FEATURES

PRODUCT APPEARANCE

$>$ Operates with a single 3.3 V supply
$>$ Common mode voltage is better than ISO 11898 standard, up to $-7 \mathrm{~V} \sim+12 \mathrm{~V}$;
$>$ Bus pin ESD protection exceeds $\pm 12 \mathrm{kV}$ HBM
$>$ Adjustable driver transition times for improved emissions performance
> Support four operating modes: high-speed, slope-control, standby and low current off. The low current off mode is as low as $1 \mu \mathrm{~A}$.
$>$ Designed for data rates up to 1 Mbps

SOP-8
$>$ Thermal shutdown protection
> Open circuit fail-safe design
> Glitch free power up and power down protection for hot plugging applications

DESCRIPTION

The MAX3051 is the interface between the Controller Area Network (CAN) protocol controller and the physical bus. It is designed for use with the $3.3 \mathrm{~V} \mu \mathrm{Ps}$, MCUs and DSPs with CAN controllers, or with equivalent protocol controller devices. It supports four operation modes: high-speed, slope-control, standby and low current off and common model can reach up to $-7 \mathrm{~V} \sim+12 \mathrm{~V}$. It is used in industrial automation, control, sensors and drive systems, motor and robotic control, building and climate control (HVAC), telecom and base station control and status.

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT
Supply voltage	V_{cc}		3	3.6	V
Maximum transmission rate	$1 / \mathrm{t}_{\mathrm{bit}}$	Non-return to zero code	1		Mbaud
CANH/CANL input or output voltage	$\mathrm{V}_{\mathrm{can}}$		-36	+36	V
Bus differential voltage	$\mathrm{V}_{\text {diff }}$		1.5	3.0	V
Ambient temperature	$\mathrm{T}_{\mathrm{amb}}$		-40	125	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

PIN DESCRIPTION

PIN	SYMBOL	DESCRIPTION
$\mathbf{1}$	D	CAN transmit data input (LOW for dominant and HIGH for recessive bus states), also called TXD, driver input. Internal has pull-up resistor to VCC.
$\mathbf{2}$	GND	Ground.
$\mathbf{3}$	VCC	Transceiver 3.3V supply voltage.
$\mathbf{4}$	R	CAN receive data output (LOW for dominant and HIGH for recessive bus states), also called RXD, driver output.
$\mathbf{5}$	SHDN	Shutdown input, CMOS/TTL compatible. When the SHDN is driven to HIGH, it is turned off in low current mode. Inside there is a pull-down resistor to GND.
$\mathbf{6}$	CANL	Low level CAN bus line.
$\mathbf{7}$	CANH	High level CAN bus line.
$\mathbf{8}$	RS	Mode select pin: strong pull down to GND=high speed mode, strong pull up to VCC=low power mode,10k Ω to 100k Ω pull down to GND=slope control mode.

MAX3051ESA

LIMITING VALUES

PARAMETER	SYMBOL	VALUE	UNIT
Supply voltage	V_{CC}	$-0.3 \sim+6$	V
MCU side port voltage	D, R	$-0.5 \sim \mathrm{VCC}+0.5$	V
Bus side input voltage	CANL, CANH	$-36 \sim 36$	V
Transient voltage on pin 6,7	$\mathrm{~V}_{\mathrm{tr}}$	$-100 \sim+100$	V
Receiver output current	I_{O}	$-11 \sim 11$	mA
Ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	$-40 \sim 125$	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	$-55 \sim 150$	${ }^{\circ} \mathrm{C}$
Continuous power	SOP 8	400	mW
consumption	DIP 8	700	mW

The maximum limit parameters mean that exceeding these values may cause irreversible damage to the device. Under these conditions, it is not conducive to the normal operation of the device. The continuous operation of the device at the maximum allowable rating may affect the reliability of the device. The reference point for all voltages is ground.

DRIVER ELECTRICAL DC CHARACTERISTICS

SYMBOL	PARAMETER		CONDITION	MIN.	TYP.	MAX.	UNIT
$\mathbf{V}_{\mathbf{O}(\mathrm{D})}$	output voltage (Dominant)	CANH	$\mathrm{VI}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=60 \Omega$ (Fig 1\&Fig 2)	2.45		VCC	V
		CANL		0.5		1.25	
Vod(D)	Differential output voltage (Dominant)		$\mathrm{VI}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=60 \Omega$ (Fig 1)	1.5	2	3	V
			$\mathrm{VI}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=60 \Omega, \mathrm{R}_{\mathrm{S}}=0 \mathrm{~V}$ (Fig 3)	1.2	2	3	V
$\mathbf{V}_{\mathbf{O}(\mathrm{R})}$	output voltage (Recessive)	CANH	$\mathrm{VI}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=60 \Omega$ (Fig 1)		2.3		V
		CANL			2.3		
Vod(R)	Differential output voltage (Recessive)		$\mathrm{VI}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{s}}=0 \mathrm{~V}$	-0.12		0.012	V
			$\mathrm{VI}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \mathrm{~V}$, NO LOAD	-0.5		0.05	V
$\mathrm{I}_{\mathbf{I H}}$	High-level input current		$\mathrm{VI}=2 \mathrm{~V}$	-30		30	$\mu \mathrm{A}$
ILL	Low-level input current		$\mathrm{VI}=0.8 \mathrm{~V}$	-30		30	$\mu \mathrm{A}$
Ios	Short-circuit output current		$\mathrm{CANH}=-7 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=0 \mathrm{~V}$	-250			mA
			CANH $=12 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=0 \mathrm{~V}$			1	
			CANL $=-7 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=0 \mathrm{~V}$	-1			
			CANL $=12 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=0 \mathrm{~V}$			250	
Co	Output capacitance		See receiver				
$\mathrm{I}_{\mathbf{C C}}$	Supply current		$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ (dominant), 60Ω load		35	70	mA
			$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ (dominant), no load			6	mA
			$\mathrm{V}_{\mathrm{I}}=\mathrm{VCC}$ (recessive), no load			6	mA

(If not otherwise specified, $\mathrm{VCC}=3.3 \mathrm{~V} \pm 10 \%$, Temp $=$ Tmin \sim Tmax, Typical: $\mathrm{VCC}=+3.3 \mathrm{~V}, \mathrm{Temp}=25^{\circ} \mathrm{C}$).

DRIVER SWITCHING CHARACTERISTICS

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
tPle	Propagation delay time (low-to-high-level)	$\mathrm{R}=0$, Short circuit (Fig 4)		35	85	ns
		$\mathrm{R}=10 \mathrm{k} \Omega$		70	125	
		$\mathrm{R}=100 \mathrm{k} \Omega$		500	870	
tPhL	Propagation delay time (high-to-low-level)	$\mathrm{R}=0$, Short circuit (Fig 4)		70	120	ns
		$\mathrm{R}=10 \mathrm{k} \Omega$		130	180	
		$\mathrm{R}=100 \mathrm{k} \Omega$		870	1200	

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
tsk(p)	Pulse skew$\left(\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|\right)$	$\mathrm{R}=0$, Short circuit (Fig 4)		35		ns
		$\mathrm{R}=10 \mathrm{k} \Omega$		60		
		$\mathrm{R}=100 \mathrm{k} \Omega$		370		
tr	Differential output signal rise time	$\mathrm{R}=0$, Short circuit (Fig 4)	20		80	ns
		$\mathrm{R}=10 \mathrm{k} \Omega$	30		160	
		$\mathrm{R}=100 \mathrm{k} \Omega$	300		1400	
tf	Differential output signal fall time	$\mathrm{R}=0$, Short circuit (Fig 4)	20		80	ns
		$\mathrm{R}=10 \mathrm{k} \Omega$	30		160	
		$\mathrm{R}=100 \mathrm{k} \Omega$	300		1400	

(If not otherwise specified, $\mathrm{Vcc}=3.3 \mathrm{~V} \pm 10 \%$, $\mathrm{Temp}=$ Tmin $\sim \operatorname{Tmax}$, Typical: $\mathrm{VCC}=+3.3 \mathrm{~V}, \mathrm{Temp}=25^{\circ} \mathrm{C}$).

RECEIVER ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
$\mathbf{V I T}^{+}$	Positive-going input threshold voltage	High-speed mode, Fig 1		750	900	mV
		VRS $=3 \mathrm{~V}$ (Standby mode)			1100	mV
$V_{\text {IT }}$	Negative-going input threshold voltage	High-speed mode, Fig 1	500	650		mV
		VRS $=3 \mathrm{~V}$ (Standby mode)	500			mV
$\mathrm{V}_{\text {hys }}$	Hysteresis voltage	VIT+- VIT-		100		mV
$\mathrm{VOH}^{\text {OH}}$	High-level output voltage	$\begin{aligned} & \hline-6 \mathrm{~V}<\mathrm{V}_{\mathrm{ID}}<500 \mathrm{mV} \\ & \mathrm{I}_{\mathrm{o}}=-8 \mathrm{~mA}(\text { Fig 5) } \end{aligned}$	2.4			V
VoL	Low-level output voltage	$\begin{aligned} & 900 \mathrm{mV}<\mathrm{V}_{\mathrm{ID}}<6 \mathrm{~V} \\ & \mathrm{I}_{0}=8 \mathrm{~mA}(\underline{\text { Fig 5 5 }}) \end{aligned}$			0.4	V
$\mathrm{I}_{\mathbf{i}}$	Bus input current	VIH $=12 \mathrm{~V}, \mathrm{VCC}=0 \mathrm{~V}$	100		600	uA
$\mathrm{I}_{\mathbf{i}}$		$\mathrm{VIH}=12 \mathrm{~V}, \mathrm{VCC}=3.3 \mathrm{~V}$	100		500	$\mu \mathrm{A}$
$\mathrm{I}_{\mathbf{i}}$		$\mathrm{VIH}=-7 \mathrm{~V}, \mathrm{VCC}=0 \mathrm{~V}$	-450		-20	$\mu \mathrm{A}$
$\mathrm{I}_{\mathbf{i}}$		$\mathrm{VIH}=-7 \mathrm{~V}, \mathrm{VCC}=3.3 \mathrm{~V}$	-610		-30	$\mu \mathrm{A}$
$\mathbf{R}_{\mathbf{i}}$	Bus input resistance		20	35	50	$\mathrm{k} \Omega$
$\mathbf{R}_{\text {diff }}$	Differential input resistance		40		100	$\mathrm{k} \Omega$
$\mathrm{C}_{\text {i }}$	Bus input capacitance			40		pF
$\mathrm{C}_{\text {diff }}$	Differential input capacitance			20		pF

(If not otherwise specified, $\mathrm{VCC}=3.3 \mathrm{~V} \pm 10 \%$, $\mathrm{Temp}=\mathrm{TMIN} \sim \mathrm{TMAX}$, Typical: $\mathrm{VCC}=+3.3 \mathrm{~V}, \mathrm{Temp}=25^{\circ} \mathrm{C}$).

RECEIVER SWITCHING CHARACTERISTICS

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
$\mathbf{t}_{\text {PLH }}$	Propagation delay time (low-to-high-level)	$\underline{\text { Fig 6 }}$		35	60	ns
$\mathbf{t}_{\text {PHL }}$	Propagation delay time (high-to-low-level)	$\underline{\text { Fig 6 }}$		35	60	ns
$\mathbf{t}_{\text {sk }}$	Pulse skew	$\left\|\mathrm{t}_{\text {PHL- }} \mathrm{t}_{\text {PLH }}\right\|$			10	ns
$\mathbf{t}_{\mathbf{r}}$	Output signal rise time	$\underline{\text { Fig } 6}$		1.5		ns
$\mathbf{t}_{\mathbf{f}}$	Output signal fall time	$\underline{\text { Fig } 6}$		1.5		ns

(If not otherwise specified, $\mathrm{VCC}=3.3 \mathrm{~V} \pm 10 \%$, Temp $=\mathrm{TMIN} \sim \mathrm{TMAX}$, Typical: $\mathrm{VCC}=+3.3 \mathrm{~V}, \mathrm{Temp}=25^{\circ} \mathrm{C}$).

DEVICE SWITCHING CHARACTERISTICS

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
$\mathrm{t}_{\text {(LOOPl }}$	Loop delay 1, driver input to receiver output, recessive to dominant	R=0, Short circuit (Fig 8)		70	135	ns
		$\mathrm{R}=10 \mathrm{k} \Omega$		105	190	ns
		$\mathrm{R}=100 \mathrm{k} \Omega$		535	1000	ns
$\mathbf{t}_{\text {(LOOP2) }}$	Loop delay 2, driver input to receiver output, dominant to recessive	R=0, Short circuit (Fig 8)		70	165	ns
		$\mathrm{R}=10 \mathrm{k} \Omega$		105	190	ns
		$\mathrm{R}=100 \mathrm{k} \Omega$		535	1000	ns

(If not otherwise specified, $\mathrm{VCC}=3.3 \mathrm{~V} \pm 10 \%$, Temp $=\mathrm{TMIN} \sim \mathrm{TMAX}$, Typical: $\mathrm{VCC}=+3.3 \mathrm{~V}, \mathrm{Temp}=25^{\circ} \mathrm{C}$).
OVER TEMPERATURE PROTECTION

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Thermal shutdown temperature	$\mathrm{T}_{\mathrm{j}(\mathrm{sd})}$		155	165	180	${ }^{\circ} \mathrm{C}$

(If not otherwise specified, $\mathrm{VCC}=3.3 \mathrm{~V} \pm 10 \%$, $\mathrm{Temp}=\mathrm{TMIN} \sim \mathrm{TMAX}$, Typical: $\mathrm{VCC}=+3.3 \mathrm{~V}, \mathrm{Temp}=25^{\circ} \mathrm{C}$).

CONTROL-PIN CHARACTERISTICS

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
$\mathbf{t}_{\text {WAKE }}$	wake-up time from standby mode	R adds square wave $(\underline{\text { Fig } 7)}$		0.55	1.5	$\mu \mathrm{~s}$

$\mathbf{I}_{\mathbf{R S}}$	Input current for high-speed	$\mathrm{V}_{\mathrm{RS}}<1 \mathrm{~V}$	-450		0	$\mu \mathrm{~A}$		
$\mathbf{V}_{\mathbf{R S}}$	Input voltage for standby/sleep	$0<\mathrm{V}_{\mathrm{RS}}<\mathrm{V}_{\mathrm{CC}}$					\quad	$0.75 \mathrm{~V}_{\mathrm{CC}}$
:---:								

(If not otherwise specified, $\mathrm{VCC}=3.3 \mathrm{~V} \pm 10 \%$, Temp=TMIN $\sim \mathrm{TMAX}$, Typical: $\mathrm{VCC}=+3.3 \mathrm{~V}, \mathrm{Temp}=25^{\circ} \mathrm{C}$).
SUPPLY CURRENT

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Power consumption in shutdown mode	$\mathrm{I}_{\mathrm{SHDN}}$	$\mathrm{V}_{\mathrm{SHDN}}=3 \mathrm{~V}$			1	$\mu \mathrm{~A}$
Power consumption in standby mode	$\mathrm{I}_{\text {standby }}$	$\mathrm{R}_{\mathrm{S}}=\mathrm{VCC}, \mathrm{V}_{\mathrm{I}}=\mathrm{VCC}$		8	15	$\mu \mathrm{~A}$
Dominant power consumption	I_{CC}	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \mathrm{~V}$, $\mathrm{LOAD}=60 \Omega$		35	70	mA
Recessive power consumption	I_{CC}	$\mathrm{V}_{\mathrm{I}}=\mathrm{VCC}, \mathrm{R}_{\mathrm{S}}=0 \mathrm{~V}$, $\mathrm{NO} L O A D$			6	mA

(If not otherwise specified, $\mathrm{VCC}=3.3 \mathrm{~V} \pm 10 \%$, Temp $=\mathrm{TMIN} \sim \mathrm{TMAX}$, Typical: $\mathrm{VCC}=+3.3 \mathrm{~V}, \mathrm{Temp}=25^{\circ} \mathrm{C}$).

FUNCTION TABLE

Table 1 Receiver characteristics in common mode ($\mathrm{V}_{(\mathrm{RS})}=1.2 \mathrm{~V}$)

$\mathbf{V}_{\text {ID }}$	$\mathbf{V}_{\text {CANH }}$	$\mathbf{V}_{\text {CANL }}$	R OUTPUT	
900 mV	-6.1 V	-7 V	L	
900 mV	12 V	11.1 V	L	
6 V	VOL			
6 V	-1 V	-7 V	L	
500 mV	12 V	6 V	L	
500 mV	-6.5 V	-7 V	H	
-6 V	12 V	11.5 V	H	
-6 V	-7 V	-1 V	H	
X	6 V	12 V	H	

[^0]Table 2 Driver Function

INPUTS			OUTPUTS		
D	SHDN	$\mathbf{R}_{\text {S }}$	CANH	CANL	BUS STATE
X	X	$>0.75 \mathrm{~V}_{\text {CC }}$	Z	Z	Recessive
L	L or open	$<0.33 \mathrm{~V}_{\text {CC }}$	H	L	Dominant
H or open	X		Z	Z	Recessive
X	H	$0.33 \mathrm{~V}_{\mathrm{CC}}$	Z	Z	Recessive

(1) $\mathrm{H}=$ High level; $\mathrm{L}=$ Low level; $\mathrm{Z}=$ High impedance.

Table 3 Receiver Function

INPUTS				OUTPUT
BUS STATE	$\mathbf{V}_{\mathbf{I D}}=\mathbf{C A N H}-\mathbf{C A N L}$	$\mathbf{S H D N}$	\mathbf{D}	\mathbf{R}
Dominant	$\mathrm{V}_{\mathrm{ID}} \geq 0.9 \mathrm{~V}$	L or open	X	L
Recessive	$\mathrm{V}_{\mathrm{ID}} \leq 0.5 \mathrm{~V}$ or open	L or open	H or open	H
$?$	$0.5<\mathrm{V}_{\mathrm{ID}}<0.9 \mathrm{~V}$	L or open	H or open	$?$
X	X	H	X	H

(1) $\mathrm{H}=$ High level; L=Low level; ? = uncertain; $\mathrm{X}=$ Irrelevant.

TEST CIRCUIT

Fig 1 Driver voltage, current and test definition

Fig 2 Bus logic state voltage definitions

Fig 3 Driver Vod test circuit

A, The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR} \leq 500 \mathrm{kHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}}<6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<6 \mathrm{~ns}$, $Z O=50 \Omega$.

B, CL includes fixture and instrumentation capacitance, the error is within 20%.
Fig 4 Driver test circuit and waveforms

Fig 5 Receiver voltage and current definitions

A, The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR} \leq 500 \mathrm{kHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}}<6 \mathrm{~ns}, \mathrm{t}_{\mathrm{r}}<6 \mathrm{~ns}, \mathrm{Zo}=50 \Omega$.
B, CL includes fixture and instrumentation capacitance, the error is within 20%.
Fig 6 Receiver test circuit and waveform

Fig 7 t(wake) test circuit and waveform

A, The input pulse is supplied by a generator having the following characteristics: PRR $\leq 125 \mathrm{kHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}}<6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<6 \mathrm{~ns}$.
Fig $8 \mathbf{t}_{\text {(LOOP) }}$ test circuit and waveform

ADDITIONAL DESCRIPTION

1 Sketch

The MAX3051 is the interface between the Controller Area Network (CAN) protocol controller and the physical bus. It is designed for use with the $3.3 \mathrm{~V} \mu \mathrm{Ps}$, MCUs and DSPs with CAN controllers, or with equivalent protocol controller devices. It is used in industrial automation, control, sensors and drive systems, motor and robotic control, building and climate control (HVAC), telecom and base station control and status. It supports data rates up to 1 Mbps , and it is compatible with the ISO 11898 standard.

2 Current protection

A current-limiting circuit protects the transmitter output stage from damage caused by accidental short-circuit to either positive or negative supply voltage, although power dissipation increases during this fault condition.

3 Over temperature protection

The MAX3051 has overtemperature protection function. When the junction temperature exceeds $165^{\circ} \mathrm{C}$, the current of the driver stage will decrease. Because the driver tube is the main power consuming component, the current reduction can reduce the power consumption and thus the chip temperature. Meanwhile, the rest of the chip remains normal operating mode.

4 Transient protection

Electrical transients often occur in automotive application environment, CANH, CANL of MAX 3051 have the function of preventing electrical transient damage.

5 Control mode

The pin SHDN (pin 5) and pin R_{S} (pin 8) provide four different modes of operation: high-speed mode, slope-control mode, standby mode and low-power off mode.

High-speed mode

The high-speed mode can be selected by applying a logic low to the RS pin (pin 8), when the pin SHDN (pin 5) is low. The high-speed mode of operation is commonly employed in industrial applications. High-speed allows the output to switch as fast as possible with no internal limitation on the output rise and fall slopes. If the high-speed transitions are a concern for emissions performance slope control mode can be used.
If both high-speed mode and the low-power standby mode is to be used in the application, direct connection to a $\mu \mathrm{P}$, MCU or DSP general purpose output pin can be used to switch between a logic-low level ($<1.2 \mathrm{~V}$) for high-speed operation, and the logic-high level ($>0.75 \mathrm{VCC}$) for standby.

Slope-control mode

Electromagnetic compatibility is essential in many applications while still making use of unshielded twisted pair bus cable to reduce system cost. Slope-control mode was added to the MAX3051 devices to reduce the electromagnetic interference produced by the rise and fall times of the driver and resulting harmonics. These rise and fall slopes of the driver outputs can be adjusted by connecting a resistor from $\mathrm{R}_{\mathrm{S}}(\mathrm{pin} 8)$ to
ground or to a logic low voltage when pin SHDN is low. The slope of the driver output signal is proportional to the pin's output current. This slope control is implemented with an external resistor value of $10 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$ to achieve slew rate.

Standby mode

When pin SHDN is low, if a logic high ($>0.75 \mathrm{VCC}$) is applied to R_{S} (pin 8), the device circuit enters a low-current, listen only standby mode, during which the driver is switched off and the receiver remains low current/low speed operation. In this listen only state, the transceiver is completely passive to the bus. It makes no difference if a slope control resistor is in place. Whether or not a slope control resistor is placed makes no difference. The $\mu \mathrm{P}$ can reverse this low-power standby mode when the rising edge of a dominant state (bus differential voltage $>900 \mathrm{mV}$ typical) occurs on the bus. The $\mu \mathrm{P}$ can sense bus activity and reactivate the driver circuit by placing a logic low $(<1.2 \mathrm{~V})$ on $\mathrm{R}_{\mathrm{S}}(\operatorname{pin} 8)$.

Low-power off mode

Enter standby mode while driving the pin SHDN to high and enter standby mode. When the pin SHDN is grounded or float, it is in normal operating mode.

SOP8 DIMENSIONS

PACKAGE SIZE

SYMBOL	MIN./mm	TYP./mm	MAX./mm
A	1.40	-	1.80
A1	0.10	-	0.25
A2	1.30	1.40	1.50
b	0.38	-	0.51
D	4.80	4.90	5.00
E	5.80	6.00	6.20
E1	3.80	3.90	4.00
e		1.27 BSC	
L	0.40	0.60	0.80
c	0.20	-	0.25
θ	0°	-	8°

DIP8 DIMENSIONS

PACKAGE SIZE

SYMBOL	MIN./mm	TYP./mm	MIN./mm
A	9.00	9.20	9.40
A1	0.33	0.45	0.51
A2		2.54 TYP	
A3		1.525 TYP	
B	8.40	8.70	9.10
B1	6.20	6.40	6.60
B2	7.32	7.62	7.92
C	3.20	3.40	3.60
C1	0.50	0.60	0.80
C2	3.71	4.00	4.31
D	0.20	0.28	0.36
L	3.00	3.30	3.60

DFN3*3-8 DIMENSIONS

PACKAGE SIZE

SYMBOL	MIN./mm	TYP./mm	MAX./mm
A	0.70		0.80
A1	0.00	0.02	0.05
A3	0.203 REF		
D	2.90	3.00	3.10
E	2.90	3.00	3.10
D1	2.35	2.3	2.55
E1	1.55	1.65	1.75
b	0.2	0.25	0.33
e	0.65 TYP		
L	0.35		0.45

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

$\xrightarrow[\text { Direction of Feed }]{ }$
PIN1 is in quadrant 1

Package Type	Reel Diameter A (mm)	Tape width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)
SOP8	330 ± 2	12.4 ± 0.40	6.50 ± 0.1	5.30 ± 0.10	2.05 ± 0.1	8.00 ± 0.1	12.00 ± 0.1
DFN3*3-8	330	12.5 ± 0.20	3.23 ± 0.10	3.23 ± 0.10	1.05 ± 0.10	4.00 ± 0.10	12.00 ± 0.30

ORDERING INFORMATION

TYPE NUMBER	PACKAGE	PACKING
MAX3051ESA	SOP8	Tape and reel
MAX3051EPA	DIP8	Tube
MAX3051TK	DFN3*3-8, Small outline, no leads	Tape and reel

SOP8 is packed with 2500 pieces/disc. Leadless DFN3*3-8 is packed with 5000 pieces/disc. DIP8 is packed with 50 pieces/tube in tubed packaging.

REFLOW SOLDERING

Parameter	Lead-free soldering conditions
Ave ramp up rate $\left(\mathrm{T}_{\mathrm{L}}\right.$ to $\left.\mathrm{T}_{\mathrm{P}}\right)$	$3^{\circ} \mathrm{C} /$ second max
Preheat time ts $\left(\mathrm{T}_{\text {smin }}=150^{\circ} \mathrm{C}\right.$ to $\left.\mathrm{T}_{\text {smax }}=200^{\circ} \mathrm{C}\right)$	$60-120$ seconds
Melting time $\mathrm{t}_{\mathrm{L}}\left(\mathrm{T}_{\mathrm{L}}=217^{\circ} \mathrm{C}\right)$	$60-150$ seconds
Peak temp T_{P}	$260-265^{\circ} \mathrm{C}$
$5^{\circ} \mathrm{C}$ below peak temperature t_{P}	30 seconds
Ave cooling rate $\left(\mathrm{T}_{\mathrm{P}}\right.$ to $\left.\mathrm{T}_{\mathrm{L}}\right)$	$6^{\circ} \mathrm{C} /$ second max
Normal temperature $25^{\circ} \mathrm{C}$ to peak temperature T_{P} time	8 minutes max

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for CAN Interface IC category:
Click to view products by Tokmas manufacturer:
Other Similar products are found below :
PCA82C250T/N4 TLE7251VLE SIT1051AT/3 TJA1042T TJA1044T TJA1040T TJA1051T/3 TPT1042V-SO1R-S SCM3425ASA NCA1042-DSPR SIT1057QTK/3 SIT1042AQTK/3 SIT1051AQT/3 SIT1044QTK/3 MCP2515-I TJA1051T PCA82C251T MAX3051ESA SN65HVD230DR UM3608QA CA-IF1042VS-Q1 CA-IF1044VS-Q1 HMT1050T HMT1040T HGA82C251M/TR TJA1040M/TR HG65HVD230M/TR TJA1042M-3/TR PCA82C251M/TR MCP2561-HMF MCP2510-E/P MCP2515-E/P TJA1042T,118 TJA1050T/CM IL41050TA-1E TJA1042T3CM,118 TJA1051T3CM, 118 TJA1042T1J TJA1042T31J TJA1051TCM, 118 TJA1051T/E,118 TJA1052IT/5Y MCP2515-I/ML SN65LBC031DG4 NCV7342D13R2G MAX13051ESA+T SJA1000T/N1.118 MCP2562FD-EP MCP2561FD-EP TLE6251DSXUMA2

[^0]: (1) $\mathrm{H}=$ High level; $\mathrm{L}=$ Low level; $\mathrm{X}=$ Irrelevant.

