- Low Differential Gain and Phase
($\mathrm{D}_{\mathrm{G}}=0.2 \%, \mathrm{D}_{\mathrm{P}}=0.1^{\circ} \mathrm{Typ}$)
- Wide Bandwidth ($\mathrm{B}_{\mathrm{W}}=500 \mathrm{MHz}$ Typ)
- Low Crosstalk (X $\mathrm{X}_{\text {taLK }}=-80 \mathrm{~dB}$ Typ)
- Bidirectional Data Flow, With Near-Zero Propagation Delay
- Low and Flat ON-State Resistance ($r_{\text {on }}=3 \Omega$ Typ, $r_{\text {on(flat) }}=1 \Omega$ Typ)
- V_{cc} Operating Range From 3 V to 3.6 V
- $I_{\text {off }}$ Supports Partial-Power-Down Mode Operation
- Data and Control Inputs Provide Undershoot Clamp Diode
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
- 2000-V Human-Body Model
(A114-B, Class II)
- 1000-V Charged-Device Model (C101)
- Suitable for Both RGB and Composite Video Switching

description/ordering information

The TI video switch TS3V340 is a 4-bit 1-of-2

D, DBQ, DGV, OR PW PACKAGE
(TOP VIEW)

RGY PACKAGE (TOP VIEW)
 multiplexer/demultiplexer with a single switch-enable ($\overline{\mathrm{EN}}$) input. When $\overline{\mathrm{EN}}$ is low, the switch is enabled, and the D port is connected to the S port. When EN is high, the switch is disabled, and the high-impedance state exists between the D and S ports. The select (IN) input controls the data path of the multiplexer/demultiplexer.

Low differential gain and phase makes this switch ideal for composite and RGB video applications. The device has a wide bandwidth and low crosstalk, making it suitable for high-frequency applications as well.

ORDERING INFORMATION

T_{A}	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	QFN - RGY	Tape and reel	TS3V340RGYR	TF340
	SOIC - D	Tube	TS3V340D	TS3V340
		Tape and reel	TS3V340DR	
	SSOP (QSOP) - DBQ	Tape and reel	TS3V340DBQR	TF340
	TSSOP - PW	Tube	TS3V340PW	TF340
		Tape and reel	TS3V340PWR	
	TVSOP - DGV	Tape and reel	TS3V340DGVR	TF340

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

description/ordering information (continued)

This device is fully specified for partial-power-down applications using $I_{\text {off. }}$. The $I_{\text {off }}$ feature ensures that damaging current will not backflow through the device when it is powered down. This switch maintains isolation during power off.
To ensure the high-impedance state during power up or power down, $\overline{E N}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

FUNCTION TABLE

INPUTS		INPUT/OUTPUT	FUNCTION
$\overline{\text { EN }}$	IN	D	
L	L	S1	D port $=$ S1 port
L	H	S2	D port $=$ S2 port
H	X	Z	Disconnect

PIN DESCRIPTION

PIN NAME	DESCRIPTION
S1, S2	Analog video I/Os
D	Analog video I/Os
IN	Select input
$\overline{E N}$	Switch-enable input

PARAMETER DEFINITIONS

PARAMETER	DESCRIPTION
RON	Resistance between the D and S ports, with the switch in the ON state
IOZ	Output leakage current measured at the D and S ports, with the switch in the OFF state
IOS	Short-circuit current measured at the I/O pins
$\mathrm{V}_{\text {IN }}$	Voltage at IN
$\mathrm{V}_{\text {EN }}$	Voltage at EN
CIN	Capacitance at the control (EN, IN) inputs
COFF	Capacitance at the analog I/O port when the switch is OFF
$\mathrm{CON}^{\text {O}}$	Capacitance at the analog I/O port when the switch is ON
V_{IH}	Minimum input voltage for logic high for the control ($\overline{\mathrm{EN}}, \mathrm{IN}$) inputs
V_{IL}	Maximum input voltage for logic low for the control ($\overline{\mathrm{EN}}, \mathrm{IN}$) inputs
V_{IK}	I/O and control ($\overline{\mathrm{EN}}, \mathrm{IN}$) inputs diode clamp voltage
V_{1}	Voltage applied to the D or S pins when D or S is the switch input
V_{O}	Voltage applied to the D or S pins when D or S is the switch output
IIH	Input high leakage current of the control ($\overline{\mathrm{EN}}, \mathrm{IN}$) inputs
IIL	Input low leakage current of the control ($\overline{\mathrm{EN}}, \mathrm{IN}$) inputs
1	Current into the D or S pins when D or S is the switch input
10	Current into the D or S pins when D or S is the switch output
1 off	Output leakage current measured at the D or S ports, with $\mathrm{V}_{\mathrm{CC}}=0$
${ }_{\text {tpds }}$	Propagation delay measured between $\mathrm{S} 1_{\mathrm{x}}$ and $\mathrm{S} 2_{\mathrm{x}}$ under the specified conditions, measured from 50% of the digital input to 90% of the analog output
BW	Frequency response of the switch in the ON state, measured at -3 dB
X TALK	Unwanted signal coupled from channel to channel. Measured in -dB. $\mathrm{X}_{\text {TALK }}=20 \log \mathrm{~V}_{\mathrm{O}} / \mathrm{V}_{\text {I }}$. This is a nonadjacent crosstalk.
OIRR	OFF isolation is the resistance (measured in -dB) between the input and output with the switch OFF.
D_{G}	Magnitude variation between analog input and output pins when the switch is ON and the DC offset of composite video signal varies at the analog input pin. In NTSC standard, the frequency of the video signal is 3.58 MHz , and DC offset is from 0 to 0.714 V .
D_{P}	Phase variation between analog input and output pins when the switch is ON and the DC offset of composite video signal varies at the analog input pin. In NTSC standard, the frequency of the video signal is 3.58 MHz , and DC offset is from 0 to 0.714 V .
ICC	Static power-supply current
ICCD	Variation of ICC for a change in frequency in the control ($\overline{\mathrm{EN}}, \mathrm{IN}$) inputs
${ }^{\text {I }}$ CC	Increase in supply current for each control input that is at the specified voltage level, rather than V_{CC} or GND

functional diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC}-0.5 V to 4.6 VControl input voltage range, $\mathrm{V}_{\text {IN }}$ (see Notes 1 and 2) -0.5 V to 7 V
Switch I/O voltage range, $\mathrm{V}_{\mathrm{I} / \mathrm{O}}$ (see Notes 1, 2, and 3) -0.5 V to 7 V
Control input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{IN}}<0\right)$ $-50 \mathrm{~mA}$
I/O port clamp current, $\mathrm{I}_{\text {I/OK }}\left(\mathrm{V}_{\mathrm{I} / \mathrm{O}}<0\right)$ $-50 \mathrm{~mA}$
ON-state switch current, $\mathrm{I}_{\mathrm{I} / \mathrm{O}}$ (see Note 4) $\pm 128 \mathrm{~mA}$
Continuous current through V_{CC} or GND terminals $\pm 100 \mathrm{~mA}$
Package thermal impedance, $\theta_{J A}$ (see Note 5): D package $73^{\circ} \mathrm{C} / \mathrm{W}$
(see Note 5): DBQ package $90^{\circ} \mathrm{C} / \mathrm{W}$
(see Note 5): DGV package $120^{\circ} \mathrm{C} / \mathrm{W}$
(see Note 5): PW package $108^{\circ} \mathrm{C} / \mathrm{W}$
(see Note 6): RGY package $39^{\circ} \mathrm{C} / \mathrm{W}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltages are with respect to ground, unless otherwise specified.
2. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
3. V_{I} and V_{O} are used to denote specific conditions for $\mathrm{V}_{\mathrm{I} / \mathrm{O}}$.
4. I_{I} and I_{O} are used to denote specific conditions for $\mathrm{I}_{\mathrm{I}} / \mathrm{O}$.
5. The package thermal impedance is calculated in accordance with JESD 51-7.
6. The package thermal impedance is calculated in accordance with JESD 51-5.
recommended operating conditions (see Note 7)

		MIN	MAX
V_{CC}	UnIT		
V_{IH}	High-level control input voltage $(\overline{\mathrm{EN}}, \mathrm{IN})$	3	3.6
$\mathrm{~V}_{\mathrm{IL}}$	Low-level control input voltage $(\overline{\mathrm{EN}}, \mathrm{IN})$	2	5.5
$\mathrm{~V}_{\mathrm{O}}$	Analog I/O voltage	0	0.8
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	0	5.5

NOTE 7: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (unless otherwise noted) ${ }^{\dagger}$

PARAMETER		TEST CONDITIONS				MIN	TYPキ	MAX	UNIT	
$\mathrm{V}_{\text {IK }}$	$\overline{\mathrm{EN}}, \mathrm{IN}$	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{I}} \mathrm{N}=-18 \mathrm{~mA}$					-1.8	V	
$\mathrm{IIH}^{\text {H }}$	EN, IN	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {EN }}=5$					± 1	$\mu \mathrm{A}$	
IIL	EN, IN	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {EN }}=\mathrm{G}$					± 1	$\mu \mathrm{A}$	
$\mathrm{l}^{\text {Oz }}$		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0$ to 5.5 V ,	$\mathrm{V}_{1}=0$,	Switch OFF			± 1	$\mu \mathrm{A}$	
los ${ }^{\text {II }}$		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}_{\mathrm{CC}}$,	$\mathrm{V}_{1}=0$,	Switch ON	50			mA	
$l_{\text {off }}$		$\mathrm{V}_{C C}=0$,	$\mathrm{V}_{\mathrm{O}}=0$ to 5.5 V ,	$\mathrm{V}_{\mathrm{I}}=0$				1	$\mu \mathrm{A}$	
$I_{\text {cc }}$		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{I}} \mathrm{O}=0$,	Switch ON or OFF			0.7	1.5	mA	
$\Delta I \mathrm{CC}$ $\overline{\mathrm{EN}}, \mathrm{IN}$		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	One input at 3 V ,	Other inputs at V_{CC} or GND				30	$\mu \mathrm{A}$	
ICCD		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} \text {, }$ D and S ports open,	$V_{E N}=G N D$, $V_{\text {IN }}$ input switching 50% duty cycle					0.35	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	
CIN	EN, IN	$\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\mathrm{EN}}=5.5 \mathrm{~V}$,	3.3 V or 0,	$\mathrm{f}=1 \mathrm{MHz}$			2.5	3.5	pF	
Coff	D port	$\mathrm{V}=5.5 \mathrm{~V}, 3.3 \mathrm{~V}$, or $0, f=1 \mathrm{MHz}$,		Outputs open,	Switch OFF		5.5	7	pF	
	S port					3.5	5			
CON		$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}, 3.3 \mathrm{~V}$, or 0,	$\mathrm{f}=1 \mathrm{MHz}$,		Outputs open,	Switch ON		10.5	14	pF
$\mathrm{r}_{\text {on }}{ }^{\text {\# }}$		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=1 \mathrm{~V}$,	$\mathrm{I}=13 \mathrm{~mA}$			3	6	Ω	
		$\mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}$,	$\mathrm{I} \mathrm{O}=26 \mathrm{~mA}$			3	6			
$r_{\text {on(flat) }}{ }^{1 /}$			$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{l}}=0$ to V_{CC},	$\mathrm{I} \mathrm{O}=26 \mathrm{~mA}$			1		Ω

$\dagger \mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{O}}, \mathrm{I}_{\mathrm{l}}$, and I_{O} refer to I / O pins.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ (unless otherwise noted), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ For I/O ports, the parameter IOZ includes the input leakage current.
IT The IOS test is applicable to only one ON channel at a time. The duration of this test is less than 1 s .
\# Measured by the voltage drop between the D and S terminals at the indicated current through the switch. ON-state resistance is determined by the lower of the voltages of the two (D or S) terminals.
$\| r_{\text {on(flat) }}$ is the difference of $r_{o n}$ in a given channel at specified voltages.
switching characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$ (unless otherwise noted) (see Figures 6 and 7)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	TYP
$\mathrm{t}_{\text {pd }}(\mathrm{s})$	IN	D	MAX	UNIT
tON	IN or $\overline{\mathrm{EN}}$	S	2	5
tOFF	IN or $\overline{\mathrm{EN}}$	S	4	7

dynamic characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS				TYPキ	UNIT
$\mathrm{D}_{\mathrm{G}}{ }^{\text {² }}$	$\mathrm{R}_{\mathrm{L}}=150 \Omega$,	$\mathrm{f}=3.58 \mathrm{MHz}$,	See Figure 7		0.2	\%
DP*	$\mathrm{R}_{\mathrm{L}}=150 \Omega$,	$\mathrm{f}=3.58 \mathrm{MHz}$,	See Figure 7		0.1	-
BW	$\mathrm{R}_{\mathrm{L}}=150 \Omega$,	See Figure 8			500	MHz
X TALK	$\mathrm{R}_{\mathrm{L}}=150 \Omega$,	$\mathrm{f}=10 \mathrm{MHz}$,	$\mathrm{R}_{\mathbf{I N}}=10 \Omega$,	See Figure 9	-80	dB
OIRR	$\mathrm{R}_{\mathrm{L}}=150 \Omega$,	$\mathrm{f}=10 \mathrm{MHz}$,	See Figure 10		-60	dB

\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ (unless otherwise noted), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{2} \mathrm{D}_{\mathrm{G}}$ and DP_{P} are expressed in absolute magnitude.

A Gain - 3 dB at 627 MHz

- Phase at $-3-\mathrm{dB}$ Frequency, -47 Deg

Figure 1. Gain/Phase vs Frequency

Figure 2. Differential Gain/Phase vs $\mathrm{V}_{\text {BIAS }}$

A OFF Isolation at $10 \mathrm{MHz},-56 \mathrm{~dB}$

- Phase at $10 \mathrm{MHz}, 90$ Deg

Figure 3. OFF Isolation vs Frequency

Figure 4. Crosstalk vs Frequency

Figure 5. Output Voltage/ON-State Resistance vs Input Voltage

PARAMETER MEASUREMENT INFORMATION

TEST	V_{CC}	R_{L}	C_{L}	$\mathrm{V}_{\mathrm{S} 1}$	$\mathrm{~V}_{\mathbf{S} 2}$
$\mathrm{t}_{\mathrm{pds}}$	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	75	20 pF	GND	V_{CC}
	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	75	20 pF	V_{CC}	GND

VOLTAGE WAVEFORMS
$t_{p d(s)}$ TIMES

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. The outputs are measured one at a time, with one transition per measurement.

Figure 6. Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

TEST	V_{CC}	R_{L}	C_{L}	$\mathrm{V}_{\mathbf{I}}$
toN/tOFF	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	75Ω	20 pF	V_{CC}

VOLTAGE WAVEFORMS ton AND toff TIMES

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. The outputs are measured one at a time, with one transition per measurement.

Figure 7. Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

NOTE: For additional information on measurement method, refer to the TI application report, Measuring Differential Gain and Phase, literature number SLOA040.

Figure 8. Test Circuit for Differential Gain/Phase Measurement
Differential gain and phase is measured at the output of the ON channel. For example, when $\mathrm{V}_{\mathrm{IN}}=0$, $\mathrm{V}_{\mathrm{EN}}=0$, and D_{A} is the input, the output is measured at $\mathrm{S} 1_{\mathrm{A}}$.

HP8753ES setup
Average $=20$
RBW $=300 \mathrm{~Hz}$
ST $=1.381 \mathrm{~s}$
P1 = -7dBM
CW frequency $=3.58 \mathrm{MHz}$
sawtooth waveform generator setup
$\mathrm{V}_{\text {BIAS }}=0$ to 1 V
Frequency $=0.905 \mathrm{~Hz}$

PARAMETER MEASUREMENT INFORMATION

Figure 9. Test Circuit for Frequency Response (B_{W})
The frequency response is measured at the output of the ON channel. For example, when $\mathrm{V}_{\mathrm{IN}}=0, \mathrm{~V}_{\mathrm{EN}}=0$, and D_{A} is the input, the output is measured at $\mathrm{S1}_{\mathrm{A}}$. All unused analog I/O ports are left open.

HP8753ES setup

Average $=4$
RBW $=3 \mathrm{kHz}$
$\mathrm{V}_{\mathrm{BIAS}}=0.35 \mathrm{~V}$
ST $=2 \mathrm{~s}$
$\mathrm{P} 1=0 \mathrm{dBM}$

PARAMETER MEASUREMENT INFORMATION

\dagger A $50-\Omega$ termination resistor is needed for the network analyzer.
Figure 10. Test Circuit for Crosstalk ($\mathrm{X}_{\text {TALK }}$)
The crosstalk is measured at the output of the nonadjacent ON channel. For example, when $\mathrm{V}_{\mathbb{I N}}=0$, $V_{E N}=0$, and D_{A} is the input, the output is measured at $S 1_{B}$. All unused analog input (D) ports and output (S) ports are connected to GND through $10-\Omega$ and $50-\Omega$ pulldown resistors, respectively.

HP8753ES setup

Average $=4$
RBW $=3 \mathrm{kHz}$
$\mathrm{V}_{\text {BIAS }}=0.35 \mathrm{~V}$
ST $=2 \mathrm{~s}$
P1 $=0 \mathrm{dBM}$

PARAMETER MEASUREMENT INFORMATION

\dagger A $50-\Omega$ termination resistor is needed for the network analyzer.
Figure 11. Test Circuit for OFF Isolation (OIRR)
The OFF isolation is measured at the output of the OFF channel. For example, when $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EN}}=0$, and D_{A} is the input, the output is measured at $\mathrm{S1} 1_{\mathrm{A}}$. All unused analog input (D) ports are left open, and output (S) ports are connected to GND through $50-\Omega$ pulldown resistors.

HP8753ES setup
Average $=4$
RBW $=3 \mathrm{kHz}$
$\mathrm{V}_{\text {BIAS }}=0.35 \mathrm{~V}$
ST $=2 \mathrm{~s}$
P1 $=0 \mathrm{dBM}$

Texas

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
TS3V340D	ACTIVE	SOIC	D	16	40	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TS3V340	Samples
TS3V340DBQR	ACTIVE	SSOP	DBQ	16	2500	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TF340	Samples
TS3V340DGVR	ACTIVE	TVSOP	DGV	16	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TF340	Samples
TS3V340DR	ACTIVE	SOIC	D	16	2500	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TS3V340	Samples
TS3V340PW	ACTIVE	TSSOP	PW	16	90	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TF340	Samples
TS3V340PWR	ACTIVE	TSSOP	PW	16	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TF340	Samples
TS3V340RGYR	ACTIVE	VQFN	RGY	16	3000	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TF340	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free"
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	$\begin{gathered} \mathrm{AO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{BO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{KO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} W \\ (\mathrm{~mm}) \end{gathered}$	Pin1 Quadrant
TS3V340DBQR	SSOP	DBQ	16	2500	330.0	12.5	6.4	5.2	2.1	8.0	12.0	Q1
TS3V340DGVR	TVSOP	DGV	16	2000	330.0	12.4	6.8	4.0	1.6	8.0	12.0	Q1
TS3V340DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
TS3V340PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TS3V340RGYR	VQFN	RGY	16	3000	330.0	12.4	3.8	4.3	1.5	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS3V340DBQR	SSOP	DBQ	16	2500	340.5	338.1	20.6
TS3V340DGVR	TVSOP	DGV	16	2000	356.0	356.0	35.0
TS3V340DR	SOIC	D	16	2500	340.5	336.1	32.0
TS3V340PWR	TSSOP	PW	16	2000	356.0	356.0	35.0
TS3V340RGYR	VQFN	RGY	16	3000	356.0	356.0	35.0

TUBE

— B - Alignment groove width
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	$\mathbf{W}(\mathbf{m m})$	T $(\boldsymbol{\mu m})$	$\mathbf{B}(\mathbf{m m})$
TS3V340D	D	SOIC	16	40	507	8	3940	4.32
TS3V340PW	PW	TSSOP	16	90	530	10.2	3600	3.5

D (R-PDSO-G16)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $0.006(0,15)$ each side.
D Body width does not include interlead flash. Interlead flash shall not exceed $0.017(0,43)$ each side.
E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE: 10X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

PIM **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{3 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	3,70	3,70	5,10	5,10	7,90	9,80	11,40
A MIN	3,50	3,50	4,90	4,90	7,70	9,60	11,20

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
D. Falls within JEDEC: $24 / 48$ Pins - MO-153

14/16/20/56 Pins - MO-194

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 inch, per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MO-137, variation AB.

SOLDER MASK DETAILS

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE
BASED ON . 005 INCH [0.127 MM] THICK STENCIL
SCALE:8X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

RGY (R-PVQFN-N16) PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).
For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions

NOTE: All linear dimensions are in millimeters

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http: //www.ti.com>.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Video Switch ICs category:
Click to view products by Texas Instruments manufacturer:

Other Similar products are found below :
PI3HDX621FBE PI3HDMI2410FFE PI3VDP12412NEE EL4342ILZA-T7 ISL59424IRZ ISL59441IAZ ISL59445IRZ ISL59482IRZ HD3SS215RTQR PI3HDMI412ADZBEX HD3SS215IZQER PI3HDX412BDZBEX PI3WVR13412ZHEX PI3WVR13612ZLEX NJM2244M HD3SS215IRTQR NX5DV330DS,118 NJM2244D NJM2246M NJM2279D CBTL06DP213EE,118 FSAV330MTCX
FSAV433MTCX PI3HDX412BDZBE PI3WVR12412ZHEX ISL59446IRZ STMAV340TTR HD3SS212ZQET HD3SS215IRTQT HD3SS215RTQT OPA875ID LMH1251MT/NOPB OPA875IDGKR OPA875IDGKT TMDS251PAGR TMDS261BPAG TMDS341APFC TMDS341APFCR TMDS341PFC TMDS351PAG TMDS351PAGR TMDS361BPAG TMDS442PNP TMDS442PNPR TS3DV20812RHHR TS3DV421DGVR TS3DV621RUAR TS3V330DBQR TS3V330DGVR TS3V330PW

