1 key Touch Pad Detector IC

Outline

- The TTP233H-BA6 TonTouch ${ }^{\text {TM }}$ is a touch pad detector IC which offers 1 touch key. The device built-in regulator for touch sensor. Stable sensing method can cover diversity conditions. The touching detection IC is designed for replacing traditional direct button key with diverse pad size. Low power consumption and wide operating voltage are the contact key features for DC or AC application.

Characteristic

- Operating voltage $2.4 \mathrm{~V} \sim 5.5 \mathrm{~V}$
- Built-in regulator for touch sensor
- Built-in low voltage reset (LVR) function
- Operating current, @VDD=3V no load

At low power mode typical 1.5uA, maximum 3uA

- The response time about 160 mS at low power mode @VDD=3V
- Sensitivity can adjust by the capacitance ($1 \sim 50 \mathrm{pF}$) outside
- Stable touching detection of human body for replacing traditional direct switch key
- Provides Low Power mode
- Provides direct output or toggle output selection by pin option (TOG pin)
- Q pin is CMOS output can be selected active high or active low by pin option (AHLB pin)
- After power-on have about 0.5 sec stable-time, during the time do not touch the key pad, and the function is disabled
- Auto calibration for life, and automatic calibration environment change

Applications

- Wide consumer products
- Button key replacement

TTP233H-BA6

Block diagram

Pin Description

Pin NO	Pin Name	Type	Pin Description
1	Q	O	CMOS output pin
2	VSS	P	Negative power supply, ground
3	I	I/O	Input sensor port

Pin Type

- I
- 0
- $1 / 0$

CMOS input only
CMOS push-pull output
CMOS I/O

- P Power/Ground
- I-PH CMOS input and pull-high resister
- I-PL CMOS input and pull-low resister
- OD Open drain output, have no Diode protective circuit

Electrical Characteristics

- Absolute maximum ratings

Parameter	Symbol	Conditions	Rating	Unit
Operating Temperature	T_{OP}	-	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-	$-50 \sim+125$	${ }^{\circ} \mathrm{C}$
Supply Voltage	VDD	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$\mathrm{VSS}-0.3 \sim \mathrm{VSS}+5.5$	V
Input Voltage	V_{IN}	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$\mathrm{VSS}-0.3 \sim \mathrm{VDD}+0.3$	V
Human Body Mode	ESD	-	$\geqq 4$	KV

Note : VSS symbolizes for system ground

- DC / AC characteristics : (Test condition at room temperature $=\mathbf{2 5}^{\boldsymbol{\circ}} \mathrm{C}$)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Operating Voltage	VDD		2.4	3	5.5	V
Internal Regulator Output	VREG		2.2	2.3	2.4	V
Operating Current	IopL	$\mathrm{VDD}=3 \mathrm{~V}$, At low power mode		1.5	3	uA
	IopF	VDD $=3 \mathrm{~V}$, At fast mode		4.0	8	uA
Input Ports	V_{LL}	Input Low Voltage	0		0.2	VDD
Input Ports	V_{IH}	Input High Voltage	0.8		1.0	VDD
Output Port Sink Current	loL	$\mathrm{VDD}=3 \mathrm{~V}, \mathrm{~V}_{\text {OL }}=0.6 \mathrm{~V}$		8		mA
Output Port Source Current	I_{OH}	$\mathrm{VDD}=3 \mathrm{~V}, \mathrm{~V}_{\text {OH }}=2.4 \mathrm{~V}$		-4		mA
Input Pin Pull-low Resistor	$\mathrm{R}_{\text {PL }}$	$\begin{aligned} & \hline \text { VDD=3V } \\ & \text { (TOG, AHLB) } \end{aligned}$		25K		ohm
Output Response Time	T_{R}	VDD=3V. At fast mode		46		mS
		VDD=3V At low power mode		160		

Ttontek

TTP233H-BA6

Function Description

I . Sensitivity adjustment

The total loading of electrode size and capacitance of connecting line on PCB can affect the sensitivity. So the sensitivity adjustment must according to the practical application on PCB. The TTP233H-BA6 offers some methods for adjusting the sensitivity outside.

1. by the electrode size

Under other conditions are fixed. Using a larger electrode size can increase sensitivity. Otherwise it can decrease sensitivity. But the electrode size must use in the effective scope.
2. by the panel thickness

Under other conditions are fixed. Using a thinner panel can increase sensitivity. Otherwise it can decrease sensitivity. But the panel thickness must be below the maximum value.
3. by the value of Cs (please see the down figure)

Under other conditions are fixed. When do not use the Cs to VSS, the sensitivity is most sensitive. When adding the value of Cs will reduce sensitivity in the useful range ($1 \leqq \mathrm{Cs} \leqq 50 \mathrm{pF}$) .

II. Output mode (By TOG , AHLB pin option)

TOG pin: Direct output or toggle output selection.
AHLB pad: Output Q active high or active low selection.
Pin Q (CMOS output) option features:

TOG	AHLB	Pin Q option features
0	0	Direct output, CMOS active high
0	1	Direct output, CMOS active low
1	0	Toggle output, power on state $=0$
1	1	Toggle output, power on state $=1$

TTP233H-BA6

III. Low power mode

The TTP233H-BA6 is Low Power mode, it will be saving power. When detecting key touch, it will switch to Fast mode. Until the key touch is released and will keep a time about 10 sec . Then it returns to Low Power mode.

Low Power Mode

IV. Option pin

For power saving concern and package bonding option consideration, all the feature option pins with latch type design and initial states are 0 or 1 as power on. If those pins are forced to VDD or VSS, the states will be changed to 1 or 0 without any current leakage to conflict the power saving issue.

Feature option pins	Initial state by Power on
AHLB	0
TOG	0

TTP233H-BA6
Application circuit
Reference only

P.S. :

1. On PCB, the length of lines from touch pad to IC pin shorter is better. And the lines do not parallel and cross with other lines.
2. The power supply must be stable. If the supply voltage drift or shift quickly, maybe causing sensitivity anomalies or false detections.
3. The material of panel covering on the PCB can not include the metal or the electric element. The paints on the surfaces are the same.
4. The C1 capacitor must be used between VDD and VSS; and should be routed with very short tracks to the device's VDD and VSS pins (TTP233H-BA6).
5. The capacitance Cs can be used to adjust the sensitivity. The value of Cs use smaller, then the sensitivity will be better. The sensitivity adjustment must according to the practical application on PCB. The range of Cs value are $1 \sim 50 \mathrm{pF}$.
6. The sensitivity adjustment capacitors (Cs) must use smaller temperature coefficient and more stable capacitors. Such are X7R, NPO for example. So for touch application, recommend to use NPO capacitor, for reducing that the temperature varies to affect sensitivity.

7 tontek

TTP233H-BA6

Package outline

Package Type: SOT23-6L

SECTION B-B

Symbol Parameter (Unit : mm)														
A			Al			A2			A3			b		
Min	Nom	Max												
		1.25	0.04		0.10	1.00	1.10	1.20	0.55	0.65	0.75	0.38		0.48
Symbol Parameter (Unit : mm)														
bl			c			cl			D			E		
Min	Nom	Max												
0.37	0.40	0.43	0.11		0.21	0.10	0.13	0.16	2.72	2.92	3.12	2.60	2.80	3.00
Symbol Parameter (Unit : mm)														
E1			e			el			L			θ		
Min	Nom	Max		Typ			Typ		Min	Nom	Max	Min	Nom	Max
1.40	1.60	1.80		0.95 BSC			1.90 BSC		0.30		0.60	0		8°

Package configuration

TTP233H-BA6
Package Type SOT23-6L

Ordering Information

Package Type	Chip Type	Wafer Type
TTP233H-BA6	No support	No support

REVISION HISTORY

1. $2020 / 12 / 30$

- Initial version : V1.0

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Capacitive Touch Sensors category:
Click to view products by Tontek manufacturer:
Other Similar products are found below :
AT42QT1012-MAH STM8T143AU62TTR AI01Z AI02G DFN8(2x2) AI01K sot23-6 XW01Y sot23-6 AM8001 XW02E SSP8011AM TTP233H-BA6 RH6015CA XW02E SOP8 XW12A SOP24 AM01B_W AI08B SOP16 CR12CN04DPO-E2 CR30SCF10ATO CR30SCF10DPO BCS M30BBI2-PSC15D-S04K FDC1004DGSR FDC1004DGST CR18SCF05DPO CDWM3020ZPM D11SN6FP AT42QT1110-AU OTBA5L OTBVR81LQD QS18VN6DB CAP1133-1-AIA-TR STMPE16M31QTR LC717A00AR-NH AT42QT1070MMH AT42QT1070-SSU AT42QT1011-TSHR AT42QT1011-MAHR AT42QT2160-MMUR AT42QT1110-AUR BU21077MUV-E2 BU21079F-E2 TL50HRQP AT42QT2120-SUR AT42QT1012-MAHR BRT-TVHG-8X10P BCS M30B4E2-PSC25H-S04K BCS M12B4G2-PSC40D-S04K BCS M12B4I1-PSC40D-EP02 CFAK 12P1103 CFAK 12P1140/L CFAK 18P1100 CFAK 18P1200

