV)}$ , then RESET is asserted, driving the RESET pin to a low-impedance state. When SENSE comes back into the valid window, a RESET delay circuit is enabled that holds RESET low for a specified reset delay period ( $t_{RST}$ ). This  $t_{RST}$  period is determined by what is connected to the CRST pin; see 8-1. When the reset delay has elapsed, the RESET pin goes to a high-impedance state and uses a pullup

resistor to hold  $\overline{RESET}$  high. The pullup resistor must be connected to the proper voltage rail to allow other devices to be connected at the correct interface voltage. To ensure proper voltage levels, give some consideration when choosing the pullup resistor values. The pullup resistor value is determined by output logic low voltage ( $V_{OL}$ ), capacitive loading, and leakage current ( $I_D$ ); see the #8.1.1 section for more information.

## 7.3.3 Over- and Undervoltage Fault Detection

The TPS3850-Q1 features both overvoltage detection and undervoltage detection. This detection is achieved through the combination of two comparators with a precision voltage reference and a trimmed resistor divider (fixed versions only). The SENSE pin is used to monitor the critical voltage rail; this configuration optimizes device accuracy because all resistor tolerances are accounted for in the accuracy and performance specifications. Both comparators also include built-in hysteresis that provides some noise immunity and ensures stable operation. If the voltage on the SENSE pin drops below  $V_{\text{IT-(UV)}}$ , then  $\overline{\text{RESET}}$  is asserted (driven low). When the voltage on the SENSE pin is between the positive and negative threshold voltages,  $\overline{\text{RESET}}$  deasserts after the user-defined  $\overline{\text{RESET}}$  delay time, as shown in  $\boxed{8}$  7-3.

The SENSE input can vary from GND to 6.5 V, regardless of the device supply voltage used. Although not required in most cases, for noisy applications, good analog-design practice is to place a 1-nF to 100-nF bypass capacitor at the SENSE pin to reduce sensitivity to transient voltages on the monitored signal.

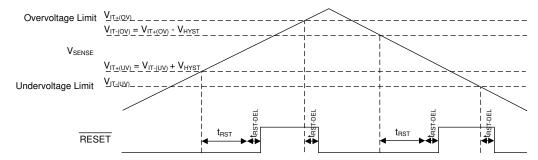


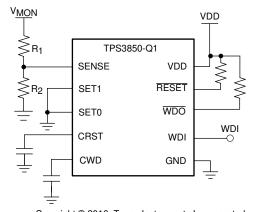

图 7-3. Window Comparator Timing Diagram

#### 7.3.4 Adjustable Operation Using the TPS3850H01Q1

The adjustable version (TPS3850H01Q1) can be used to monitor any voltage rail down to 0.4 V using the circuit illustrated in 图 7-4. When using the TPS3850H01Q1, the device does not function as a window comparator; instead, the device only monitors the undervoltage threshold. To monitor a user-defined voltage, the target threshold voltage for the monitored supply ( $V_{MON}$ ) and the resistor divider values can be calculated by using 5 程式 1 and 5程式 2, respectively:

$$V_{MON} = V_{IT(ADJ)} \times \left(1 + \frac{R_1}{R_2}\right) \tag{1}$$

方程式 1 can be used to calculate either the negative threshold or the positive threshold by replacing  $V_{ITx}$  with either  $V_{ITN}$  or  $V_{ITN}$  +  $V_{HYST}$ , respectively.


$$R_{TOTAL} = R_1 + R_2 \tag{2}$$

Large resistor values minimize current consumption; however, the input bias current of the device degrades accuracy if the current through the resistors is too low. Therefore, choosing an  $R_{TOTAL}$  value so that the current through the resistor divider is at least 100 times larger than the maximum SENSE pin current ( $I_{SENSE}$ ) ensures a good degree of accuracy; see the  $I_Q$  vs Accuracy Tradeoff In Designing Resistor Divider Input To A Voltage Supervisor (SLVA450) for more details on sizing input resistors.

Copyright © 2021 Texas Instruments Incorporated

Submit Document Feedback





Copyright © 2016, Texas Instruments Incorporated

图 7-4. Adjustable Voltage Monitor

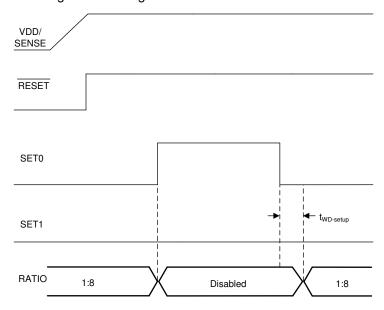
## 7.3.5 Window Watchdog

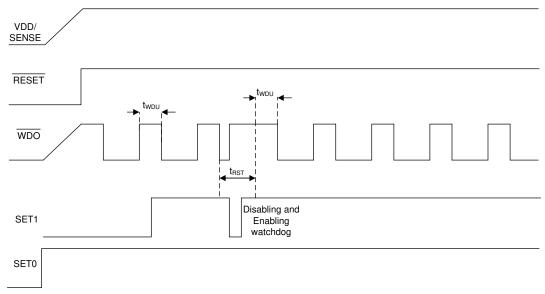
#### 7.3.5.1 SET0 and SET1

When changing the SET0 or SET1 pins, there are two cases to consider: enabling and disabling the watchdog, and changing the SET0 or SET1 pins when the watchdog is enabled. In case 1 where the watchdog is being enabled or disabled, the changes take effect immediately. However, in case 2, a RESET event must occur in order for the changes to take place.

#### 7.3.5.1.1 Enabling the Window Watchdog

The TPS3850-Q1 features the ability to enable and disable the watchdog timer. This feature allows the user to start with the watchdog timer disabled and then enable the watchdog timer using the SET0 and SET1 pins. The ability to enable and disable the watchdog is useful to avoid undesired watchdog trips during initialization and shutdown. When the SETx pins are changed to disable the watchdog timer, changes on the pins are responded to immediately (as shown in  $\[mathbb{R}\]$  7-5). When the watchdog goes from disabled to enabled, there is a 150  $\[mu]$  s ( $\[mu]$  transition period where the device does not respond to changes on WDI. After this 150-  $\[mu]$  s period, the device begins to respond to changes on WDI again.





图 7-5. Enabling the Watchdog Timer

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

## 7.3.5.1.2 Disabling the Watchdog Timer When Using the CRST Capacitor

When using the TPS3850-Q1 with fixed timing options, if the watchdog is disabled and reenabled while  $\overline{WDO}$  is asserted (logic low) the watchdog performs as described in the # 7.3.5.1.1 section. However, if there is a capacitor on the CRST pin, and the watchdog is disabled and reenabled when  $\overline{WDO}$  is asserted (logic low), then the watchdog behaves as shown in  $\boxtimes$  7-6. When the watchdog is disabled,  $\overline{WDO}$  goes high impedance (logic high). However, when the watchdog is enabled again, the  $t_{RST}$  period must expire before the watchdog resumes normal operation.



There is no WDI signal in this figure, WDI is always at GND.

图 7-6. Enabling and Disabling the Watchdog Timer During a WDO Reset Event

#### 7.3.5.1.3 SET0 and SET1 During Normal Watchdog Operation

The SET0 and SET1 pins can be used to control the window watchdog ratio of the lower boundary to the upper boundary. There are four possible modes for the watchdog (see  $\gtrsim$  8-5): disabled, 1:8 ratio, 3:4 ratio, and 1:2 ratio. If SET0 = 1 and SET1 = 0, then the watchdog is disabled. When the watchdog is disabled,  $\boxed{WDO}$  does not assert and the TPS3850-Q1 functions as a normal supervisor. The SET0 and SET1 pins can be changed when the device is operational, but cannot be changed at the same time. If these pins are changed when the device is operational, then there must be a 500- $\mu$ s ( $t_{SET}$ ) delay between switching the two pins. If SET0 and SET1 are used to change the reset timing, then a reset event must occur before the new timing condition is latched. This reset can be triggered by SENSE rising above  $V_{IT+(OV)}$  or below  $V_{IT-(UV)}$ , or by bringing  $V_{DD}$  below  $V_{UVLO}$ .  $\boxed{\$}$  7-7 shows how the SET0 and SET1 pins do not change the watchdog timing option until a reset event has occurred.

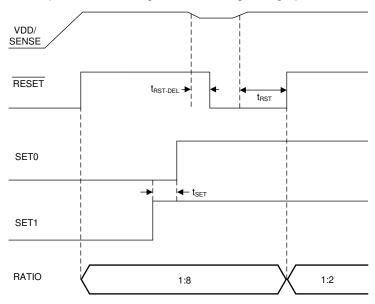



图 7-7. Changing SET0 and SET1 Pins

#### 7.3.6 Window Watchdog Timer

This section provides information for the window watchdog modes of operation. A window watchdog is typically employed in safety-critical applications where a traditional watchdog timer is inadequate. In a traditional watchdog, there is a maximum time in which a pulse must be issued to prevent the reset from occurring. However, in a window watchdog the pulse must be issued between a maximum lower window time  $(t_{WDL(max)})$  and the minimum upper window time  $(t_{WDU(min)})$  set by the CWD pin and the SET0 and SET1 pins.  $\frac{1}{8}$  8-5 describes how  $t_{WDU}$  can be used to calculate the timing of  $t_{WDL}$ . The  $t_{WDL}$  timing can also be changed by adjusting the SET0 and SET1 pins.  $\frac{1}{8}$  7-8 shows the valid region for a WDI pulse to be issued to prevent the  $\overline{WDO}$  from being triggered and being pulled low.

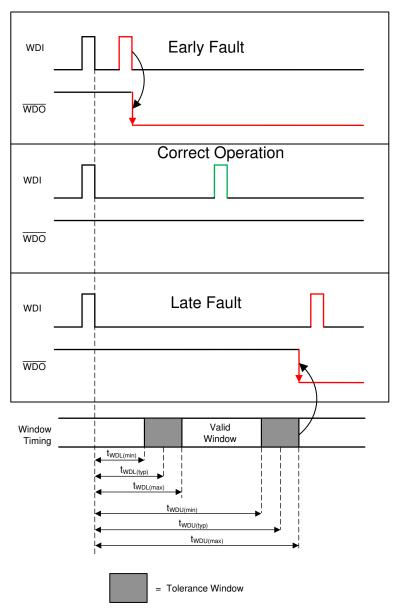



图 7-8. TPS3850-Q1 Window Watchdog Timing

#### 7.3.6.1 CWD

The CWD pin provides the user the functionality of both high-precision, factory-programmed watchdog timing options and user-programmable watchdog timing. The TPS3850-Q1 features three options for setting the watchdog window: connecting a capacitor to the CWD pin, connecting a pullup resistor to VDD, and leaving the CWD pin unconnected. The configuration of the CWD pin is evaluated by the device every time  $V_{SENSE}$  enters the valid window ( $V_{IT+(UV)} < V_{SENSE} < V_{IT-(OV)}$ ). The pin evaluation is controlled by an internal state machine that determines which option is connected to the CWD pin. The sequence of events takes 381  $\mu$ s ( $t_{INIT}$ ) to determine if the CWD pin is left unconnected, pulled up through a resistor, or connected to a capacitor. If the CWD pin is being pulled up to VDD using a pullup resistor, then a 10-k  $\Omega$  resistor is required.

## 7.3.6.2 WDI Functionality

WDI is the watchdog timer input that controls the  $\overline{WDO}$  output. The WDI input is triggered by the falling edge of the input signal. For the first pulse, the watchdog functions as a traditional watchdog timer; thus, the first pulse must be issued before  $t_{WDU(min)}$ . After the first pulse, to ensure proper functionality of the watchdog timer, always issue the WDI pulse within the window of  $t_{WDL(max)}$  and  $t_{WDU(min)}$ . If the pulse is issued in this region, then  $\overline{WDO}$  remains unasserted. Otherwise, the device asserts  $\overline{WDO}$ , putting the  $\overline{WDO}$  pin into a low-impedance state.

The watchdog input (WDI) is a digital pin. To ensure there is no increase in  $I_{DD}$ , drive the WDI pin to either VDD or GND at all times. Putting the pin to an intermediate voltage can cause an increase in supply current ( $I_{DD}$ ) because of the architecture of the digital logic gates. When  $\overline{RESET}$  is asserted, the watchdog is disabled and all signals input to WDI are ignored. When  $\overline{RESET}$  is no longer asserted, the device resumes normal operation and no longer ignores the signal on WDI. If the watchdog is disabled, drive the WDI pin to either VDD or GND.

## 7.3.6.3 WDO Functionality

The TPS3850-Q1 features a window watchdog timer with an independent watchdog output ( $\overline{WDO}$ ). The independent watchdog output provides the flexibility to flag a fault in the watchdog timing without performing an entire system reset. When  $\overline{RESET}$  is not asserted (high), the  $\overline{WDO}$  signal maintains normal operation. When asserted,  $\overline{WDO}$  remains down for  $t_{RST}$ . When the  $\overline{RESET}$  signal is asserted (low), the  $\overline{WDO}$  pin goes to a high-impedance state. When  $\overline{RESET}$  is unasserted, the window watchdog timer resumes normal operation and  $\overline{WDO}$  can be used again.

Product Folder Links: TPS3850-Q1

Submit Document Feedback

#### 7.4 Device Functional Modes

表 7-1 summarizes the functional modes of the TPS3850-Q1.

表 7-1. Device Functional Modes

| VDD                                   | WDI                                                                                         | WDO  | SENSE                                                              | RESET     |
|---------------------------------------|---------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------|-----------|
| V <sub>DD</sub> < V <sub>POR</sub>    | _                                                                                           | _    | _                                                                  | Undefined |
| $V_{POR} \leqslant V_{DD} < V_{UVLO}$ | Ignored                                                                                     | High | _                                                                  | Low       |
|                                       | Ignored                                                                                     | High | V <sub>SENSE</sub> < V <sub>IT+(UV)</sub> (1)                      | Low       |
|                                       | Ignored                                                                                     | High | V <sub>SENSE</sub> > V <sub>IT-(OV)</sub> (1)                      | Low       |
| $V_{DD} \geqslant V_{DD (min)}$       | $t_{	ext{WDL(max)}} \leqslant t_{	ext{pulse}} \stackrel{(3)}{\leqslant} t_{	ext{WDU(min)}}$ | High | $V_{\text{IT-(UV)}} < V_{\text{SENSE}} < V_{\text{IT+(OV)}}$ (2)   | High      |
|                                       | $t_{\text{WDL(max)}} > t_{\text{pulse}}$ (3)                                                | Low  | $V_{\text{IT-(UV)}} < V_{\text{SENSE}} < V_{\text{IT+(OV)}}$ (2)   | High      |
|                                       | $t_{\text{WDU(min)}} < t_{\text{pulse}}$ (3)                                                | Low  | $V_{\text{IT-(UV)}} < V_{\text{SENSE}} < V_{\text{IT+(OV)}}^{(2)}$ | High      |

- When V<sub>SENSE</sub> has not entered the valid window.
- (2) When V<sub>SENSE</sub> is in the valid window.
- (3) Where t<sub>pulse</sub> is the time between falling edges on WDI.

## 7.4.1 $V_{DD}$ is Below $V_{POR}$ ( $V_{DD} < V_{POR}$ )

When  $V_{DD}$  is less than  $V_{POR}$ , RESET is undefined and can be either high or low. The state of RESET largely depends on the load that the RESET pin is experiencing.

## 7.4.2 Above Power-On-Reset But Less Than UVLO ( $V_{POR} \leq V_{DD} < V_{UVLO}$ )

When  $V_{DD}$  is less than  $V_{UVLO}$ , and greater than or equal to  $V_{POR}$ , the  $\overline{RESET}$  signal is asserted (logic low) regardless of the voltage on the SENSE pin. When  $\overline{RESET}$  is asserted, the watchdog output  $\overline{WDO}$  is in a high-impedance state regardless of the WDI signal that is input to the device.

## 7.4.3 Above UVLO But Less Than $V_{DD (min)}$ ( $V_{UVLO} \leq V_{DD} < V_{DD (min)}$ )

When  $V_{DD}$  is less than  $V_{DD \ (min)}$  and greater than or equal to  $V_{UVLO}$ , the  $\overline{RESET}$  signal responds to changes on the SENSE pin, but the accuracy can be degraded.

## 7.4.4 Normal Operation ( $V_{DD} \ge V_{DD \text{ (min)}}$ )

When  $V_{DD}$  is greater than or equal to  $V_{DD \ (min)}$ , the  $\overline{RESET}$  signal is determined by  $V_{SENSE}$ . When  $\overline{RESET}$  is asserted,  $\overline{WDO}$  goes to a high-impedance state.  $\overline{WDO}$  is then pulled high through the pullup resistor.

Copyright © 2021 Texas Instruments Incorporated

## 8 Application and Implementation

#### Note

以下应用部分中的信息不属于 TI 器件规格的范围, TI 不担保其准确性和完整性。TI 的客户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

## 8.1 Application Information

The following sections describe in detail proper device implementation, depending on the final application requirements.

## 8.1.1 CRST Delay

The TPS3850-Q1 features three options for setting the reset delay ( $t_{RST}$ ): connecting a capacitor to the CRST pin, connecting a pullup resistor to VDD, and leaving the CRST pin unconnected. 8-1 shows a schematic drawing of all three options. To determine which option is connected to the CRST pin, an internal state machine controls the internal pulldown device and measures the pin voltage. This sequence of events takes 381  $\mu$ s ( $t_{INIT}$ ) to determine which timing option is used. Every time  $\overline{RESET}$  is asserted, the state machine determines what is connected to the pin.

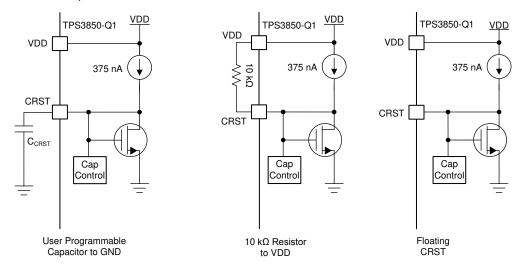



图 8-1. CRST Charging Circuit

## 8.1.1.1 Factory-Programmed Reset Delay Timing

To use the factory-programmed timing options, the CRST pin must either be left unconnected or pulled up to VDD through a 10-k $\Omega$  pullup resistor. Using these options enables a high-precision, 15% accurate reset delay timing, as shown in  $\frac{1}{8}$  8-1.

表 8-1. Reset Delay Time for Factory-Programmed Reset Delay Timing

| CRST         | RES | UNIT |      |      |
|--------------|-----|------|------|------|
| CKGT         | MIN | TYP  | MAX  | ONII |
| NC           | 170 | 200  | 230  | ms   |
| 10 kΩ to VDD | 8.5 | 10   | 11.5 | ms   |

Product Folder Links: TPS3850-Q1

## 8.1.1.2 Programmable Reset Delay Timing

The TPS3850-Q1 uses a CRST pin charging current ( $I_{CRST}$ ) of 375 nA. When using an external capacitor, the rising  $\overline{RESET}$  delay time can be set to any value between 700 µs ( $C_{CRST}$  = 100 pF) and 3.2 seconds ( $C_{CRST}$  = 1 µF). The typical ideal capacitor value needed for a given delay time can be calculated using 方程式 3, where  $C_{CRST}$  is in microfarads and  $I_{RST}$  is in seconds:

$$t_{RST} = 3.22 \times C_{CRST} + 0.000381$$
 (3)

To calculate the minimum and maximum-reset delay time use 方程式 4 and 方程式 5, respectively.

$$t_{RST(min)} = 2.8862 \times C_{CRST} + 0.000324$$
 (4)

$$t_{RST(max)} = 3.64392 \times C_{CRST} + 0.000438$$
 (5)

The slope of 方程式 3 is determined by the time the CRST charging current ( $I_{CRST}$ ) takes to charge the external capacitor up to the CRST comparator threshold voltage ( $V_{CRST}$ ). When RESET is asserted, the capacitor is discharged through the internal CRST pulldown resistor. When the RESET conditions are cleared, the internal precision current source is enabled and begins to charge the external capacitor; when  $V_{CRST} = 1.21 \text{ V}$ , RESET is unasserted. Note that to minimize the difference between the calculated RESET delay time and the actual RESET delay time, use a use a high-quality ceramic dielectric COG, X5R, or X7R capacitor and minimize parasitic board capacitance around this pin. 表 8-2 lists the reset delay time ideal capacitor values for  $C_{CRST}$ .

| & 0-2. Reset belay Time for Common ideal Capacitor values |                    |                                      |                    |      |  |  |  |
|-----------------------------------------------------------|--------------------|--------------------------------------|--------------------|------|--|--|--|
| C <sub>CRST</sub>                                         | RESET DE           | RESET DELAY TIME (t <sub>RST</sub> ) |                    |      |  |  |  |
|                                                           | MIN <sup>(1)</sup> | TYP                                  | MAX <sup>(1)</sup> | UNIT |  |  |  |
| 100 pF                                                    | 0.61               | 0.70                                 | 0.80               | ms   |  |  |  |
| 1 nF                                                      | 3.21               | 3.61                                 | 4.08               | ms   |  |  |  |
| 10 nF                                                     | 29.2               | 32.6                                 | 36.8               | ms   |  |  |  |
| 100 nF                                                    | 289                | 323                                  | 364                | ms   |  |  |  |
| 1 μ F                                                     | 2886               | 3227                                 | 3644               | ms   |  |  |  |

表 8-2. Reset Delay Time for Common Ideal Capacitor Values

#### 8.1.2 CWD Functionality

The TPS3850-Q1 features three options for setting the watchdog window: connecting a capacitor to the CWD pin, connecting a pullup resistor to VDD, and leaving the CWD pin unconnected.  $\boxtimes$  8-2 shows a schematic drawing of all three options. If this pin is connected to VDD through a 10-k $\Omega$  pullup resistor or left unconnected (high impedance), then the factory-programmed watchdog timeouts are enabled; see the table. Otherwise, the watchdog timeout can be adjusted by placing a capacitor from the CWD pin to ground.

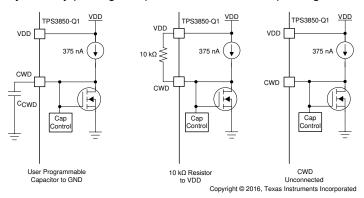



图 8-2. CWD Charging Circuit

<sup>(1)</sup> Minimum and maximum values are calculated using ideal capacitors.

#### 8.1.2.1 Factory-Programmed Timing Options

If using the factory-programmed timing options (listed in  $\frac{1}{8}$  8-3), the CWD pin must either be unconnected or pulled up to VDD through a 10-k $\Omega$  pullup resistor. Using these options enables high-precision, factory programmed watchdog timing.

表 8-3. Factory-Programmed Watchdog Timing

| INPUT        |      |      | WATCHDOG LOWER BOUNDARY (t <sub>WDL</sub> ) |                   |       | WATCHDOG UPF | UNIT              |        |       |
|--------------|------|------|---------------------------------------------|-------------------|-------|--------------|-------------------|--------|-------|
| CWD          | SET0 | SET1 | MIN                                         | TYP               | MAX   | MIN          | TYP               | MAX    | Oitii |
|              | 0    | 0    | 19.1                                        | 22.5              | 25.9  | 46.8         | 55.0              | 63.3   | ms    |
| NC           | 0    | 1    | 1.48                                        | 1.85              | 2.22  | 23.375       | 27.5              | 31.625 | ms    |
| INC          | 1    | 0    | Watchdog disabled                           |                   |       | Watch        |                   |        |       |
|              | 1    | 1    | 680                                         | 800               | 920   | 1360         | 1600              | 1840   | ms    |
| 10 kΩ to VDD | 0    | 0    | 7.65                                        | 9.0               | 10.35 | 92.7         | 109.0             | 125.4  | ms    |
|              | 0    | 1    | 7.65                                        | 9.0               | 10.35 | 165.8        | 195.0             | 224.3  | ms    |
|              | 1    | 0    | Watcho                                      | Watchdog disabled |       |              | Watchdog disabled |        |       |
|              | 1    | 1    | 1.48                                        | 1.85              | 2.22  | 9.35         | 11.0              | 12.65  | ms    |

#### 8.1.2.2 Adjustable Capacitor Timing

Adjustable capacitor timing is achievable by connecting a capacitor to the CWD pin. If a capacitor is connected to CWD, then a 375-nA, constant-current source charges  $C_{CWD}$  until  $V_{CWD}$  = 1.21 V. The TPS3850-Q1 determines the window watchdog upper boundary with the formula given in 方程式 6, where  $C_{CWD}$  is in microfarads and  $t_{WDU}$  is in seconds.

$$t_{WDU(typ)} = 77.4 \times C_{CWD} + 0.055$$
 (6)

The TPS3850-Q1 is designed and tested using  $C_{CWD}$  capacitors between 100 pF and 1 µF. Note that 方程式 6 is for ideal capacitors. Capacitor tolerances cause the actual device timing to vary such that the minimum of  $t_{WDU}$  can increase by the capacitor tolerance. To allow for a valid watchdog window, choose a capacitor with tolerance such that  $t_{WDU(min)}$  and  $t_{WDL(max)}$  do not overlap. For the most accurate timing, use ceramic capacitors with COG dielectric material. As shown in  $\frac{1}{2}$  8-4, when using the minimum capacitor of 100 pF, the watchdog upper boundary is 62.74 ms; whereas with a 1-µF capacitor, the watchdog upper boundary is 77.455 seconds. If a  $C_{CWD}$  capacitor is used,  $\frac{1}{2}$  6 can be used to set  $t_{WDU}$  the window watchdog upper boundary. The window watchdog lower boundary is dependent on the SET0 and SET1 pins because these pins set the window watchdog ratio of the lower boundary to upper boundary;  $\frac{1}{2}$  8-5 shows how  $t_{WDU}$  can be used to calculate  $t_{WDL}$  based on the SET0 and SET1 pins.

#### 8.1.2.3

表 8-4. twdu Values for Common Ideal Capacitor Values

| C <sub>CWD</sub> | WATCHDO            | UNIT  |                    |      |
|------------------|--------------------|-------|--------------------|------|
|                  | MIN <sup>(1)</sup> | TYP   | MAX <sup>(1)</sup> | ONII |
| 100 pF           | 56.77              | 62.74 | 68.7               | ms   |
| 1 nF             | 119.82             | 132.4 | 144.98             | ms   |
| 10 nF            | 750                | 829   | 908                | ms   |
| 100 nF           | 7054               | 7795  | 8536               | ms   |
| 1 μF             | 70096              | 77455 | 84814              | ms   |

(1) Minimum and maximum values are calculated using ideal capacitors.

| 4/3   | Texas              |
|-------|--------------------|
| . 🗸   | <b>INSTRUMENTS</b> |
| www.t | i.com.cn           |

| INP              | TUT  |      | WATCHDOG                      | LOWER BOUN               | ER BOUNDARY (t <sub>WDL</sub> ) WATCHDOG UPPER BOUNDARY (t <sub>WDU</sub> ) |                               |                         | UNIT                         |      |
|------------------|------|------|-------------------------------|--------------------------|-----------------------------------------------------------------------------|-------------------------------|-------------------------|------------------------------|------|
| CWD              | SET0 | SET1 | MIN                           | TYP                      | MAX                                                                         | MIN                           | TYP                     | MAX                          | ONII |
|                  | 0    | 0    | t <sub>WDU(min)</sub> x 0.125 | t <sub>WDU</sub> x 0.125 | t <sub>WDU(max)</sub> x 0.125                                               | 0.905 x t <sub>WDU(typ)</sub> | t <sub>WDU(typ)</sub> 1 | .095 x t <sub>WDU(typ)</sub> | s    |
| C <sub>CWD</sub> | 0    | 1    | t <sub>WDU(min)</sub> x 0.75  | t <sub>WDU</sub> x 0.75  | t <sub>WDU(max)</sub> x 0.75                                                | 0.905 x t <sub>WDU(typ)</sub> | t <sub>WDU(typ)</sub> 1 | .095 x t <sub>WDU(typ)</sub> | s    |
| CCMD             | 1    | 0    | Watchdog disabled             |                          |                                                                             | Watchdog disabled             |                         |                              |      |
|                  | 1    | 1    | t <sub>WDU(min)</sub> x 0.5   | t <sub>WDU</sub> x 0.5   | t <sub>WDU(max)</sub> x 0.5                                                 | 0.905 x t <sub>WDU(typ)</sub> | t <sub>WDU(typ)</sub> 1 | .095 x t <sub>WDU(typ)</sub> | s    |

## 8.1.3 Adjustable SENSE Configuration

The TPS3850H01Q1 has an undervoltage supervisor that can monitor voltage rails greater than 0.4 V. 表 8-6 contains 1% resistor values for creating a voltage divider to monitor common rails from 0.5 V to 12 V with a threshold of 4% and 10%. These resistor values can be scaled to decrease the amount of current flowing through the resistor divider, but increasing the resistor values also decreases the accuracy of the resistor divider. General practice is for the current flowing through the resistor divider to be 100 times greater than the current going into the SENSE pin. This practice ensures the highest possible accuracy. 方程式 7 can be used to calculate the resistors required in the resistor divider. 

8 8-3 shows the block diagram for adjustable operation.

$$V_{MON} = V_{IT(ADJ)} \times \left(1 + \frac{R_1}{R_2}\right)$$
 (7)

表 8-6. SENSE Resistor Divider Values

| A O C. OLITOL RESISTOR DIVIDER VALUES |                      |                  |                          |                     |                |                          |  |
|---------------------------------------|----------------------|------------------|--------------------------|---------------------|----------------|--------------------------|--|
|                                       |                      | 4% THRESHOLD     |                          | 10% THRESHOLD       |                |                          |  |
| INPUT VOLTAGE (V)                     | R <sub>1</sub> (k Ω) | $R_2 (k \Omega)$ | THRESHOLD<br>VOLTAGE (V) | R <sub>1</sub> (kΩ) | $R_2(k\Omega)$ | THRESHOLD<br>VOLTAGE (V) |  |
| 0.5                                   | 16.2                 | 80.6             | 0.48                     | 10                  | 80.6           | 0.45                     |  |
| 0.8                                   | 75                   | 80.6             | 0.77                     | 64.9                | 80.6           | 0.72                     |  |
| 0.9                                   | 93.1                 | 80.6             | 0.86                     | 82.5                | 80.6           | 0.81                     |  |
| 1.2                                   | 150                  | 80.6             | 1.14                     | 137                 | 80.6           | 1.08                     |  |
| 1.8                                   | 267                  | 80.6             | 1.73                     | 249                 | 80.6           | 1.64                     |  |
| 2.5                                   | 402                  | 80.6             | 2.40                     | 374                 | 80.6           | 2.26                     |  |
| 3                                     | 499                  | 80.6             | 2.88                     | 464                 | 80.6           | 2.70                     |  |
| 3.3                                   | 562                  | 80.6             | 3.19                     | 523                 | 80.6           | 2.99                     |  |
| 5                                     | 887                  | 80.6             | 4.80                     | 825                 | 80.6           | 4.49                     |  |
| 12                                    | 2260                 | 80.6             | 11.62                    | 2100                | 80.6           | 10.82                    |  |

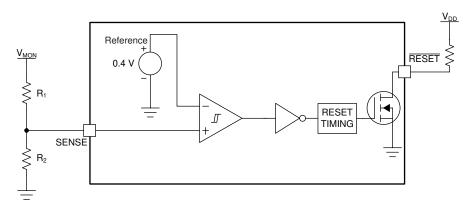



图 8-3. Adjustable Voltage Divider

#### 8.1.4 Overdrive on the SENSE Pin

The propagation delay from exceeding the threshold to  $\overline{RESET}$  being asserted is dependent on two conditions: the amplitude of the voltage on the SENSE pin relative to the threshold, ( $\triangle$  V<sub>1</sub> and  $\triangle$  V<sub>2</sub>), and the length of time that the voltage is above or below the trip point (t<sub>1</sub> and t<sub>2</sub>). If the voltage is just over the trip point for a long period of time, then  $\overline{RESET}$  asserts and the output is pulled low. However, if the SENSE voltage is just over the trip point for a few nanoseconds, then the  $\overline{RESET}$  does not assert and the output remains high. The time required for  $\overline{RESET}$  to assert can be changed by increasing the time that the SENSE voltage goes over the trip point.  $\overline{FRESET}$  8 shows how to calculate the percentage overdrive.

Overdrive = 
$$|(V_{SENSE}/V_{ITx} - 1) \times 100\%|$$
 (8)

In 方程式 8,  $V_{\text{ITx}}$  corresponds to the SENSE threshold trip point. If  $V_{\text{SENSE}}$  exceeds the positive threshold, then  $V_{\text{IT+(OV)}}$  is used.  $V_{\text{IT-(UV)}}$  is used when  $V_{\text{SENSE}}$  falls below the negative threshold. In 图 8-4,  $t_1$  and  $t_2$  correspond to the amount of time that the SENSE voltage is over the threshold. The response time versus overdrive for  $V_{\text{IT+(OV)}}$  and  $V_{\text{IT-(UV)}}$  is illustrated in 图 6-14 and 图 6-17, respectively.

The TPS3850-Q1 is relatively immune to short positive and negative transients on the SENSE pin because of the overdrive voltage curve; see 图 6-20 and 图 6-21.

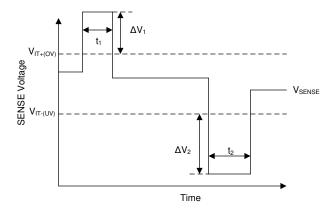
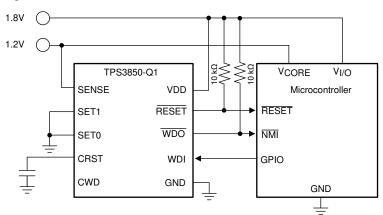



图 8-4. Overdrive Voltage on the SENSE Pin


Product Folder Links: TPS3850-Q1

omit Document Feedback

## 8.2 Typical Applications

## 8.2.1 Design 1: Monitoring a 1.2-V Rail with Factory-Programmable Watchdog Timing

A typical application for the TPS3850-Q1 is shown in  $\boxtimes$  8-5. The TPS3850G12Q1 is used to monitor the 1.2-V,  $V_{CORE}$  rail powering the microcontroller.



Copyright © 2016, Texas Instruments Incorporated

图 8-5. Monitoring Supply Voltage and Watchdog Supervision of a Microcontroller

## 8.2.1.1 Design Requirements

| PARAMETER                          | DESIGN REQUIREMENT                                                                | DESIGN RESULT                                                                                                                                            |  |  |
|------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Reset delay                        | Minimum reset delay of 250 ms                                                     | Minimum reset delay of 260 ms, reset delay of 322 ms (typical)                                                                                           |  |  |
| Watchdog window                    | Functions with a 200-Hz pulse-width modulation (PWM) signal with a 50% duty cycle | Leaving the CWD pin unconnected with SET0 = 0 and SET1 = 1 produces a window with a t <sub>WDL(max)</sub> of 2.2 ms and a t <sub>WDU(min)</sub> of 22 ms |  |  |
| Output logic voltage               | 1.8-V CMOS                                                                        | 1.8-V CMOS                                                                                                                                               |  |  |
| Monitored rail                     | 1.2 V within ±5%                                                                  | Worst-case V <sub>IT+(OV)</sub> 1.257 V (4.8%)                                                                                                           |  |  |
| INOTITOTEC TAIL                    | 1.2 V WIGHT 1370                                                                  | Worst-case V <sub>IT-(UV)</sub> 1.142 V (4.7%)                                                                                                           |  |  |
| Maximum device current consumption | 200 μΑ                                                                            | 10 μA of current consumption, typical worst-case of 199 μA when WDO or RESET is asserted                                                                 |  |  |

## 8.2.1.2 Detailed Design Procedure

### 8.2.1.2.1 Monitoring the 1.2-V Rail

The window comparator allows for precise voltage supervision of common rails between 0.9 V and 5.0 V. This application calls for very tight monitoring of the rail with only  $\pm 5\%$  of variation allowed on the rail. To ensure this requirement is met, the TPS3850G12Q1 was chosen for its  $\pm 4\%$  thresholds. To calculate the worst-case for  $V_{\text{IT+(OV)}}$  and  $V_{\text{IT-(UV)}}$ , the accuracy must also be taken into account. The worst-case for  $V_{\text{IT+(OV)}}$  can be calculated by 5% 2:

$$V_{\text{IT+(OV)(Worst-Case)}} = V_{\text{IT+(OV)typ}} \times 1.048 = 1.2 \times 1.048 = 1.257 \text{ V}$$
(9)

The worst case for  $V_{IT-(UV)}$  can be calculated using 方程式 10:

$$V_{\text{IT - (UV)(Worst-Case)}} = V_{\text{IT - (UV)typ}} \times 0.952 = 1.2 \times 0.952 = 1.142 \text{ V}$$
(10)

#### 8.2.1.2.2 Meeting the Minimum Reset Delay

The TPS3850-Q1 features three options for setting the reset delay: connecting a capacitor to the CRST pin, connecting a pullup resistor, and leaving the CRST pin unconnected. If the CRST pin is either unconnected or pulled up the minimum timing requirement cannot be met, thus an external capacitor must be connected to the CRST pin. Because a minimum time is required, the worst-case scenario is a supervisor with a high CRST charging current ( $I_{CRST}$ ) and a low CRST comparator threshold ( $V_{CRST}$ ). For applications with ambient temperatures ranging from  $-40^{\circ}$ C to  $+125^{\circ}$ C,  $C_{CRST}$  can be calculated using  $I_{CRST(MAX)}$ ,  $V_{CRST(MIN)}$ , and solving for  $C_{CRST}$  in 5R $\pm$ X 11:

$$C_{RST(min)\_ideal} = \frac{t_{RST(min)} - 0.000324}{2.8862} = \frac{0.25 - 0.000324}{2.8862} \tag{11}$$

When solving 方程式 11, the minimum capacitance required at the CRST pin is 0.086  $\mu$  F. If standard capacitors with ±10% tolerances are used, then the minimum CRST capacitor required can be found in 方程式 12:

$$C_{RST(min)} = \frac{C_{RST(min)\_ideal}}{1 - C_{tolerance}} = \frac{0.086 \ \mu F}{1 - 0.1} \tag{12}$$

Solving 方程式 12 where  $C_{tolerance}$  is 0.1 or 10%, the minimum  $C_{CRST}$  capacitor is 0.096  $\mu$  F. This value is then rounded up to the nearest standard capacitor value, so a 0.1-  $\mu$  F capacitor must be used to achieve this reset delay timing. If voltage and temperature derating are being considered, then also include these values in  $C_{tolerance}$ .

#### 8.2.1.2.3 Setting the Watchdog Window

In this application, the window watchdog timing options are based on the PWM signal that is provided to the TPS3850-Q1. A window watchdog setting must be chosen such that the falling edge of the PWM signal always falls within the window. A nominal window must be designed with  $t_{WDL(max)}$  less than 5 ms and  $t_{WDU(min)}$  greater than 5 ms. There are several options that satisfy this window option. An external capacitor can be placed on the CWD pin and calculated to have a sufficient window. Another option is to use one of the factory-programmed timing options. An additional advantage of choosing one of the factory-programmed options is the ability to reduce the number of components required, thus reducing overall BOM cost. Leaving the CWD pin unconnected (NC) with SET0 = 0 and SET1 = 1 produces a  $t_{WDL(max)}$  of 2.22 ms and a  $t_{WDU(min)}$  of 23.375 ms; see 8.70.

Product Folder Links: TPS3850-Q1

#### 8.2.1.2.4 Calculating the RESET and WDO Pullup Resistor

The TPS3850-Q1 uses an open-drain configuration for the  $\overline{RESET}$  circuit, as shown in  $\[ \]$  8-6. When the FET is off, the resistor pulls the drain of the transistor to VDD and when the FET is turned on, the FET attempts to pull the drain to ground, thus creating an effective resistor divider. The resistors in this divider must be chosen to ensure that  $V_{OL}$  is below its maximum value. To choose the proper pullup resistor, there are three key specifications to keep in mind: the pullup voltage  $(V_{PU})$ , the recommended maximum  $\overline{RESET}$  pin current  $(I_{RST})$ , and  $V_{OL}$ . The maximum  $V_{OL}$  is 0.4 V, meaning that the effective resistor divider created must be able to bring the voltage on the reset pin below 0.4 V with  $I_{RST}$  kept below 10 mA. For this example, with a  $V_{PU}$  of 1.8 V, a resistor must be chosen to keep  $I_{RST}$  below 200  $\ \mu$  A because this value is the maximum consumption current allowed. To ensure this specification is met, a pullup resistor value of 10 k  $\ \Omega$  was selected, which sinks a maximum of 180  $\ \mu$  A when  $\overline{RESET}$  or  $\overline{WDO}$  is asserted. As illustrated in  $\ \[ \]$  6-12, the  $\overline{RESET}$  current is at 180  $\ \mu$  A and the low-level output voltage is approximately zero.

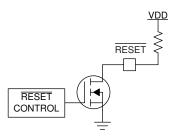
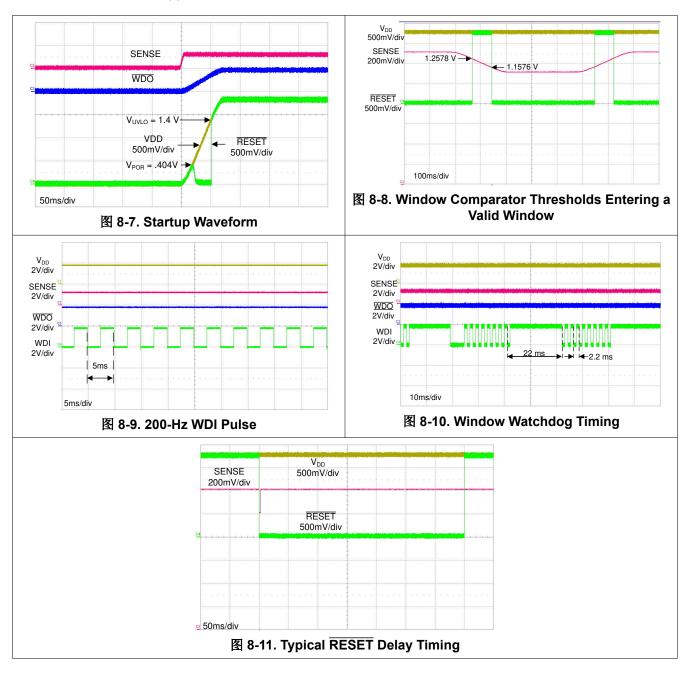
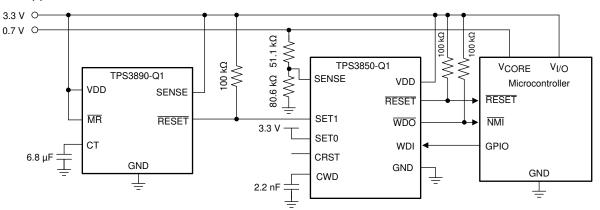




图 8-6. Open-Drain RESET Configuration




## 8.2.1.3 Application Curves

Unless otherwise stated, application curves were taken at  $T_A = 25$ °C.



# 8.2.2 Design 2: Using the TPS3850H01Q1 to Monitor a 0.7-V Rail With an Adjustable Window Watchdog Timing

A typical application for the TPS3850H01Q1 is shown in 88-12.



Copyright © 2016, Texas Instruments Incorporated

图 8-12. Monitoring Supply Voltage and Watchdog Supervision of a Microcontroller

#### 8.2.2.1 Design Requirements

| PARAMETER                                  | DESIGN REQUIREMENT                                                                 | DESIGN RESULT                                                                                                                              |  |  |  |
|--------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Reset delay                                | Minimum RESET delay of 150 ms                                                      | Minimum RESET delay of 170 ms                                                                                                              |  |  |  |
| Watchdog disable for initialization period | Watchdog must remain disabled for 7 seconds until logic enables the watchdog timer | 7.21 seconds (typ)                                                                                                                         |  |  |  |
| Watchdog window                            | 250 ms, maximum                                                                    | $t_{WDL(max)}$ = 135 ms, $t_{WDU(min)}$ = 181 ms                                                                                           |  |  |  |
| Output logic voltage                       | 3.3-V CMOS                                                                         | 3.3-V CMOS                                                                                                                                 |  |  |  |
|                                            |                                                                                    | V <sub>ITN (max)</sub> 0.667 V ( - 4.7%)                                                                                                   |  |  |  |
| Monitored rail                             | 0.7 V, with 7% threshold                                                           | V <sub>ITN (typ)</sub> 0.65 V ( - 6.6%)                                                                                                    |  |  |  |
|                                            |                                                                                    | V <sub>ITN (min)</sub> 0.641 V ( - 8.5%)                                                                                                   |  |  |  |
| Maximum device current consumption         | 50 μΑ                                                                              | 10 $\mu A$ of current consumption typical, worst-case of 52 $\mu$ A when $\overline{WDO}$ or $\overline{RESET}$ is asserted <sup>(1)</sup> |  |  |  |

<sup>(1)</sup> Only includes the current consumption of the TPS3850-Q1.

## 8.2.2.2 Detailed Design Procedure

#### 8.2.2.2.1 Meeting the Minimum Reset Delay

The design goal for the RESET delay time can be achieved by either using an external capacitor or the CRST pin can be left unconnected. To minimize component count, the CRST pin is left unconnected. For CRST = NC, the minimum delay is 170 ms, which is greater than the minimum required RESET delay of 150 ms.

## 8.2.2.2.2 Setting the Window Watchdog

As illustrated in 图 8-2, there are three options for setting the window watchdog. The design specifications in this application require the programmable timing option (external capacitor connected to CWD). When a capacitor is connected to the CWD pin, the window is governed by 方程式 13. 方程式 13 is only valid for ideal capacitors, any temperature or voltage derating must be accounted for separately.

$$C_{CWD}\left(\mu F\right) = \frac{t_{WDU} - 0.055}{77.4} = \frac{0.25 - 0.055}{77.4} = 0.0025 \ \mu F \tag{13}$$

Copyright © 2021 Texas Instruments Incorporated

Submit Document Feedback

The nearest standard capacitor value to 2.5 nF is 2.2 nF. Selecting 2.2 nF for the C<sub>CWD</sub> capacitor gives the following minimum and maximum timing parameters:

$$t_{WDU(MIN)} = 0.905 \times t_{WDU(TYP)} = 0.905 \times \left(77.4 \times 2.2 \times 10^{-3} + 0.055\right) = 203.88 \text{ ms} \tag{14}$$

$$t_{WDL(MAX)} = 0.5 \times t_{WDU(MAX)} = 0.5 \times \left[1.05 \times \left(77.4 \times 2.2 \times 10^{-3} + 0.055\right)\right] = 118 \text{ ms} \tag{15}$$

Capacitor tolerance also influences  $t_{WDU(MIN)}$  and  $t_{WDL(MAX)}$ . Select a ceramic COG dielectric capacitor for high accuracy. For 2.2 nF, COG capacitors are readily available with a 5% tolerance, resulting in a 5% decrease in  $t_{WDU(MIN)}$  and a 5% increase in  $t_{WDL(MAX)}$ , giving 181 ms and 135 ms, respectively. A falling edge must be issued within this window.

#### 8.2.2.2.3 Watchdog Disabled During the Initialization Period

The watchdog is often needed to be disabled during startup to allow for an initialization period. When the initialization period is over, the watchdog timer is turned back on to allow the microcontroller to be monitored by the TPS3850-Q1. To achieve this setup, SET0 must start at VDD and SET1 must start at GND. In this design, SET0 is simply tied to VDD and SET1 is controlled by a TPS3890-Q1 supervisor. In this application, the TPS3890-Q1 was chosen to monitor  $V_{DD}$  as well, which means that RESET on the TPS3890-Q1 stays low until  $V_{DD}$  rises above  $V_{ITN}$ . When  $V_{DD}$  comes up, the delay time can be adjusted through the CT capacitor on the TPS3890-Q1. With this approach, the RESET delay can be adjusted from a minimum of 25  $\mu$ s to a maximum of 30 seconds. For this design, a minimum delay of 7 seconds is needed until the watchdog timer is enabled. The CT capacitor calculation (see the TPS3890-Q1 data sheet) yields an ideal capacitance of 6.59  $\mu$ F, giving a closest standard ceramic capacitor value of 6.8  $\mu$ F. When connecting a 6.8- $\mu$ F capacitor from CT to GND, the typical delay time is 7.21 seconds. 8 8-13 illustrates the typical startup waveform for this circuit when the watchdog input is off. 8 8-13 illustrates that when the watchdog is disabled, the  $\overline{WDO}$  output remains high. See the TPS3890-Q1 data sheet for detailed information on the TPS3890-Q1.

#### 8.2.2.2.4 Calculating the Sense Resistor

There are three key specifications to keep in mind when calculating the resistor divider values ( $R_1$  and  $R_2$ , see 图 7-4 or 图 8-3): voltage threshold ( $V_{IT(ADJ)}$ ), resistor tolerance, and the SENSE pin current ( $I_{SENSE}$ ). To ensure that no accuracy is lost because of  $I_{SENSE}$ , the current through the resistor divider must be 100 times greater than  $I_{SENSE}$ . Starting with  $R_2$  = 80.6 k $\Omega$  provides a 5- $\mu$ A resistor divider current when  $V_{SENSE}$  = 0.4 V. To calculate the nominal resistor values, use  $\hbar$ R $\chi$ 16:

$$V_{ITN} = V_{IT(ADJ)} + R_1 \frac{V_{IT(ADJ)}}{R_2}$$
(16)

where

- V<sub>ITN</sub> is the monitored falling threshold voltage and
- V<sub>IT(ADJ)</sub> is the threshold voltage on the SENSE pin

Solving 方程式 16 for  $R_1$  gives the nearest 1% resistor of 51.1 k $\Omega$ . Now, plug  $R_1$  back into 方程式 16 to get the monitored threshold. With these resistor values, the nominal threshold is 0.65 V or 6.6%.

To calculate the minimum and maximum threshold variation including the tolerances of the resistors, threshold voltage, and sense current, use 方程式 17 and 方程式 18.

$$V_{ITN(min)} = V_{IT(ADJ)min} + R_{1(min)} \left( \frac{V_{IT(ADJ)min}}{R_{2(max)}} + I_{SENSE(min)} \right) = 0.641 \text{ V}$$

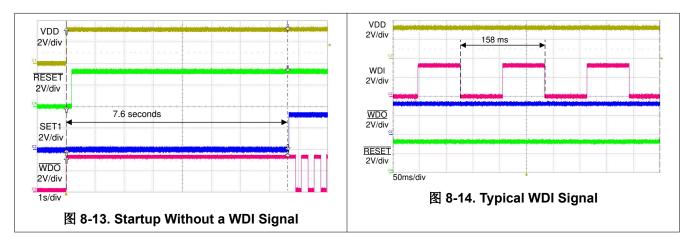
$$(17)$$

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated



$$V_{ITN(max)} = V_{IT(ADJ)max} + R_{1(max)} \left( \frac{V_{IT(ADJ)max}}{R_{2(min)}} + I_{SENSE(max)} \right) = 0.667 \text{ V}$$


$$(18)$$

#### where

- ullet  $V_{\text{ITN}}$  is the falling monitored threshold voltage
- $V_{\text{IT}(\text{ADJ})}$  is the sense voltage threshold and
- I<sub>SENSE</sub> is the sense pin current

The calculated tolerance on  $R_1$  and  $R_2$  is 1%.

## 8.2.2.3 Application Curves

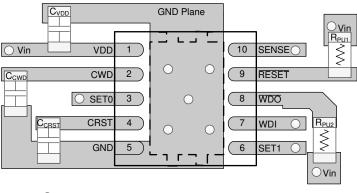


## 9 Power Supply Recommendations

This device is designed to operate from an input supply with a voltage range between 1.6 V and 6.5 V. An input supply capacitor is not required for this device; however, if the input supply is noisy, then good analog practice is to place a 0.1-µF capacitor between the VDD pin and the GND pin.

Copyright © 2021 Texas Instruments Incorporated

Submit Document Feedback


## 10 Layout

## 10.1 Layout Guidelines

Make sure that the connection to the VDD pin is low impedance. Good analog design practice recommends placing a 0.1-µF ceramic capacitor as near as possible to the VDD pin. If a capacitor is not connected to the CRST pin, then minimize parasitic capacitance on this pin so the RESET delay time is not adversely affected.

- Make sure that the connection to the VDD pin is low impedance. Good analog design practice is to place a 0.1-µF ceramic capacitor as near as possible to the VDD pin.
- If a C<sub>CRST</sub> capacitor or pullup resistor is used, place these components as close as possible to the CRST pin. If the CRST pin is left unconnected, make sure to minimize the amount of parasitic capacitance on the pin.
- If a C<sub>CWD</sub> capacitor or pullup resistor is used, place these components as close as possible to the CWD pin. If the CWD pin is left unconnected, make sure to minimize the amount of parasitic capacitance on the pin.
- Place the pullup resistors on RESET and WDO as close to the pin as possible.

## 10.2 Layout Example



O Denotes a via.

图 10-1. Typical Layout for the TPS3850-Q1

Product Folder Links: TPS3850-Q1

## 11 Device and Documentation Support

## 11.1 Device Support

## 11.1.1 Development Support

#### 11.1.1.1 Evaluation Module

The TPS3850EVM-781 Evaluation Module can be used to evaluate this part.

## 11.1.2 Device Nomenclature

表 11-1. Device Nomenclature

| DESCRIPTION                                                        | NOMENCLATURE | VALUE                                                   |
|--------------------------------------------------------------------|--------------|---------------------------------------------------------|
| TPS3850 (high-accuracy supervisor with window watchdog)            | _            | _                                                       |
| X                                                                  | G            | V <sub>IT+(OV)</sub> = 4%; V <sub>IT - (UV)</sub> = -4% |
| (nominal thresholds as a percent of the nominal monitored voltage) | Н            | V <sub>IT+(OV)</sub> = 7%; V <sub>IT - (UV)</sub> = -7% |
|                                                                    | 01           | 0.4 V                                                   |
|                                                                    | 09           | 0.9 V                                                   |
|                                                                    | 115          | 1.15 V                                                  |
|                                                                    | 12           | 1.2 V                                                   |
| yy(y) (nominal monitored voltage option)                           | 18           | 1.8 V                                                   |
| (eaee. ve.lege epite)                                              | 25           | 2.5 V                                                   |
|                                                                    | 30           | 3.0 V                                                   |
|                                                                    | 33           | 3.3 V                                                   |
|                                                                    | 50           | 5.0 V                                                   |

## 11.2 Documentation Support

#### 11.2.1 Related Documentation

For related documentation see the following:

- •
- TPS3890-Q1 Low Quiescent Current, 1% Accurate Supervisor with Programmable Delay
- · Optimizing Resistor Dividers at a Comparator Input
- TPS3850EVM-781 Evaluation Module

## 11.3 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

## 11.4 支持资源

TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。



#### 11.5 Trademarks

TI E2E<sup>™</sup> is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

## 11.6 Electrostatic Discharge Caution



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

## 11.7 术语表

TI 术语表 本术语表列出并解释了术语、首字母缩略词和定义。

## 12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: TPS3850-Q1

## 重要声明和免责声明

TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款 (https://www.ti.com/legal/termsofsale.html) 或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021,德州仪器 (TI) 公司 www.ti.com 6-Dec-2021

## **PACKAGING INFORMATION**

| Orderable Device  | Status (1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan     | Lead finish/<br>Ball material | MSL Peak Temp       | Op Temp (°C) | Device Marking<br>(4/5) | Samples |
|-------------------|------------|--------------|--------------------|------|----------------|--------------|-------------------------------|---------------------|--------------|-------------------------|---------|
| TPS3850G09QDRCRQ1 | ACTIVE     | VSON         | DRC                | 10   | 3000           | RoHS & Green | NIPDAU   SN                   | Level-2-260C-1 YEAR | -40 to 125   | 850BB                   | Samples |
| TPS3850G12QDRCRQ1 | ACTIVE     | VSON         | DRC                | 10   | 3000           | RoHS & Green | NIPDAU   SN                   | Level-2-260C-1 YEAR | -40 to 125   | 850CB                   | Samples |
| TPS3850G18QDRCRQ1 | ACTIVE     | VSON         | DRC                | 10   | 3000           | RoHS & Green | NIPDAU   SN                   | Level-2-260C-1 YEAR | -40 to 125   | 850DB                   | Samples |
| TPS3850G25QDRCRQ1 | ACTIVE     | VSON         | DRC                | 10   | 3000           | RoHS & Green | NIPDAU   SN                   | Level-2-260C-1 YEAR | -40 to 125   | 850EB                   | Samples |
| TPS3850G30QDRCRQ1 | ACTIVE     | VSON         | DRC                | 10   | 3000           | RoHS & Green | NIPDAU   SN                   | Level-2-260C-1 YEAR | -40 to 125   | 850FB                   | Samples |
| TPS3850G33QDRCRQ1 | ACTIVE     | VSON         | DRC                | 10   | 3000           | RoHS & Green | NIPDAU   SN                   | Level-2-260C-1 YEAR | -40 to 125   | 850GB                   | Samples |
| TPS3850G50QDRCRQ1 | ACTIVE     | VSON         | DRC                | 10   | 3000           | RoHS & Green | NIPDAU   SN                   | Level-2-260C-1 YEAR | -40 to 125   | 850HB                   | Samples |
| TPS3850H01QDRCRQ1 | ACTIVE     | VSON         | DRC                | 10   | 3000           | RoHS & Green | NIPDAU   SN                   | Level-2-260C-1 YEAR | -40 to 125   | (850AA, 850AB)          | Samples |
| TPS3850H09QDRCRQ1 | ACTIVE     | VSON         | DRC                | 10   | 3000           | RoHS & Green | NIPDAU   SN                   | Level-2-260C-1 YEAR | -40 to 125   | 850JB                   | Samples |
| TPS3850H12QDRCRQ1 | ACTIVE     | VSON         | DRC                | 10   | 3000           | RoHS & Green | NIPDAU   SN                   | Level-2-260C-1 YEAR | -40 to 125   | 850KB                   | Samples |
| TPS3850H18QDRCRQ1 | ACTIVE     | VSON         | DRC                | 10   | 3000           | RoHS & Green | NIPDAU   SN                   | Level-2-260C-1 YEAR | -40 to 125   | 850LB                   | Samples |
| TPS3850H25QDRCRQ1 | ACTIVE     | VSON         | DRC                | 10   | 3000           | RoHS & Green | NIPDAU   SN                   | Level-2-260C-1 YEAR | -40 to 125   | 850MB                   | Samples |
| TPS3850H30QDRCRQ1 | ACTIVE     | VSON         | DRC                | 10   | 3000           | RoHS & Green | NIPDAU   SN                   | Level-2-260C-1 YEAR | -40 to 125   | 850NB                   | Samples |
| TPS3850H33QDRCRQ1 | ACTIVE     | VSON         | DRC                | 10   | 3000           | RoHS & Green | NIPDAU   SN                   | Level-2-260C-1 YEAR | -40 to 125   | 850PB                   | Samples |
| TPS3850H50QDRCRQ1 | ACTIVE     | VSON         | DRC                | 10   | 3000           | RoHS & Green | NIPDAU   SN                   | Level-2-260C-1 YEAR | -40 to 125   | 850RB                   | Samples |

<sup>(1)</sup> The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE**: TI has discontinued the production of the device.

## PACKAGE OPTION ADDENDUM

www.ti.com 6-Dec-2021

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

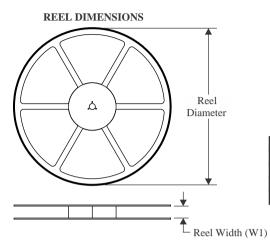
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

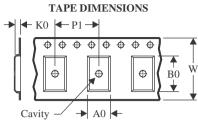
**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### OTHER QUALIFIED VERSIONS OF TPS3850-Q1:

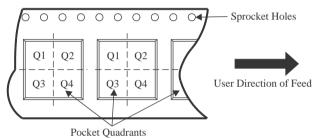
Catalog: TPS3850


NOTE: Qualified Version Definitions:


Catalog - TI's standard catalog product



www.ti.com 3-Jun-2022

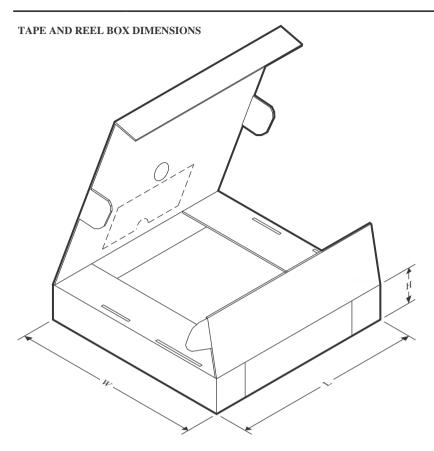

## TAPE AND REEL INFORMATION





| A0 | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| В0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE




#### \*All dimensions are nominal

| Device            | Package<br>Type | Package<br>Drawing | Pins | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-------------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| TPS3850G09QDRCRQ1 | VSON            | DRC                | 10   | 3000 | 330.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |
| TPS3850G12QDRCRQ1 | VSON            | DRC                | 10   | 3000 | 330.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |
| TPS3850G18QDRCRQ1 | VSON            | DRC                | 10   | 3000 | 330.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |
| TPS3850G25QDRCRQ1 | VSON            | DRC                | 10   | 3000 | 330.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |
| TPS3850G30QDRCRQ1 | VSON            | DRC                | 10   | 3000 | 330.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |
| TPS3850G33QDRCRQ1 | VSON            | DRC                | 10   | 3000 | 330.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |
| TPS3850G50QDRCRQ1 | VSON            | DRC                | 10   | 3000 | 330.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |
| TPS3850H01QDRCRQ1 | VSON            | DRC                | 10   | 3000 | 330.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |
| TPS3850H09QDRCRQ1 | VSON            | DRC                | 10   | 3000 | 330.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |
| TPS3850H12QDRCRQ1 | VSON            | DRC                | 10   | 3000 | 330.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |
| TPS3850H18QDRCRQ1 | VSON            | DRC                | 10   | 3000 | 330.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |
| TPS3850H25QDRCRQ1 | VSON            | DRC                | 10   | 3000 | 330.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |
| TPS3850H30QDRCRQ1 | VSON            | DRC                | 10   | 3000 | 330.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |
| TPS3850H33QDRCRQ1 | VSON            | DRC                | 10   | 3000 | 330.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |
| TPS3850H50QDRCRQ1 | VSON            | DRC                | 10   | 3000 | 330.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |



www.ti.com 3-Jun-2022



\*All dimensions are nominal

| Device            | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-------------------|--------------|-----------------|------|------|-------------|------------|-------------|
| TPS3850G09QDRCRQ1 | VSON         | DRC             | 10   | 3000 | 367.0       | 367.0      | 35.0        |
| TPS3850G12QDRCRQ1 | VSON         | DRC             | 10   | 3000 | 367.0       | 367.0      | 35.0        |
| TPS3850G18QDRCRQ1 | VSON         | DRC             | 10   | 3000 | 367.0       | 367.0      | 35.0        |
| TPS3850G25QDRCRQ1 | VSON         | DRC             | 10   | 3000 | 367.0       | 367.0      | 35.0        |
| TPS3850G30QDRCRQ1 | VSON         | DRC             | 10   | 3000 | 367.0       | 367.0      | 35.0        |
| TPS3850G33QDRCRQ1 | VSON         | DRC             | 10   | 3000 | 367.0       | 367.0      | 35.0        |
| TPS3850G50QDRCRQ1 | VSON         | DRC             | 10   | 3000 | 367.0       | 367.0      | 35.0        |
| TPS3850H01QDRCRQ1 | VSON         | DRC             | 10   | 3000 | 367.0       | 367.0      | 35.0        |
| TPS3850H09QDRCRQ1 | VSON         | DRC             | 10   | 3000 | 367.0       | 367.0      | 35.0        |
| TPS3850H12QDRCRQ1 | VSON         | DRC             | 10   | 3000 | 367.0       | 367.0      | 35.0        |
| TPS3850H18QDRCRQ1 | VSON         | DRC             | 10   | 3000 | 367.0       | 367.0      | 35.0        |
| TPS3850H25QDRCRQ1 | VSON         | DRC             | 10   | 3000 | 367.0       | 367.0      | 35.0        |
| TPS3850H30QDRCRQ1 | VSON         | DRC             | 10   | 3000 | 367.0       | 367.0      | 35.0        |
| TPS3850H33QDRCRQ1 | VSON         | DRC             | 10   | 3000 | 367.0       | 367.0      | 35.0        |
| TPS3850H50QDRCRQ1 | VSON         | DRC             | 10   | 3000 | 367.0       | 367.0      | 35.0        |

## 重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Supervisory Circuits category:

Click to view products by Texas Instruments manufacturer:

Other Similar products are found below:

CAT853STBI-T3 RT9818C-27GU3 DS1232L NCV302HSN45T1G STM6710FWB7F PT7M6127NLTA3EX XC6118C25AGR-G
ISL88011IH526Z-TK ISL88013IH529Z-TK ISL88705IP846Z ISL88706IP831Z ISL88708IB844Z ISL88708IP831Z TCM811MERCTR
X40420S14-A X40421S14-C X40430S14-A X40430S14I-A X40430S14I-B X40431S14-A X40431S14-B X40431S14-C X40431S14I-A
X40431S14I-B X40431S14I-C X4043P-2.7 X4043PI-2.7 X4043S8-2.7T1 X4043S8IZ-2.7 X4043S8IZT1 X4043S8T1 X4045P X4045PI
X4045PI-2.7 X4045S8-2.7T1 X4045S8IZ X4045S8T1 X4163P X4163P-2.7 X4163PI X4163PI-2.7 X4163S8 X4165P X4165P-2.7
X4165PI X4165PI-2.7 X4165S8I-2.7 X4283S8I X4323S8-2.7 X4323S8I-2.7