ETR02016-004

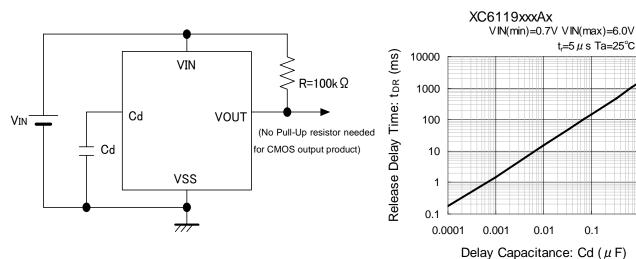
Voltage Detector with Delay Time Adjustable

■GENERAL DESCRIPTION

The XC6119 series is a highly precise, low power consumption voltage detector, manufactured using CMOS and laser trimming technologies.

The device includes the built-in delay circuit. A release delay time can be set freely by connecting an external delay capacitor to the Cd pin.

The device using an ultra small package (USPN-4) is suited for high density mounting applications. Both CMOS and N-channel open drain output configurations are available.

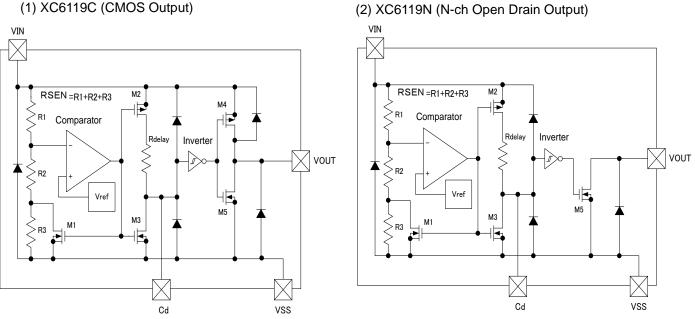

APPLICATIONS

■FEATURES

 Microprocessor reset circuitry 	High Accuracy	: <u>+</u> 2%			
Charge voltage monitors		(Detection Voltage ≥1.5V)			
Memory battery back-up switch circuits		<u>+</u> 30mV			
		(Detection Voltage <1.5V)			
Power failure detection circuits	Low Power Consumption	: 0.5 μ A TYP. in detect state			
		(VDF=1.0V, VIN= 0.9V)			
		0.9μ A TYP. in release state			
		(VDF=1.0V, VIN= 1.1V)			
	Detect Voltage Options	: 0.8V ~ 5.0V (0.1V increments)			
	Operating Voltage Range	: 0.7V ~ 6.0V			
	Detect Voltage Temperature Characteristics				
		: ±100ppm/°C TYP.			
	Output Configuration	: CMOS or			
		N-channel open drain			
	Built-In Delay Circuit	: Delay Time Adjustable			
	Operating Ambient Temperature	: -40 °C ~ +85 °C			
	Packages	: SSOT-24, USPN-4			
	Environmentally Friendly	: EU RoHS Compliant, Pb Free			

■TYPICAL APPLICATION CIRCUIT ■TYPICAL PERFORMANCE

CHARACTERISTICS



Release Delay Time vs. Delay Capacitance

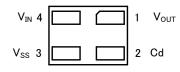
1

XC6119 Series BLOCK DIAGRAMS

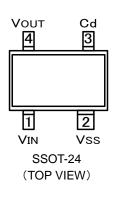
(1) XC6119C (CMOS Output)

* Diodes inside the circuits are ESD protection diodes and parasitic diodes.

■ PRODUCT CLASSIFICATION


Ordering Information

XC6119(12)(3)(4)(5)(6)-(7)(*1)


DESIGNATOR	ITEM	SYMBOL	DESCRIPTION
(1)	Output Configuration	С	CMOS output
U	Output Configuration N	N-ch open drain output	
23	Detect Voltage	08 ~ 50	e.g. 18→1.8V
4	Output Delay & Hysteresis	A	Built-in delay pin & hysteresis 5% (TYP.)
56-7	Packages	7R-G	USPN-4 (5,000pcs/Reel)
(Order Unit)	NR-G	SSOT-24 (3,000pcs/Reel)	

(*1) The "-G" suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.

■ PIN CONFIGURATION

USPN-4 (BOTTOM VIEW)

■ PIN ASSIGNMENT

PIN NU	IMBER	PIN NAME	FUNCTION
USPN-4	SSOT-24		T SHOTION
1	4	Vout	Output (Detect "L")
2	3	Cd	Delay Capacitance
3	2	Vss	Ground
4	1	Vin	Input

■ PIN FUNCTIOS ASSIGNMENT

Mari	Maa	Vc	out transition	n *	
Vin	Vcd	1		2	
	L	I			
	Н		L	_	1
	L				
	Н	Н			
	L	I	⇒	L	
н	Н		⇒		
	L		_	Н	
	Н	17	_ ⇒		

* Function State Transition Example

1) When V_{OUT} is "L", V_{OUT} changes from "L" to "H" when V_{IN} = "H" ($V_{DR} \le VI_{N}$) and V_{CD} = "H" ($V_{TCD} \le V_{CD}$). 2) When V_{OUT} changes from "H" to "L" and V_{IN} = "H" and V_{CD} = "L" when V_{OUT} is "H", V_{OUT} holds "H".

●PIN LOGIC CONDITIONS

(1) XC6119C(CMOS)

PIN NAME	LOGIC	CONDITIONS
Vin	L	VIN≦VDF
VIN	Н	VIN≧VDF+VHYS
Cd	L	0 <v<sub>CD<v<sub>IN/2 - 0.1</v<sub></v<sub>
Cu	Н	$V_{IN}/2 + 0.1 \leq V_{CD} \leq V_{IN}$
Var	L	V _{OUT} ≦V _{IN} ×0.1
Vout	Н	V _{OUT} ≧V _{IN} ×0.9

(2) XC6119N(Nch open drain output)

PIN NAME	LOGIC	CONDITIONS
Vin	L	VIN≦VDF
VIN	Н	V _{IN} ≧V _{DF} +V _{HYS}
Cd	L	0 <v<sub>CD<v<sub>IN/2 - 0.1</v<sub></v<sub>
G	Н	$V_{IN}/2 + 0.1 \leq V_{CD} \leq V_{IN}$
Vout	L	$V_{OUT} \leq Pull-Up \text{ voltage} \times 0.1$
	Н	$V_{OUT} \ge$ Pull-Up voltage × 0.9

■ ABSOLUTE MAXIMUM RATINGS

Ta=25°C

PARA	AMETER	SYMBOL	RATINGS	UNITS
Input	t Voltage	Vin	Vss-0.3~+7.0	V
Outpu	ut Current	Ιουτ	10	mA
Output	XC6119C (*1)	Maria	V _{SS} -0.3~V _{IN} +0.3	v
Voltage	XC6119N (*2)	Vout	V _{SS} -0.3~+7.0	v
Delay	Pin Voltage	Vcd	V _{SS} -0.3~V _{IN} +0.3	V
Delay	Pin Current	ICD	5.0	mA
			100	
Power	Dissipation	Pd	600(40mm x 40mm Standard board) (*3)	
Dissipation			150	mW
	SSOT-24		500 (40mm x 40mm Standard board) (*3)	
Operating Am	bient Temperature	Та	-40~+85	°C
Storage	Temperature	Tstg	-55~+125	°C

NOTE:

(*1) CMOS output

(*2)N-ch open drain output

^('3)The power dissipation figure shown is PCB mounted and is for reference only. The mounting condition is please refer to PACKAGING INFORMATION.

■ ELECTRICAL CHARACTERISTICS

	CIRICAL	CHARAC	TERISTICS					Ta=25°C
PAR	AMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	CIRCUIT
Opera	ting Voltage	VIN	$V_{DF(T)}=0.8\sim 5.0V^{(*1)}$	0.7		6.0	V	-
Dete	ect Voltage	Vdf	V _{DF(T)} =0.8~5.0V		E-1		V	1
Hyste	resis Width	V _{HYS}	V _{IN} =1.0~6.0V	V _{DF} × 0.02	V _{DF} × 0.05	V _{DF} × 0.08	V	1
Suppl	y Current 1	Iss1	$V_{IN}=V_{DF} \times 0.9$ $V_{DF(T)}=0.8 \sim 1.9V$ $V_{DF(T)}=2.0 \sim 3.9V$ $V_{DF(T)}=4.0 \sim 5.0V$		0.5 0.6 0.7	1.2 1.3 1.4	μA	2
Suppl	y Current 2	lss2	$V_{IN}=V_{DF} \times 1.1$ $V_{DF(T)}=0.8 \sim 1.9V$ $V_{DF(T)}=2.0 \sim 3.9V$ $V_{DF(T)}=4.0 \sim 5.0V$		0.9 1.1 1.2	1.8 2.0 2.2	μA	2
			$V_{IN}=0.7V$ $V_{DS}=0.5V(Nch)$ $V_{IN}=1.0V^{(*2)}$ $V_{DS}=0.5V(Nch)$	0.01	0.36			
Outp	out Current	Iout1	$V_{IN}=2.0V^{(*3)}$ $V_{DS}=0.5V(Nch)$ $V_{IN}=3.0V^{(*4)}$	0.8	1.6		mA	3
			V _{DS} =0.5V(Nch) V _{IN} =4.0V ^(*5) V _{DS} =0.5V(Nch)	1.2	2.0 2.3			
		IOUT2 (*6)	$V_{IN}=VDF \times 1.1$ $V_{DS}=0.5V(Pch)$		E-2		mA	4
Leakage	CMOS output (P-ch)	ILEAK	$V_{IN} = V_{DF} \times 0.9V, V_{OUT} = 0V,$ Cd: Open		-0.20		μA	3
Current	N-ch Open Drain Output		V _{IN} = 6.0V, V _{OUT} = 6.0V, Cd: Open		0.20	0.40)
	nperature acteristics	∆V _{DF} / (∆Ta・V _{DF})	-40 °C≦T _a ≦85 °C		±100		ppm/º C	1
Delay R	Resistance (*7)	RDELAY	V _{IN} =6.0V, Cd=0V	1.6	2.0	2.4	MΩ	5
Delay Pi	n Sink Current	Icd	Cd=0.5V, V _{IN} =0.7V	8	60		μA	5
Delay Capacitance Pin Threshold Voltage		V _{TCD}	V _{IN} =1.0V	0.4	0.5	0.6	v	6
		•100	V _{IN} =6.0V	2.9	3.0	3.1	v	۷
•	fied Operating Itage ^(*8)	Vuns	V _{IN} =0~0.7V		0.3	0.4	V	\bigcirc
	Delay Time ^(*9)	tdf0	V _{IN} =6.0→0.7V Cd: Open		30	230	μs	8
Detect [Delay Time ^(*9)	t _{DR0}	V _{IN} =0.7V→6.0V Cd: Open		30	200	μs	8

NOTE:

(*1) V_{DF(T)}: Setting Detect Voltage

 $^{(*2)}V_{DF(T)} > 1.0V$

 $^{(*3)}V_{DF(T)}>2.0V$

 $^{(*4)}V_{DF(T}>3.0V$

(*5) V_{DF(T)}>4.0V

(^{'6)} This numerical value is applied only to the XC6119C series (CMOS output).

 $^{\scriptscriptstyle(7)}$ Calculated from the voltage value and the current value of both ends of the resistor.

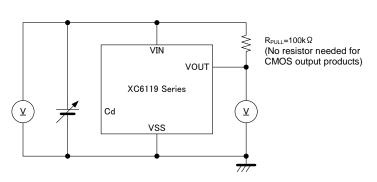
^(*8) The maximum voltage of the V_{OUT} in the range of the V_{IN} 0 to 0.7V. This numerical value is applied only to the XC6119C series (CMOS output).

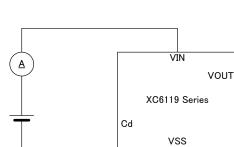
^('9) Time which ranges from the state of $V_{IN} = V_{DF}$ to the V_{OUT} reaching 0.6V when the V_{IN} falls without connecting to the Cd pin.

(*10) Time which ranges from the state of $V_{IN} = V_{DF} + V_{HYS}$ to the V_{OUT} reaching 5.4V when the V_{IN} rises without connecting to the Cd pin.

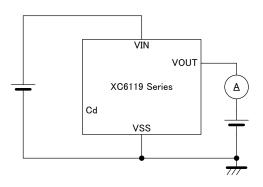
■VOLTAGE CHART

SYMBOL		E-1		E	-2
PARAMETER				OUTPUT CURRENT (*2)	
SETTING DETECT	DE	DETECT VOLTAGE ^(*1) (V)		(mA)	
VOLTAGE				(11	
		VDF			JT2
V _{DF(T)}	MIN.	TYP.	MAX.	MIN.	TYP.
0.8	0.770	0.8	0.830		
0.9	0.870	0.9	0.930	-0.40	-0.20
1.0	0.970	1.0	1.030		
1.1	1.070	1.1	1.130		
1.2	1.170	1.2	1.230		
1.3	1.270	1.3	1.330	-0.60	-0.30
1.4	1.370	1.4	1.430		
1.5	1.470	1.5	1.530		
1.6	1.568	1.6	1.632	1	
1.7	1.666	1.7	1.734	-0.80	-0.40
1.8	1.764	1.8	1.836		
1.9	1.862	1.9	1.938		
2.0	1.960	2.0	2.040		
2.1	2.058	2.1	2.142		-0.50
2.2	2.156	2.2	2.244		
2.3	2.254	2.3	2.346		
2.4	2.352	2.4	2.448		
2.5	2.450	2.5	2.550	-1.00	
2.6	2.548	2.6	2.652		
2.7	2.646	2.7	2.754	•	
2.8	2.744	2.8	2.856	•	
2.9	2.842	2.9	2.958		
3.0	2.940	3.0	3.060		
3.1	3.038	3.1	3.162	•	
3.2	3.136	3.2	3.264		
3.3	3.234	3.3	3.366	•	
3.4	3.332	3.4	3.468		
3.5	3.430	3.5	3.570	-1.20	-0.60
3.6	3.528	3.6	3.672		
3.7	3.626	3.7	3.774		
3.8	3.724	3.8	3.876		
3.9	3.822	3.9	3.978	1	
4.0	3.920	4.0	4.080		
4.1	4.018	4.1	4.182		
4.2	4.116	4.2	4.284	1	
4.3	4.214	4.3	4.386	1	
4.4	4.321	4.4	4.488		
4.5	4.410	4.5	4.590	-1.30	-0.65
4.6	4.508	4.6	4.692	1	
4.7	4.606	4.7	4.794	1	
4.8	4.704	4.8	4.896		
4.9	4.802	4.9	4.998	1	
5.0	4.900	5.0	5.100	1	

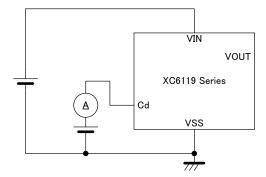

NOTE:

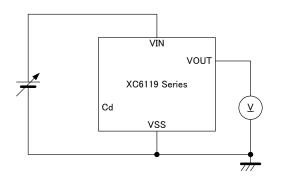

^(*1) When $V_{DF(T)} \leq 1.4V$, the detection accuracy is ± 30 mV. When $V_{DF(T)} \geq 1.5V$, the detection accuracy is $\pm 2\%$.

^('2) This numerical value is applied only to the XC6119C series (CMOS output).

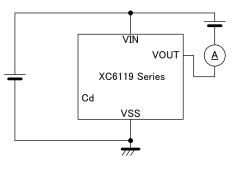

■TEST CIRCUITS

 $\operatorname{Circuit} (1)$

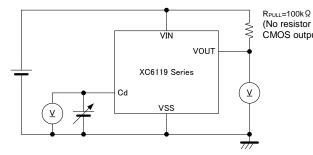




Circuit (5)

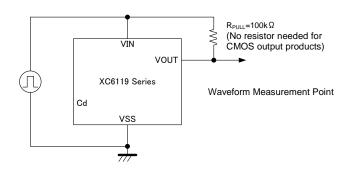


Circuit ⑦



Circuit 2

77


Circuit (6)

(No resistor needed for CMOS output

TOIREX 7/17

Circuit (8)

OPERATIONAL EXPLANATION

A typical circuit example is shown in Figure 1, and the timing chart of Figure 1 is shown in Figure 2 on the next page.

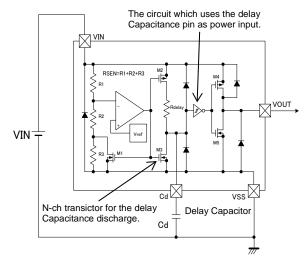


Figure 1: Typical application circuit example

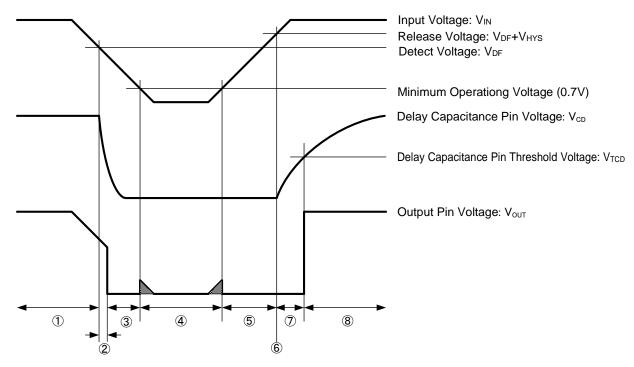


Figure 2: The timing chart of Figure 1

- (1) As an early state, the input voltage pin is applied sufficiently high voltage to the release voltage and the delay capacitance (Cd) is charged to the input pin voltage. While the input pin voltage (V_{IN}) starts dropping to reach the detect voltage (V_{DF}) ($V_{IN} > V_{DF}$), the output voltage (V_{OUT}) keeps the "High" level (= V_{IN}).
- (2) When the input pin voltage keeps dropping and becomes equal to the detect voltage ($V_{IN} = V_{DF}$), an N-ch transistor for the delay capacitance discharge is turned ON, and starts to discharge the delay capacitance. For the internal circuit, which uses the delay capacitance pin as power input, the reference voltage operates as a comparator of VIN, and the output voltage changes into the "Low" level ($\leq V_{IN} \times 0.1$). The detect delay time (t_{DF}) is defined as time which ranges from $V_{IN} = V_{DF}$ to the V_{OUT} of "Low" level (especially, when the Cd pin is not connected: t_{DF0}).
- ③ While the input pin voltage keeps below the detect voltage, and 0.7V or more, the delay capacitance is discharged to the ground voltage (=V_{SS}) level. Then, the output voltage (V_{OUT}) maintains the "Low" level.
- ④ While the input pin voltage drops to less than 0.7V and it increases again to 0.7V or more, the output voltage may not be able to maintain the "Low" level. Such an operation is called "Unspecified Operation", and voltage which occurs at the output pin voltage is defined as unstable operating voltage (V_{UNS}).

OPERATIONAL EXPLANATION (Continued)

- (5) While the input pin voltage increases more than 0.7V and it reaches to the release voltage level (V_{IN} < V_{DF} + V_{HYS}), the output voltage (V_{OUT}) maintains the "Low" level.
- (6) When the input pin voltage continues to increase more than 0.7V up to the release voltage level (= V_{DF} + V_{HYS}), the N-ch transistor for the delay capacitance discharge will be turned OFF, and the delay capacitance will be started discharging via a delay resistor (R_{DELAY}). The internal circuit, which uses the delay capacitance pin as power input, will operate as a hysteresis comparator (Rise Logic Threshold: V_{TLH}=V_{TCD}, Fall Logic Threshold: V_{THL}=V_{SS}) while the input pin voltage keeps higher than the detect voltage (V_{IN} > V_{DF}).
- ⑦ While the input pin voltage becomes equal to the release voltage or higher and keeps the detect voltage or higher, the delay capacitance (Cd) will be charged up to the input pin voltage. When the delay capacitance pin voltage (V_{CD}) reaches to the delay capacitance pin threshold voltage (V_{TCD}), the output voltage changes into the "High" (=V_{IN}) level. t_{DR} is defined as time which ranges from V_{IN} =V_{DF}+V_{HYS} to the V_{OUT} of "High" level (especially when the Cd pin is not connected: t_{DR0}). t_{DR} can be given by the formula (1).

 $t_{DR} = -R_{DELAY} \times Cd \times In (1 - V_{TCD} / VIN) + t_{DR0} \cdots (1)$ * In = a natural logarithm

The release delay time can also be briefly calculated with the formula (2) because the delay resistance is $2.0M\Omega$ (TYP.) and the delay capacitance pin threshold voltage is $V_{IN}/2$ (TYP.)

 $t_{DR}=R_{DELAY} \times Cd \times 0.69 \dots (2)$

* R_{DELAY} is 2.0MΩ (TYP.)

As an example, presuming that the delay capacitance is 0.68 μ F, t_{DR} is :

$$2.0 \times 10^{6} \times 0.68 \times 10^{-6} \times 0.69 = 938$$
(ms)

- * Note that the release delay time may remarkably be short when the delay capacitance is not discharged to the ground (=Vss) level because time described in ③ is short.
- (8) While the input pin voltage is higher than the detect voltage (V_{IN} > V_{DF}), therefore, the output voltage maintains the "High"(=V_{IN}) level.

Delay Capacitance [Cd]	Release Delay Time [tDR] (TYP.)	Release Delay Time [tDR] (MIN. ~ MAX.) *1
(μF)	(ms)	(ms)
0.01	13.8	11.0 ~ 16.6
0.022	30.4	24.3 ~ 36.4
0.047	64.9	51.9 ~ 77.8
0.1	138	110 ~ 166
0.22	304	243 ~ 364
0.47	649	519 ~ 778
1	1380	1100 ~ 1660

Release Delay Time Chart

* The release delay time values above are calculate by using formula (2).

 $^{(^{\ast}1)}\mbox{The release delay time (t_{DR})}$ is influenced by the release capacitance (Cd).

■NOTES ON USE

- 1. Please use this IC within the stated maximum ratings. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
- 2. The input pin voltage drops by the resistance between power supply and the V_{IN} pin, and by through current at operation of the IC. At this time, the operation may be wrong if the input pin voltage falls below the minimum operating voltage range. In CMOS output, for output current, drops in the input pin voltage similarly occur. Oscillation of the circuit may occur if the drops in voltage, which caused by through current at operation of the IC, exceed the hysteresis voltage. Note it especially when you use the IC with the V_{IN} pin connected to a resistor.
- 3. Note that a rapid and high fluctuation of the input pin voltage may cause a wrong operation.
- Power supply noise may cause an operational function error. Care must be taken to put an external capacitor between V_{IN}-GND and test on the board carefully.
- 5. When there is a possibility of which the input pin voltage falls rapidly (e.g.: 6.0V to 0V) at release operation with the delay capacitance pin (Cd) connected to a capacitor, use a schottky barrier diode connected between the VIN pin and the Cd pin as the Figure 3 shown below.
- When N-channel open drain output is used, output voltages V_{OUT} at voltage detection and release are determined by a pull-up resistor tied to the output pin. A resistance value of the pull-up resistor can be selected with referring to the followings. (Refer to Figure 4)

During detection, the formula is given as

VOUT=VPULL/(1+RPULL/RON)

where V_{PULL} is pull-up voltage and R_{ON} (*1) is ON resistance of N-channel driver M5 ($R_{ON}=V_{DS}/I_{OUT1}$ from the electrical characteristics table).

For example, when V_{IN}=2.0V (*2), R_{ON} = $0.5/0.8 \times 10^{-3}$ =625 Ω (MIN.) and if you want to get V_{OUT} less than 0.1V when V_{PULL}=3.0V, R_{PULL} can be calculated as follows;

R_{PULL}=(V_{PULL} /V_{OUT}-1) × R_{ON}=(3/0.1-1) × 625≒18 k Ω

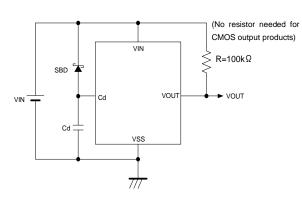
Therefore, pull-up resistance should be selected $18k\Omega$ or higher.

(*1) V_{IN} is smaller, R_{ON} is bigger

(*2) For the calculation, the lowest V_{IN} should be used among of the V_{IN} range

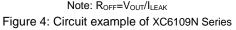
During release, the formula is given as

VOUT=VPULL/(1+RPULL/ROFF)


where V_{PULL} is pull-up voltage R_{OFF} is OFF resistance of N-channel driver M5 ($R_{OFF}=V_{OUT}/I_{LEAK}=15M\Omega$ from the electrical characteristics table)

For examples, if you want to get VOUT larger than 5.99V when VPULL is 6.0V, RPULL can be calculated as follows;

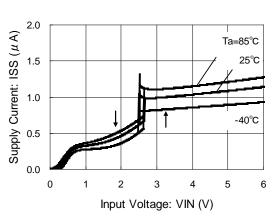
 $\mathsf{R}_{\mathsf{PULL}}=(\mathsf{V}_{\mathsf{PULL}}/\mathsf{V}_{\mathsf{OUT}}-1)\times\mathsf{R}_{\mathsf{OFF}}=(6/5.99-1)\times15\times10^6\doteqdot25\mathrm{k}\,\Omega$


Therefore, pull-up resistance should be selected 25k Ω $\,$ or below.

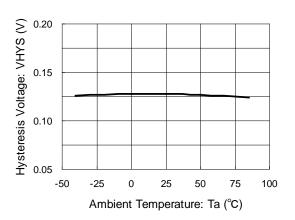
7. Torex places an importance on improving our products and their reliability. We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems.

VIN RSEN=R1+R2+R3 R1 R1 R2 R2 Rdelay VOUT VOUT VOUT VOUT VOUT

Figure 3: Circuit example with the delay capacitance pin (Cd) connected to a schottky barrier diode

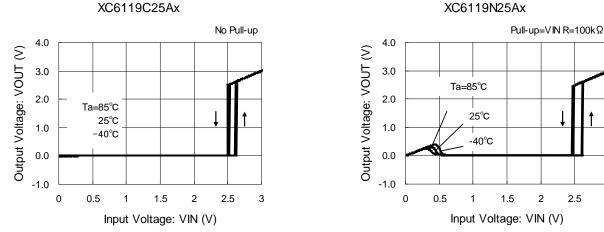


■ TYPICAL PERFORMANCE CHARACTERISTICS


(1) Supply Current vs. Input Voltage

(2) Detect Voltage vs. Ambient Temperature

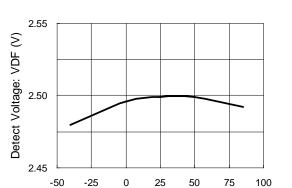
XC6119x25Ax



XC6119x25Ax

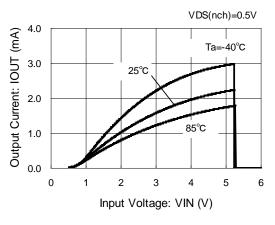
XC6119x25Ax

(4) Output Voltage vs. Input Voltage


(3) Hysteresis Voltage vs. Ambient Temperature

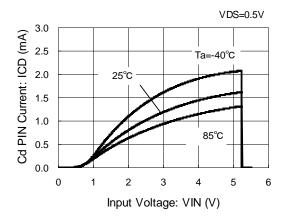
XC6119N25Ax

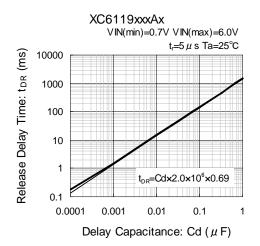
2.5

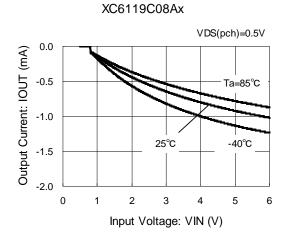

3

Ambient Temperature: Ta (°C)

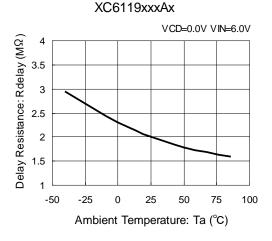
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)


(5) Output Current vs. Input Voltage

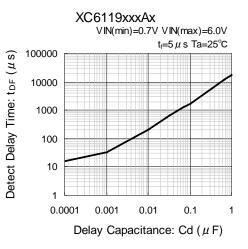

XC6119x50Ax


(6) Cd Pin Sink Current vs. Input Voltage

XC6119x50Ax

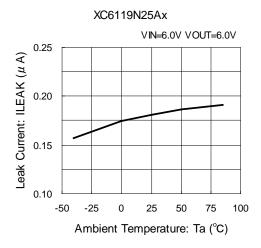


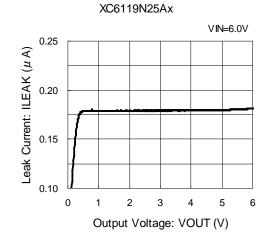
(8) Release Delay Time vs. Delay Capacitance



(7) Delay Resistance vs. Ambient Temperature

(9) Detect Delay Time vs. Delay Capacitance




12/17

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(10) Leak Current vs. Ambient Temperature

(11) Leak Current vs. Supply Voltage

TOIREX 13/17

■ PACKAGING INFORMATION

For the latest package information go to, <u>www.torexsemi.com/technical-support/packages</u>

PACKAGE	OUTLINE / LAND PATTERN	THERMAL CHARACTERISTICS		
SSOT-24	SSOT-24 PKG	Standard Board	SSOT-24 Power Dissipation	
USPN-4	USPN-4 PKG	Standard Board	USPN-4 Power Dissipation	

■MARKING RULE

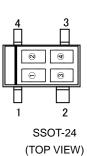
●SSOT-24

1 represents output configuration and integer number of detect voltage

CMOS Output (XC6119C Series)

MARK	VOLTAGE (V)	PRODUCT SERIES
A	0.X	XC6119C0**N*
В	1.X	XC6119C1**N*
С	2.X	XC6119C2**N*
D	3.X	XC6119C3**N*
E	4.X	XC6119C4**N*
F	5.X	XC6119C5**N*

N-channel Open Drain Output (XC6119N Series)


MARK	VOLTAGE (V)	PRODUCT SERIES
Н	0.X	XC6119N0**N*
K	1.X	XC6119N1**N*
L	2.X	XC6119N2**N*
М	3.X	XC6119N3**N*
N	4.X	XC6119N4**N*
Р	5.X	XC6119N5**N*

2 represents decimal number of detect voltage

MARK	VOLTAGE (V)	PRODUCT SERIES
N	X.0	XC6119**0*N*
Р	X.1	XC6119**1*N*
R	X.2	XC6119**2*N*
S	X.3	XC6119**3*N*
Т	X.4	XC6119**4*N*
U	X.5	XC6119**5*N*
V	X.6	XC6119**6*N*
Х	X.7	XC6119**7*N*
Y	X.8	XC6119**8*N*
Z	X.9	XC6119**9*N*

3 d represents production lot number

01 to 09, 0A to 0Z,11 to 9Z, A1 to A9,AA to Z9,ZA to ZZ repeated (G, I, J, O, Q, W excluded). Note: No character inversion used.

TOIREX 15/17

XC6119 Series MARKING RULE (Continued)

OUSPN-4

① represents product series.

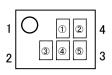
MARK	PRODUCT SERIES
В	XC6119*****-G

2 represents output configuration and integer number of detect voltage

	(ACOTISC Selles)	
MARK	VOLTAGE (V)	PRODUCT SERIES
А	0.X	XC6119C0**7*-G
В	1.X	XC6119C1**7*-G
С	2.X	XC6119C2**7*-G
D	3.X	XC6119C3**7*-G
E	4.X	XC6119C4**7*-G
F	5.X	XC6119C5**7*-G

CMOS Output (XC6119C Series)

N-channel Open Drain Output (XC6119N Series)


MARK	VOLTAGE (V)	PRODUCT SERIES
Н	0.X	XC6119N0**7*-G
К	1.X	XC6119N1**7*-G
L	2.X	XC6119N2**7*-G
М	3.X	XC6119N3**7*-G
N	4.X	XC6119N4**7*-G
Р	5.X	XC6119N5**7*-G

③ represents decimal number of detect voltage

MARK	VOLTAGE (V)	PRODUCT SERIES
N	X.0	XC6119**0*7*-G
Р	X.1	XC6119**1*7*-G
R	X.2	XC6119**2*7*-G
S	X.3	XC6119**3*7*-G
Т	X.4	XC6119**4*7*-G
U	X.5	XC6119**5*7*-G
V	X.6	XC6119**6*7*-G
Х	X.7	XC6119**7*7*-G
Y	X.8	XC6119**8*7*-G
Z	X.9	XC6119**9*7*-G

(4)(5) represents production lot number

01 to 09, 0A to 0Z,11 to 9Z, A1 to A9,AA to Z9,ZA to ZZ repeated (G, I, J, O, Q, W excluded). Note: No character inversion used.

USPN-4 (TOP VIEW)

1. The product and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.

- 2. The information in this datasheet is intended to illustrate the operation and characteristics of our products. We neither make warranties or representations with respect to the accuracy or completeness of the information contained in this datasheet nor grant any license to any intellectual property rights of ours or any third party concerning with the information in this datasheet.
- 3. Applicable export control laws and regulations should be complied and the procedures required by such laws and regulations should also be followed, when the product or any information contained in this datasheet is exported.
- 4. The product is neither intended nor warranted for use in equipment of systems which require extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss of human life, bodily injury, serious property damage including but not limited to devices or equipment used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and other transportation industry and 5) safety devices and safety equipment to control combustions and explosions. Do not use the product for the above use unless agreed by us in writing in advance.
- 5. Although we make continuous efforts to improve the quality and reliability of our products; nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal injury and/or property damage resulting from such failure, customers are required to incorporate adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention features.
- 6. Our products are not designed to be Radiation-resistant.
- 7. Please use the product listed in this datasheet within the specified ranges.
- 8. We assume no responsibility for damage or loss due to abnormal use.
- 9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex Semiconductor Ltd in writing in advance.

TOREX SEMICONDUCTOR LTD.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Supervisory Circuits category:

Click to view products by Torex Semiconductor manufacturer:

Other Similar products are found below :

CAT1161LI-25-G CAT853STBI-T3 CAT1026LI-30-G CAT1320LI-25-G TC54VN2402EMB713 MCP1316T-44NE/OT MCP1316MT-45GE/OT MCP1316MT-23LI/OT MAX8997EWW+ MAX6725AKASYD3-LF-T DS1232L NCV302HSN45T1G PT7M6130NLTA3EX PT7M7811STBEX-2017 S-1000N28-I4T1U CAT1161LI-28-G MCP1321T-29AE/OT MCP1319MT-47QE/OT S-1000N23-I4T1U S-1000N19-I4T1U CAT824UTDI-GT3 TC54VC2502ECB713 PT7M6133NLTA3EX PT7M6127NLTA3EX VDA2510NTA AP0809ES3-r HG811RM4/TR MD7030C MD7033C MD7019 MD7020 MD7021 MD7023 MD7024 MD7027 MD7030 MD7033 MD7035 MD7036 MD7039 MD7040 MD7044 MD7050 MD7015 MD7028 MD7031 MD7042 MD7043 MD7047 MD7060