

20V Low Saturation Voltage Stepper Motor Driver

FEATURES

- V_{CC} max=24V, I_O max=1A
- 4V to 20V Operating supply voltage range
- The control system power supply is unnecessary.
- DMOS output transistor adoption
- Upper and lower total R_{ON}<1Ω typical
- The compact package (SSOP10) is adopted.
- Pin compatible with LV8549MC
- Current consumption 0 when standby mode

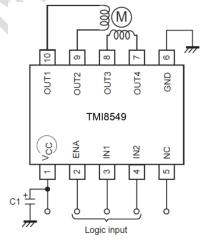
APPLICATIONS

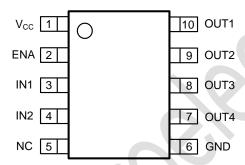
- Refrigerator
- Flatbed Scanner, Document Scanner
- POS Printer, Label Printer
- PoE Point of sales Terminal
- Clothes Dryer
- Vacuum cleaner
- Time Recorder

GENERAL DESCRIPTION

The TMI8549 is a 2-channel output low saturation voltage motor driver IC. It is optimal for motor drive in 12V system products. it can drive a stepper motor.

TYPICAL APPILCATION




Figure 1. Example of application circuit when one stepper motor driving

ABSOLUTE MAXIMUM RATINGS (Note1)

Items	Symbol	Value	Unit
Maximum power supply voltage	V _{CC} max	-0.3~24	V
Output impression voltage	$V_{\text{OUT1}}, V_{\text{OUT2}}, V_{\text{OUT3}}, V_{\text{OUT4}}$	-0.3~24	V
Input impression voltage	V _{IN1} , V _{IN2} , V _{ENA}	-0.3~6	V
GND pin outflow current per channel	I _{GND}	1.0	Α
Allowable Power dissipation	P _D max	1.0	W
Junction Temperature (Note2)	TJ	-40~150	°C
Storage Temperature	T _{STG}	-40~165	°C

PACKAGE/ORDER INFORMATION

SSOP10

Top Mark: T8549/YYXXX (T8549: Device Code, YYXXX: Inside Code)

Part Number	Package	Top mark	Quantity/ Reel
TMI8549	SSOP10	T8549 YYXXX	2500
		11	

TMI8549 devices are Pb-free and RoHS compliant.

PIN FUNCTIONS

Pin	Name	Function
1	V _{CC}	Power-supply voltage pin. The capacitor is connected for stabilization for GND pin.
2	ENA	Motor drive control input pin. When ENA input is "L" level, the device is in stand-by mode. The circuits current can be adjusted to 0A. When ENA input is pulled "H" level from "L" level, the device shifts from the stand-by state to a prescribed output operation mode. For the digital input, range of the "L" level is 0V to 0.4V, range of the "H" level is from 1.5V to 5.5V. PWM can be input. Pull-down resistance $100k\Omega$ is built into in the pin.
3	IN1	Motor drive control input pin. Driving control input pin of OUT1 (10pin) and OUT2 (9pin). PWM can be input. With built-in pull-down $100k\Omega$ resistance.
4	IN2	Motor drive control input pin. Driving control input pin of OUT3 (8pin) and OUT4 (7pin). PWM can be input. With built-in pull-down $100k\Omega$ resistance.
5	NC	No Connection
6	GND	Ground pin.
7	OUT4	OUT4 Driving output pin. The motor coil is connected between this pin and OUT3 (8pin).
8	OUT3	OUT3 Driving output pin. The motor coil is connected between this pin and OUT4 (7pin).
9	OUT2	OUT2 Driving output pin. The motor coil is connected between this pin and OUT1 (10pin).
10	OUT1	OUT1 Driving output pin. The motor coil is connected between this pin and OUT2 (9pin).

ESD RATING

Items	Description	Value	Unit
V _{ESD}	Human Body Model for all pins	±2000	V

JEDEC specification JS-001

RECOMMENDED OPERATING CONDITIONS

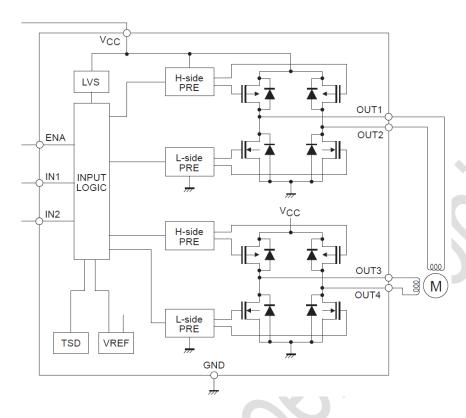
Items	Description	Condition	Value	Unit
V _{CC}	Power supply voltage	V _{cc}	4~20	V
V _{INH}	Input "H" level voltage	Var. Var. Var.	1.5~5.5	V
V _{INL}	Input "L" level voltage	V _{IN1} , V _{IN2} , V _{ENA}	0~0.4	V

TMÍSUNTO

ELECTRICAL CHARACTERISTICS

(Vcc=12V, TA = 25°C, unless otherwise noted.)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
	Icco	Standby mode			1	μA
Power Supply Voltage	ICCO	ENA="LOW"			ı	μΛ
	Icc1	ENA="HIGH"		1.1	1.52	mA
Input current	l _{IN}	V _{IN} =5V	40	50	64	μΑ
Thermal shutdown	T_tsd	Design certification		160	· (°C
operating temperature	I tsd	Design certification		100		
Width of temperature	$\triangle T_tsd$	Design certification		40		°C
hysteria	∠ I ISQ	Design certification		40		
Low voltage protection	$V_{th}V_{CC}$		3.75	3.79	3.83	V
function operation voltage	VIIIVCC		0.70	0.70	0.00	V
Release voltage	V _{thret}		3.51	3.54	3.58	V
Output ON resistance	R _{DSON}	I _{OUT} =1.0A	0.7	0.83	0.96	Ω
(Upper and lower total)	NDSON	100T=1.0A	0.7	0.03	0.90	12
Output leak current	I _{O_leak}	V ₀ =20V	0		10	μA
Diode forward voltage	V_D	ID=1.0A			1.1	V
IN1/IN2/IN3/IN4 high level	IN _{xH}		1.5		5.5	V
voltage threshold	IINxH		1.5		5.5	V
IN1/IN2/IN3/IN4 low level	IN _{xL}				0.4	V
voltage threshold	IINXL				0.4	V
Thermal Shutdown				160		°C
Threshold (Note 3)				100		C
Thermal Shutdown				30		°C
Hysteresis (Note 3)				30		

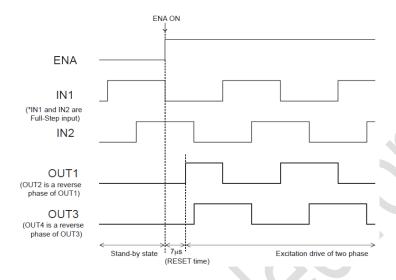

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: T_J is calculated from the ambient temperature T_A and power dissipation P_D according to the following formula: $T_J = T_A + P_D x \theta_{JA}$. The maximum allowable continuous power dissipation at any ambient temperature is calculated by $P_{D (MAX)} = (T_{J(MAX)} - T_A)/\theta_{JA}$.

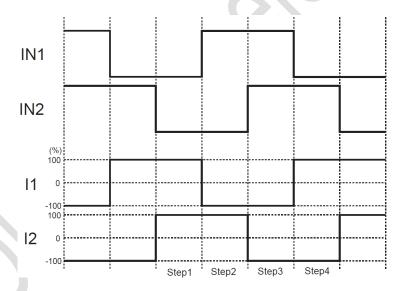
Note 3: Thermal shutdown threshold and hysteresis are guaranteed by design.

BLOCK DIAGRAM

FUNCTION DESCRIPTION


1. DCM output control logic

	Input		Output				State	
ENA	IN2	IN3	OUT1	OUT2	OUT3	OUT4	State	
L	-	-	OFF	OFF	OFF	OFF	Stand-by	
	L	L	Н	L	Н	L	Step 1	
н	Н	L	L	Н	Н	L	Step 2	
	Н	Н	L	Н	L	Н	Step 3	
	L	Н	Н	L	L	Н	Step 4	



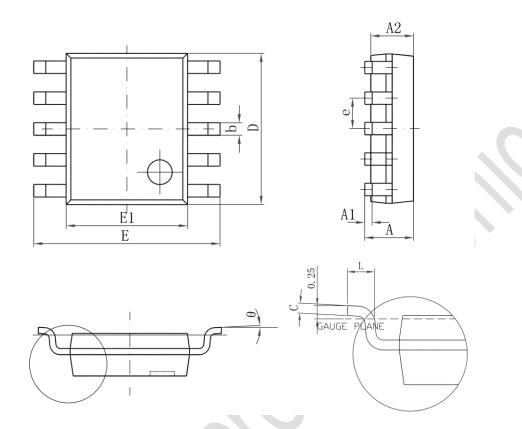
2. The switch time from the stand-by state to the state of operation

When ENA pin is "L", this IC has completely stopped operating. After the time of reset of about 7µs of an internal setting, it shifts to a prescribed output status corresponding to the state of the input when the signal enters the ENA pin.

3. Example of current waveform at full-step mode.

4. Thermal shutdown function

The thermal shutdown circuit is incorporated and the output of the device is turned off when junction temperature T_j exceeds 160°C. As the temperature falls by hysteresis, the output of the device is turned on again (automatic restoration). The thermal shutdown circuit does not guarantee the protection of the final product because it operates when the temperature exceeds the junction temperature of T_{j_max} =150°C.


$$T_{SD} = 160$$
°C (typ)
 $\triangle T_{SD} = 30$ °C (typ)

6

PACKAGE INFORMATION

SSOP10

Unit: mm

Symbol	Dimensions In Millimeters			Cymbol	Dimensions In Millimeters		
	Min	Nom	Max	Symbol	Min	Nom	Max
Α	-	-	1.75	Е	5.80 6.00 6.20		
A1	0.10	-	0.225	E1	3.80	3.90	4.00
A2	1.30	1.40	1.50	е	1.00 BSC		
A3	0.60	0.65	0.70	h	0.25 - 0.50		
b	0.39	-	0.47	L	0.50	-	0.80
С	0.20	-	0.24	L1	1.05 REF		
D	4.80	4.90	5.00	θ	0° - 8°		

Note:

1) All dimensions are in millimeters.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Motor/Motion/Ignition Controllers & Drivers category:

Click to view products by TMI manufacturer:

Other Similar products are found below:

MC33931EKR2 FSB50550TB2 FSBF15CH60BTH MSVCPM2-63-12 MSVGW45-14-2 MSVGW54-14-3 NTE7043 CAT3211MUTAG
LA6245P-TLM-E LA6565VR-TLM-E LB11650-E LB1694N-E LB1837M-TLM-E LB1845DAZ-XE LC898111AXB-MH LC898300XAMH SS30-TE-L-E LV8281VR-TLM-H BA5839FP-E2 IRAM236-1067A LA6584JA-AH LB11847L-E NCV70501DW002R2G
STK581U3C0D-E AH293-PL-B STK672-120-E TND315S-TL-2H FNA23060 FSB50250AB FNA41060 MSVBTC50E MSVCPM3-54-12
MSVCPM3-63-12 MSVCPM4-63-12 FSB50550AB NCV70501DW002G LC898301XA-MH LV8413GP-TE-L-E MSVGW45-14-3
MSVGW45-14-4 MSVGW54-14-4 TB6552FNG,C,8,EL STK984-091A-E LB11651-E IRSM515-025DA4 LV8127T-TLM-H
MC33812EKR2 IKCM10H60GA MC33PT2000AF TDA21801