CRYSTAL SEPECIFICATION

Customer \qquad
Customer P／N

Part Name \qquad 49SMD 10M 20PF 20PPM

Product Description 49SMD－10．000000M－20PF－20PPM

Issue Date
2017．10．20

Hubei TKD Electronic Technology Co．，LTD
湖北泰晶电子科技股份有限公司

APPROVED	DESIGNER
黄祥秒	代伟

SALE：TEL ：0722－3309660 FAX ：0722－3309768
QCD：TEL ：0722－3308231 FAX ：0722－3309768
FAE：TEL ：0755－27328651 FAX ：0755－27328001

								REV.	Description of Revision History	Date	Designer	Checked By
A	New revision	$\underline{2015-11-25}$	$\underline{\text { DaiWei }}$	$\underline{\text { Huangx }}$								

CRYSTAL SEPECIFICATION

1. Description:

Quartz Crystal

2. Nominal Frequency:
10.000000 MHz
3. Oscillation Mode:

Fundamental
4. Cutting Mode:

AT cut
5. Measurement Instrument: S\&A 250B(Measured FL)
6. Electrical Characteristics:
[1]Operation Conditions:

Item	Symbol	MIN.	TYP.	MAX.	Unit	Condition
Operating Temperature Range	Topt	-20		75	${ }^{\circ} \mathrm{C}$	
Storage Temperature Range	Tstg	-40		85	${ }^{\circ} \mathrm{C}$	
Load Capacitance	CL		20		pF	
Drive Level	DL	0.1		100	uW	

[2]Frequency Stability:

Item	Symbol	MIN.	TYP.	MAX.	Unit	Condition
Tolerance	$\mathrm{dF} /$ Fo	-20		20	ppm	Refer to Center Frequency@ $25 \pm 3^{\circ} \mathrm{C}$
Stability Over Temperature	$\mathrm{dF} / F 25$	-30		30	ppm	Refer to Operating Temperature
Aging	dF/F25	-5		5	ppm	Per Year

dF/Fo:Frequency Deviation Refer to Center Frequency
dF/F25:Frequency Deviation Refer to $25^{\circ} \mathrm{C}$ Frequency
[3]Electrical Performance:

Item	Symbol	MIN.	TYP.	MAX.	Unit	Condition
Equivalent Series Resistance	ESR			30	Ω	@Series
Shunt Capacitance	C0			7	pF	
Insulation Resistance	IR	500			M Ω	@DC 100 Volt

7. Marking:Laser
10.00 :Nominal Frequency
8. Outline drawing (unit: mm)

9. Reliability Specification

Test Item	Condition of test			Performance Requirements
Tensile Strength Termination	The unit's lead wire should withstand a tensile force applied to the termination in the direction of its draw-out axis of up to 1000 g maintained as is for $10 \pm 2 \mathrm{~s}$			There should be no abnormalities detected on the unit
Solder ability	The lead is immersed in a $235 \pm 5^{\circ} \mathrm{C}$ solder bath within 2 ± 0.5 seconds.			A new uniform coating of solder shall cover min mun 95% of the surface being immersed.
Vibration	Endurance condition by a frequency sweep shall be made. The entire frequency range from 10 HZ to 50 HZ and return to 10 HZ , shall be transverseb in 1 min . Amplitude(total excursion): 1.5 mm this motion shall be applied for a period of 2 h each of 3 mutually perpendicular axes(a total of 6 h)			(1).Frequency Change: $\pm 5 \mathrm{ppm}$ (2).Resistance: $\pm 15 \%$
Drop	Form 70cm height 3 times on 3cm hard wooden floor			(1).Frequency Change: $\pm 5 \mathrm{ppm}$ (2).Resistance: $\pm 15 \%$
Shock	Peak acceleration: $981 \mathrm{~m} / \mathrm{s}^{2}$ duration of the pulse : 6 ms three successive shocks shall be applied in both direction of 3 mutually perpendicular axes(a total of 18 shocks)			(1).Frequency Change: $\pm 5 \mathrm{ppm}$ (2).Resistance: $\pm 15 \%$
Damp heat	The unit shall be stored at a temperature of $40 \pm 2^{\circ} \mathrm{C}$ with relative humidity of 90% to 95% for 48 h , then it shall be subjected to standard atmospheric conditions for $1 \sim 2 h$ after which measurement shall be made.			(1).Frequency Change: $\pm 5 \mathrm{ppm}$ (2).Resistance: $\pm 15 \%$
Dry heat	The unit shall be stored at a temperature of $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ for 24 h , then it shall be subjected to standard atmospheric conditions for $1 \sim 2 h$ after which measurement shall be made.			(1).Frequency Change: $\pm 5 \mathrm{ppm}$ (2).Resistance: $\pm 15 \%$
Cold	The unit shall be stored at a temperature of $-40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ for 48 h , then it shall be subjected to standard atmospheric conditions for $1 \sim 2 h$ after which measurement shall be made.			(1).Frequency Change: $\pm 5 \mathrm{ppm}$ (2).Resistance: $\pm 15 \%$
Aging	The unit shall be stored at a temperature of $85^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ for 7 d then it shall be subjected to standard atmospheric conditions for $1 \sim 2 h$ after which measurement shall be made.			Refer to verdict specification
Temperature cycling	The unit s cycles, ea standard measurem	all be subjected to 5 succe as show in table below, atmospheric conditions ent shall be made	ssive change of temperature then it shall be subjected to for $1 \sim 2 h$ after which	Refer to verdict specification

Test Item	Condition of test	Performance Requirements
Sealing	The crystal filter unit shall be immersed in a industry alcohol for 5 ± 0.5 minutes then $25 \pm 3^{\circ} \mathrm{C} \quad 1 \sim 2 \mathrm{Hr}$ before testing	Insulation Resistance $>500 \mathrm{M} \Omega$
Resistance to soldering heat	 Reflow soldering cure see the chart. Soldering iron method: Bit temperature: $350^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$ Application time of soldering iron:5s Max	Refer to verdict specification

	HC-49SMD	8045	7050	6035	5032	4025	3225
W	24.00 ± 0.30	16.00 ± 0.05	16.00 ± 0.05	12.00 ± 0.05	12.00 ± 0.05	12.00 ± 0.05	12.00 ± 0.05
E	1.75 ± 0.10						
F	11.5 ± 0.10	7.5 ± 0.10	7.5 ± 0.10	5.5 ± 0.10	5.5 ± 0.10	5.5 ± 0.10	5.5 ± 0.10
T	0.40 ± 0.05	0.35 ± 0.05	0.30 ± 0.05				
P	12.00 ± 0.10	8.00 ± 0.10					
P0	4.00 ± 0.10						
P2	2.00 ± 0.10						
D0	$\pm 1.50+0.10$	\$1.50+0.10	\$1.50+0.10				
D1	$\pm 1.50 \mathrm{MmN}$	\$1.50Mm	\$1.50M	$\pm 1.50 \mathrm{Mm}$	\$1.50Mm	$\pm 1.50 \mathrm{Mm}$	$\pm 1.50 \mathrm{MmN}$
A0	4.60 ± 0.10	4.85 ± 0.10	5.40 ± 0.10	3.90 ± 0.10	3.60 ± 0.10	2.80 ± 0.10	2.85 ± 0.10
k0	4.40 ± 0.10	1.90 ± 0.10	1.80 ± 0.10	1.50 ± 0.10	1.10 ± 0.10	0.90 ± 0.10	0.85 ± 0.10
B0	14.20 ± 0.15	8.60 ± 0.15	7.40 ± 0.10	6.40 ± 0.10	5.40 ± 0.10	4.30 ± 0.10	3.55 ± 0.10
A	\$ 330 ± 1.0	¢ 178 ± 2.0	¢ 178 ± 2.0	$\pm 178 \pm 2.0$	\$ 178 ± 2.0	¢ 178 ± 2.0	¢ 178 ± 2.0
B	2.30 ± 0.20	2.00 ± 0.50					
C	$\pm 13.5 \pm 0.20$	$\pm 13.2 \pm 0.20$					
D	$\pm 21.5 \pm 0.20$	$\pm 20.0 \pm 0.50$					
N	\$ 100.0 ± 0.5	$\pm 60.5 \pm 1.0$					
W1	24.5 ± 0.20	16.5 ± 0.20	16.5 ± 0.20	12.5 ± 0.20	12.5 ± 0.20	12.5 ± 0.20	12.5 ± 0.20
T1	2.30 ± 0.20	1.80 ± 0.20					

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Crystals category:

Click to view products by TKD manufacturer:

Other Similar products are found below :
CS325S24000000ABJT 718-13.2-1 MC405 32.0000K-R3:PURE SN FC-135R 32.7680KF-A3 7A-40.000MAAE-T 7B-27.000MBBK-T FL2000085 9B-15.360MBBK-B 9C-7.680MBBK-T ASH7K-32.768KHZ AT-41.600MAGQ-T BTD1062E05A-513 LFXTAL066198Cutt 9C-14.31818MBBK-T FA-238 50.0000MB30X-K3 FC-12M 32.7680KA-AC3 SSPT7F-9PF20-R FX325BS-38.88EEM1201 LFXTAL065253Cutt LFXTAL066431Cutt XT9S20ANA14M7456 XT9SNLANA16M 646G-24-2 7A-24.576MBBK-T 7B-30.000MBBK-T WX26-32.768K-6PF 9B-14.31818MBBK-B CD1AM 7B-25.000MAAE-T 7A-14.31818MBBK-T 6504-202-1501 6526-202-1501 FA-118T 27.1200MB50P-K0 FC-135R 32.7680KA-A3 ABM12-104-37.400MHZT ABLS-10.000MHZ-D3W-T BTJ112E01E-513 BTJ722K01C-7067 BTL-20-513 TSX-3225 24.0000MF15X-AC TSX-3225 16.0000MF18X-AC BTJ120E02C BTL-12-513 7A-10.000MBBK-T 7A-11.0592MBBK-T ABM12-103-24.000MHZT CS325S25000000ABJT ABM3B-25.000MHZ-B2-X-T FC-135 32.7680KA-A5 FX0800015

