

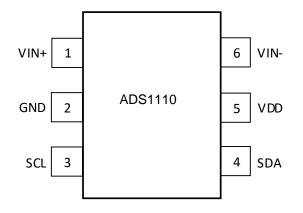
16-Bit ADC with On-board Reference

FEATURES

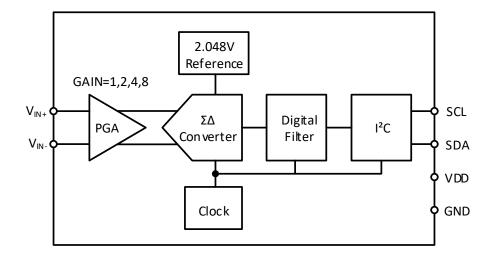
- I²C Serial Interface
- On-board Reference: 2.048V ±0.05%
- Temperature Drift: 40ppm/°C (Max)
- On-board PGA and OSC
- 16Bit No Missing Codes
- INL (Integral Non-linearity): 0.01%
- I²C Address Number: 8
- Programmable Data Rate: 15SPS to 240SPS
- Operating Voltage: 2.7V to 5.5V
- Low Current Consumption: 315μA

APPLICATIONS

- Portable Instrument
- Industry Process Control
- Smart Transmitter
- Factory Automation
- Temperature Measurement


Part Number	I ² C Address	Range	Package	Marking
ADS1110A0IDBVR	1001 000	00	SOT23-6	5110S
ADS1110A0IDBVR	1001 001	01	SOT23-6	5110S
ADS1110A0IDBVR	1001 010	02	SOT23-6	5110S
ADS1110A0IDBVR	1001 011	03	SOT23-6	5110S
ADS1110A0IDBVR	1001 100	04	SOT23-6	5110S
ADS1110A0IDBVR	1001 101	05	SOT23-6	5110S
ADS1110A0IDBVR	1001 110	06	SOT23-6	5110S
ADS1110A0IDBVR	1001 111	07	SOT23-6	5110S

PRODUCT SPECIFICATION


PIN CONFIGURATION

PIN DESCRIPTION

Pin	Symbol	Туре	Description
1	VIN+	I	Differential Positive Input
2	GND	-	Ground
3	SCL	I	Serial Clock Input
4	SDA	I/O	Serial Data: Transmits and Receives Data
5	VDD	-	Power Supply
6	VIN-	Ι	Differential Negative Input

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Any exceeding absolute maximum rating application causes permanent damage to device. Because longtime absolute operation state affects device reliability. Absolute ratings just conclude from a series of extreme tests. It doesn't represent chip can operate normally in these extreme conditions.

Symbol	Parameter	Ratings	Unit
Power Supply	V _{DD}	-0.3 ~ 6	V
		100mA, Momentary	mA
Input Current	lin	10mA, Continuous	mA
Analog Input (A0, A1 to GND)	V _{IN}	-0.3 ~ V _{DD} +0.3	V
SDA, SCL Voltage to GND	V	-0.5 ~ 6	V
Maximum Junction Temperature	TJMAX	150	°C
Operating Temperature	T _A	-40 ~ 125	°C
Storage Temperature	Tstg	-65 ~ 150	°C
Lead Temperature	т	260	°C

ELECTRICAL CHARACTERISTICS

Unless otherwise noted, V_{DD} =5.0V, T_A =-40°C to 85°C.

Parameter	Condition	Min	Тур	Max	Unit
	Analog Input				
Full-Scale Input Voltage	(V _{IN+})-(V _{IN-})		±2.048/PGA		v
Analog Input Voltage	V_{IN+} to GND, V_{IN-} to GND	GND-0.2		V _{DD} +0.2	v
Differential Input Impedance			2.8/PGA		MΩ
	PGA=1		3.5		MΩ
Common-Mode	PGA=2		3.5		MΩ
Input Impedance	PGA=4		1.8		MΩ
	PGA=8		0.9		MΩ
	System Performance				
	DR=00	12		12	Bits
Resolution and	DR=01	14		14	Bits
No Missing Codes	DR=10	15		15	Bits
	DR=11	16		16	Bits
	DR=00	180	240	308	SPS
Output Data	DR=01	45	60	77	SPS
Output Rate	DR=10	22	30	39	SPS
	DR=11	11	15	20	SPS
Integral Non-linearity	DR=11, PGA=1, End Point ¹		±0.004	±0.010	% of FSR ²
	PGA=1		1	3	mV
Offset Error	PGA=2		1	3	mV
Unset Error	PGA=4		1	3	mV
	PGA=8	_	1	3	mV
	PGA=1	_	1.2		μV/°C
Offset Drift	PGA=2		0.6		μV/°C
Unset Drift	PGA=4		0.3		μV/°C
	PGA=8		0.3		μV/°C
	PGA=1		800		μV/V
Offset VS. VDD	PGA=2		400		μV/V
	PGA=4		200		μV/V
	PGA=8		150		μ٧/٧

Parameter	Condition	Min	Тур	Max	Unit
	System Performance	-			
Gain Error			0.05	0.4	%
PGA Gain Match Error ³	Any two gain match		0.02	0.1	%
Gain Error Drift			10	40	ppm/°C
Gain VS. VDD			80		ppm/V
	DC input and PGA=8	95	105		dB
Common-Mode Rejection Ratio	DC input and PGA=1		100		dB
Digital Input/Output					
Input High Voltage		0.7×V _{DD}		6	v
Input Low Voltage		GND-0.5		0.3×V _{DD}	v
Output Low Voltage	Iol=3mA	GND		0.4	v
Input High Peak Current				10	μA
Input Low Peak Current		-10			μA
	Power Supply Requireme	ents			
Operating Voltage	VDD	2.7		5.5	v
	Power-down		0.05	2	μA
Supply Current	Operation		315	350	μA
	V _{DD} =5.0V		1.6	1.9	mW
Power Dissipation	V _{DD} =3.0V		0.96		mW

Note:

1. 99% of full-scale.

2. FSR = full-scale range = 2×2.048 V/PGA = 4.096V/PGA.

3. Includes all errors from PGA and reference.

FUNCTION DESCRIPTION

The ADS1110 is a 16-bit, fully differential, delta-sigma analog-to-digital converter. The ADS1110 consists of a delta-sigma A/D converter with adjustable gain, a 2.048V voltage reference, a clock oscillator, a digital filter and an I²C interface. It has easy design and configuration, so users can easily achieve accurate measurement

Analog-to-Digital Converter

The ADS1110 A/D converter core consists of a differential switched-capacitor delta-sigma modulator and a digital filter. The modulator measures the voltage difference between the positive and negative analog inputs and compares it to reference voltage, which is 2.048V in the ADS1110. The digital filter receives a high-speed bit stream from the modulator and outputs digital signal, which is proportional to the input voltage.

Voltage Reference

The ADS1110 has a 2.048V on - board voltage reference without need for external reference.

Output Code Calculation

The number of bits for the ADS1110 depends on update rate, as shown in Table 1.

Table 1. Minimum ar	nd Maximum Codes
---------------------	------------------

Update Rate	Number Of Bits	Minimum Code	Maximum Code
15SPS	16	-32768	32767
30SPS	15	-16384	16383
60SPS	14	-8192	8191
240SPS	12	-2048	2047

The output code of the ADS1110 is in binary two's complement format, right-justified and sign-extended. Table 2 shows the output codes for various input levels.

	Differential Input Signal					
Data Rate	-2.048V	-1LSB	0 (Ideal)	+1LSB	+2.048V	
15SPS	8000 _H	FFFFH	0000 _H	0001 _H	7FFF _H	
30SPS	C000 _H	FFFFH	0000 _H	0001 _H	3FFF _H	
60SPS	E000H	FFFFH	0000 _H	0001 _H	1FFF _H	
240SPS	F800 _H	FFFFH	0000 _H	0001 _H	07FF _H	

Note 1: Differential input; do not drive the ADS1110 absolute inputs below -200mV.

The output code is given by the expression:

 $\begin{aligned} & \text{Output Code} = -1 \times \text{Minimum Code} \times \text{PGA} \times \frac{(V_{\text{IN}^+}) - (V_{\text{IN}^-})}{2.048 \text{V}} \\ & \text{Output Code} = 1 \times \text{Maximum Code} \times \text{PGA} \times \frac{(V_{\text{IN}^+}) - (V_{\text{IN}^-})}{2.048 \text{V}} \\ \end{aligned}$

The maximum code is $2^{n-1}-1$, while the minimum code is $-1 \times 2^{n-1}$.

Clock Oscillator

The ADS1110 features an on-board clock oscillator, which drives modulator and digital filter without need for external clock.

Input Impedance

The input stage of the ADS1110 uses switched-capacitor. The equivalent resistance value depends on the capacitor value and switching frequency. The capacitor value depends on the PGA setting. The clock is generated by the on-board clock oscillator. The typical operating frequency is 275kHz.

The common-mode and differential input impedance are different. Details see in Electrical Characteristics. For input source with high output impedance, buffer may be necessary externally on input terminal.

Aliasing

If the input signal frequency of the ADS1110 xceeds half of the update rate, aliasing will occur. To prevent aliasing, the input signal must be band-limited. The digital filter of the ADS1110 provides some attenuation of high-frequency noise to some extent, but sinc filter cannot completely replace an anti-aliasing filter. For a few applications, external filtering also is needed.

When designing input filter circuit, remember to take into account the impedance match between the filter and the ADS1110 input

Operation Mode

The ADS1110 has two conversion modes: continuous conversion and single conversion.

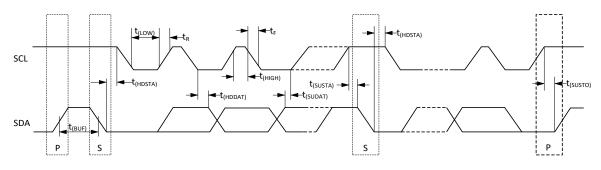
In continuous conversion mode, after a conversion has been completed, the ADS1110 places the result in the result register and immediately begins another conversion.

In single conversion mode, the ADS1110 will wait until the ST/DRDY bit in the configuration register is set to 1. Then the ADS1110 start a conversion. After the conversion is completed, the ADS1110 places the result in the result register, resets the $\overline{ST/DRDY}$ bit to 0 and powers down.

When switched from continuous conversion mode to single conversion mode, the ADS1110 completes the current conversion, resets the $\overline{ST/DRDY}$ bit to 0 and powers down.

Reset and Power-up

When the ADS1110 powers up, it automatically performs a reset. The ADS1110 sets all of the bits in the configuration register to their default settings.


The ADS1110 responds to the I²C General Call Reset command. When the ADS1110 receives a General Call Reset, it performs a reset.

I²C Interface

The ADS1110 communicates through an I²C interface.

A timing diagram is shown in Figure 1. The related parameters for this diagram are given in Table 3.

Figure 1. I ² C Timing Diagram

Decemptor		Fast-Spee	Fast-Speed Mode	
	Parameter	Min	Max	Unit
^t (SCLK)	SCLK Operating Frequency		0.4	MHz
^t (BUF)	Bus START to STOP Idle Time	600		ns
^t (HDSTA)	START Hold Time	600		ns
^t (SUSTA)	Repeated START Setup Time	600		ns
^t (susto)	STOP Setup Time	600		ns
^t (HDDAT)	Data Hold Time	0		ns
^t (SUDAT)	Data Setup Time	100		ns
^t (LOW)	SCLK Clock Low Level Period	1300		ns
^t (HIGH)	SCLK Clock High Level Period	600		ns
t _F	Clock/Data Fall Time		300	ns
t _R	Clock/Data Rise Time		300	ns

Table 3.	Timing	Diagram	Definitions

Result Register

The 16-bit result register contains the conversion result in binary two's complement format. After reset or power-up, the result register is cleared 0, and remains until the first conversion is completed. The format of result register is shown in Table 4.

Table 4. Result Register

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

Configuration Register

The 8-bit configuration register can be used to control the operation mode, update rate and PGA. The format of configuration register is shown in Table 5. The default setting is 8CH.

Table 5. Configuration Register

Bit	7	6	5	4	3	2	1	0	
Name	ST/DRDY	0	0	SC	DR1	DR0	PGA1	PGA0	
Default	1	0	0	0	1	1	0	0	

Bit 7 : ST/DRDY

The meaning of the ST/DRDY bit depends on whether it is being written to or read from.

In single conversion mode, writing 1 to the ST/DRDY bit indicates a conversion to start, and writing 0 has no effect. In continuous mode, the ADS1110 ignores the value written to $\overline{ST/DRDY}$.

In continuous conversion mode, use $\overline{ST/DRDY}$ bit to determine whether new conversion data is ready. If $\overline{ST/DRDY}$ is 1, the data in the result register has already been read. If it is 0, the data in the result register is new, and has not yet been read.

In single conversion mode, use ST/DRDY bit to determine whether a conversion has completed. If $\overline{ST/DRDY}$ is 1, the data in the result register is old, and the conversion is still in process. if it is 0, the data in the result register is the new conversion result.

The ADS1110 first outputs the value of result register, then the value of configuration register The state of the $\overline{ST/DRDY}$ bit applies to the data just read from the result register, rather than the data from the next read operation.

Bit 6-5 : Reserved

Bit 6-5 must be set to 0.

Bit 4 : SC

Conversion mode select bit. When SC is 1, the ADS1110 is in single conversion mode; when SC is 0, it is in continuous conversion mode. The default setting is 0.

Bits 3-2 : DR

Update rate select bits, as shown in Table 6.

Table 6. DR Bits								
DR1	DRO	Data Rate	Resolution					
0	0	240SPS	12 Bit					
0	1	60SPS	14 Bit					
1	0	30SPS	15 Bit					
11	11	15SPS	16 Bit					

Table C DD Dite

Note 1: Default setting

Bit 1-0 : PGA

Gain setting select bits, as shown in Table 7.

Table 7. PGA Bits

PGA1	PGA0	Gain
01	01	1
0	1	2
1	0	4
1	1	8

Note 1: Default setting

Reading from the ADS1110

Read the value in the result register and the configuration register. First address the ADS1110, then read three bytes from the device. The first two bytes are the result register's contents, and the third byte is the configuration register's contents.

It is not required to read the configuration register. It is permissible to read fewer than three bytes during a read operation. Reading more than three bytes from the ADS1110 has no effect. All bytes from the fourth byte will be FFH.

The timing diagram of typical read operation for the ADS1110 is shown in Figure 2.

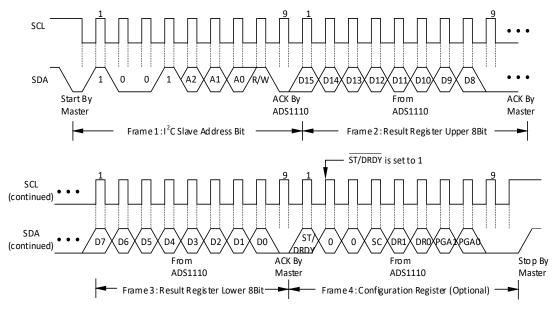


Figure 2. Timing Diagram for Reading from the ADS1110

Writing to the ADS1110

Write to the configuration register. First address the ADS1110, then write into one byte. The byte will be written to the configuration register.

Writing more than one byte to the ADS1110 has no effect. The ADS1110 will ignore any byte after the first byte. The timing diagram of typical write operation for the ADS1110 is shown in Figure 3.

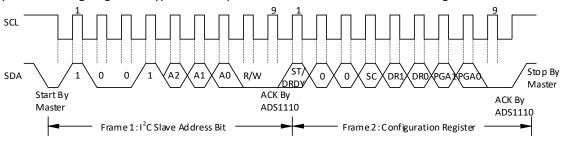


Figure 3. Timing Diagram for Writing to the ADS1110

APPLICATIONS INFORMATION

Basic Connection

For many applications, the basic connection diagram of the ADS1110 is shown in Figure 4.

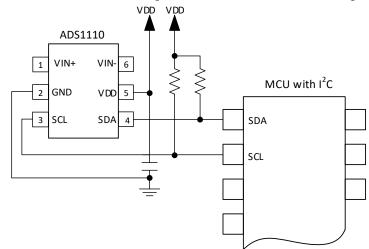


Figure 4. Typical Connections of the ADS1110

Connecting Multiple Devices

Multiple ADS1110 can be connected to a I^2C bus. The ADS1110 is available in different eight versions, each of which has a different I^2C address. An example showing three ADS1110 connected on a same bus is shown in Figure 5. Up to eight ADS1110 use different eight versions of the ADS1110 can be connected to a I^2C bus.

Note that I²C bus only needs one set of pull-up resistors.

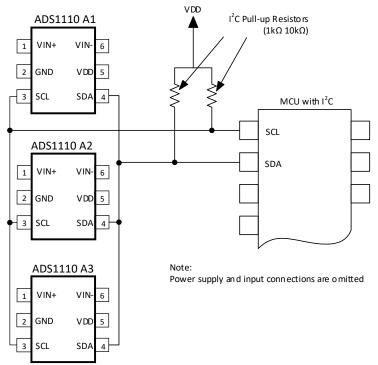


Figure 5. Connecting Multiple ADS1110

Low-Side Current Monitor

Figure 6 shows a circuit for a low-side current monitor. The circuit reads the voltage across a shunt resistor, the voltage of which is amplified by the AD8552, and the result is read by the ADS1110.

It is suggested that the ADS1110 be operated at a gain of 8. The gain of the AD8552 can be reduced. For a gain of 8, the op amp should provide output voltage of no greater than 0.256V. Therefore, the shunt resistor is sized to provide a maximum voltage drop of 64mV at full-scale current.

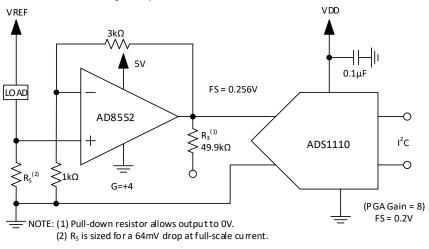
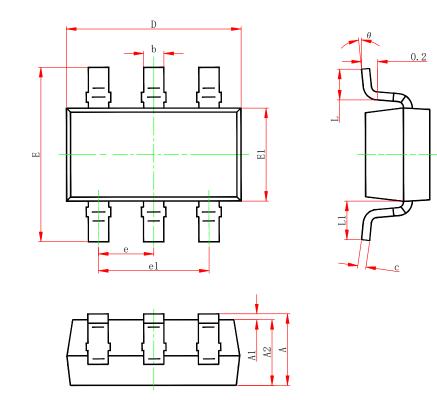



Figure 6. Low-Side Current Measurement

PACKAGE OUTLINE DIMENSIONS

SOT23-6

	Dimensions i	n Millimeters	Dimensions in Inches			
Symbol	Min	Max	Min	Max		
А	1.050	1.250	0.041	0.049		
A1	0.000	0.100	0.000	0.004		
A2	1.050	1.150	0.041	0.045		
b	0.300	0.500	0.012	0.020		
с	0.100	0.200	0.004	0.008		
D	2.820	3.020	0.111	0.119		
E1	1.500	1.700	0.059	0.067		
E	2.650	2.950	0.104	0.116		
e	0.950	(BSC)	0.037	(BSC)		
e1	1.800	2.000	0.071	0.079		
L	0.300	0.600	0.012	0.024		
L1	0.600	DREF	0.024	IREF		
θ	0º	8º	0º	8º		

MARKING and PACKAGING SPECIFICATION

1. Marking Drawing Description

Product Name : 5110S Product Code : XXXXX

2. Packaging Specification

Device	Package	Piece/Reel	Reel/Box	Piece /Box	Box/Carton	Piece/Carton
ADS1110A0IDBVR	SOT23-6	3000	10	30000	4	120000

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analog to Digital Converters - ADC category:

Click to view products by Tokmas manufacturer:

Other Similar products are found below :

MCP37211-200I/TE AD9235BCPZRL7-40 HT7316ARQZ ADS1100A3IDBVR HI1175JCB HI3-574AJN-5 HI5714/4CB HI5746KCA HI5766KCAZ HI5766KCBZ ISOSD61TR ES7201 AD7266BSUZ-REEL AD7708BRZ-REEL7 CLM2543IDW CLM2543CDW MCP3004T-I/SL ADS7853IPWR GP9301BXI-F10K-D1V10-SH GP9301BXI-F10K-N-SH GP9101-F50-C1H1-SW GP9301BXI-F5K-N-SW GP9101-F10K-N-SW GP9301BXI-F4K-D1V10-SH GP9301BXI-F1K-L5H2-SH LTC2484IDD#TRPBF AD9245BCPZRL7-20 SSP1120 ADS8332IBRGER ADS8168IRHBR HT7705ARWZ ADS9224RIRHBR ADC101S051CIMF AD7779ACPZ-RL AD7714YRUZ-REEL AD7608BSTZ-RL LTC2447IUHF#PBF AD9235BRUZRL7-20 AD7888ARUZ-REEL AD7606BBSTZ-RL AD7998BRUZ-1REEL AD7276ARMZ-REEL AD7712ARZ-REEL AD7997BRUZ-1REEL LTC2348ILX-16#PBF AD2S1210BSTZ-RL7 AD7711ARZ-REEL7 AD7865ASZ-1REEL AD7923BRUZ-REEL AD7495ARZ-REEL7