Ceramic Capacitor Compatible, Step-up DC/DC Controllers

\star GreenOperation Compatible

GENERAL DESCRIPTION

The XC9103/XC9104/XC9105 series are PWM, PWM/PFM auto switching /manual switching controlled universal step-up DC/DC converter controllers.
Output will be stable no matter which load capacitors are used but should a low ESR capacitor be used, RSENSE of about 0.1Ω will be required and phase compensation will be achieved. This allows the use of ceramic capacitors and enables to obtain lower output ripple and small PCB design. Tantalum and electrolytic capacitors can also be used, in which case, RseNSE becomes unnecessary.
With 0.9 V internal voltage reference and by using externally connected two resistors, output voltage can be set freely within a range of 1.5 V to 30 V . The series is available in 300 kHz and 180 kHz frequencies, the size of the external components can be reduced. 100 kHz and 500 kHz are also available in custom options.
The XC9103 offers PWM operation. The XC9104 offers PWM/PFM automatic switching operation. The PWM operation is shifted to the PFM operation automatically at light load so that it maintains high efficiency over a wide range of load currents. The XC9105 offers both PWM and PWM/PFM auto switching operations and it can be selected by external signal.
A current limiter circuit is built-in to the IC (except with the 500 kHz version) and monitors the ripple voltage on the FB pin. Operation is shut down when the ripple voltage is more than 250 mV . The operations of the IC can be returned to normal with a toggle of the CE pin or by turning the power supply back on.

APPLICATIONS

- E-book Readers / Electronic dictionaries
- Smart phones / Mobile phones

ONote PCs / Tablet PCs

- Digital audio equipments
- Multi-function power supplies

FEATURES

■TYPICALAPPLICATION CIRCUIT

Input Voltage Range
$\begin{array}{ll}\text { Input Voltage Range } & : 0.9 \mathrm{~V} \sim 10 \mathrm{~V} \\ \text { Supply Voltage Range } & : 1.8 \mathrm{~V} \sim 10 \mathrm{~V}\end{array}$
Output Voltage Range : $1.5 \mathrm{~V} \sim 30 \mathrm{~V}$
Set freely with the reference voltage $0.9 \mathrm{~V}(\pm 2.0 \%)$ and two resistors
Oscillation Frequency

Output Current
Controls

High Efficiency Stand-by Current
Load Capacitors
Current
Limiter Function
$100,180,300,500 \mathrm{kHz}(\pm 15 \%)$
$180,300 \mathrm{kHz}$ only for XC9103/04/05B
type (with current limiter)
: more than 400 mA (VIN=1.8V, Vout=3.3V)
: PWM (XC9103)
PWM/PFM auto-switching (XC9104)
PWM/PFM manual switching (XC9105)
85\% (TYP.)
I Stв $=1.0 \mu \mathrm{~A}$ (MAX.)
: Low ESR capacitors compatible
: Operates when ripple voltage $=250 \mathrm{mV}$ Also available without current limiter (100 kHz and 500 kHz types are available only without current limiter) SOT-25, USP-6B
: EU RoHS Compliant, Pb Free
\%)

[^0]

Packages

Environmentally Friendly
0.9 V ~ 10 V

TYPICAL PERFORMANCE CHARACTERISTICS

PIN CONFIGURATION

SOT-25
(TOP VIEW)

dissipation pad for the USP-6B package should be solder-plated in recommended mount pattern and metal masking so as to enhance mounting strength and heat release.
If the pad needs to be connected to other pins, it should be connected to the VDD (No.2) pin.

■PIN ASSIGNMENT

PIN NUMBER		PIN NAME	FUNCTION
SOT-25	USP-6B		
1	6	FB	Supply Voltage
2	2	VDD	Chip Enable
3	4	CE	CE (IPWM)
		Serves as both PWM/PFM switching pin and CE pin for XC9105	
4	3	GND	Ground
5	1	EXT	External Transistor Connection
-	5	NC	No Connection

FUNCTION CHART
XC9103/XC9104 Series

CE PIN	STATUS
H	Operation
L	Shut-Down

XC9105 Series

CE/PWM PIN		STATUS
H	More than $\mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V}$	Operation (PWM control)
M	$0.65 \sim \mathrm{~V}_{\mathrm{DD}}-1.0 \mathrm{~V}$	Operation (PWM/PFM automatic switching control)
L	$0 \sim 0.2 \mathrm{~V}$	Shut-Down

PRODUCT CLASSIFICATION

- Ordering Information

> XC9103(1)(2)(3)(5)(6)-(7)(4)
> XC9104(1)(2)(5)(6)-(7)
> XC9105(1)(3)(5)(6)-(7)

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION
(1)	Type of DC/DC Controller	B	With current limiter ($180 \mathrm{kHz}, 300 \mathrm{kHz}$ only)
		D	Without current limiter
(2)(3)	Output Voltage	09	FB voltage (e.g. FB Voltage $=0.9 \mathrm{~V} \rightarrow$ (2) $=0$, (3) $=9$)
(4)	Oscillation Frequency	3	300 kHz
		1	100 kHz
		2	180 kHz
		5	500 kHz
(5)(6-7)	Packages (Oder Unit)	MR	SOT-25 (3,000/Reel)
		MR-G	SOT-25 (3,000/Reel)
		DR	USP-6B (3,000/Reel)
		DR-G	USP-6B (3,000/Reel)

${ }^{(11)}$ The "-G" suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNITS
Vdd pin Voltage		VDD	-0.3 ~ 12.0	V
FB pin Voltage		FB	-0.3 ~ 12.0	V
CE pin Voltage		Vce	-0.3 ~ 12.0	V
EXT pin Voltage		Vext	$-0.3 \sim \mathrm{VDD}+0.3$	V
EXT pin Current		IExT/	± 100	mA
Power Dissipation	SOT-25	Pd	250	mW
	USP-6B		120	
Operating Ambient Temperature		Topr	-40~+85	${ }^{\circ} \mathrm{C}$
Storage Temperature		Tstg	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$$
\text { XC9103D091, XC9104D091, XC9105D091 } \quad \text { (fosc=100 kHz) } \quad \text { Ta=25º }
$$

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage	Vout		3.234	3.300	3.366	V	(1)
Output Voltage Range	Voutset	$\begin{aligned} & \text { VIN=Voutsetx0.6, VDD=3.3V } \\ & \text { Iout=10mA, Using 2SD1628 } \end{aligned}$	1.5	-	30.0	V	(2)
FB Control Voltage	VFB		0.882	0.900	0.918	V	(4)
Supply Voltage Range (*1)	VDD		1.8	-	10.0	V	
Operation Start Voltage	Vst1	Recommended circuit using 2SD1628,Iout=1.0mA	-	-	0.9	V	(3)
Oscillation Start Voltage (*1)	Vst2	No external components, CE connected to VDD, Voltage applied, FB=0V	-	-	0.8	V	(4)
Operation Hold Voltage	VHLD	Recommended circuit using 2SD1628,Iout=1.0mA	-	-	0.7	V	(3)
Supply Current 1	IDD1	Same as Vst2, Vdd=3.3V	-	29	41	$\mu \mathrm{A}$	(4)
Supply Current 2	IDD2	Same as IDD1, FB=1.2V	-	14	19	$\mu \mathrm{A}$	(4)
Stand-by Current	ISTB	Same as IDD1, CE=0V	-	-	1.0	$\mu \mathrm{A}$	(5)
Oscillation Frequency	fosc	Same as IDD1	85	100	115	kHz	(4)
Maximum Duty Cycle	MAXDTY	Same as IDD1	75	81	87	\%	(4)
PFM Duty Rate	PFMDTY	No load (XC9104D, XC9105D)	20	28	36	\%	(1)
Efficiency	EFFI	Recommended circuit using XP161A1355	-	85	-	\%	(1)
Soft-Start Time	t_{SS}		5.0	10.0	20.0	ms	(1)
CE "High" Voltage (*2)	VCEH	Same as IDD1	0.65	-	-	V	(5)
CE "Low" Voltage (*2)	Vcel	Same as IDD1	-	-	0.20	V	(5)
PWM "High" Voltage (*2)	VPWMH	IOUT=1.0mA (XC9105D)	$\mathrm{V}_{\mathrm{DD}}-0.2$	-		V	(1)
PWM "Low" Voltage (*2)	VPWML	IOUT=1.0mA (XC9105D)	-	-	$V_{D D}-1.0$	V	(1)
EXT "High" On Resistance	Rexth	Same as IDD1, VEXT=Vout-0.4V	-	24	36	Ω	(4)
EXT "Low" On Resistance	Rextl	Same as IDD2, VEXT=0.4V	-	16	24	Ω	(4)
CE "High Current	ICEH	Same as IDD2, CE=VDD	-	-	0.1	$\mu \mathrm{A}$	(5)
CE "Low" Current	ICEL	Same as IDD2, CE=0V	-	-	-0.1	$\mu \mathrm{A}$	(5)
FB "High" Current	IFBH	Same as IDD2, FB=VDD	-	-	0.1	$\mu \mathrm{A}$	(5)
FB "Low" Current	IFBL	Same as IDD2, FB=1V	-	-	-0.1	$\mu \mathrm{A}$	(5)

Test Conditions: Unless otherwise stated, C_{L} : ceramic, recommended MOSFET should be connected. Vout=3.3V, $\mathrm{VIN}=2.0 \mathrm{~V}$, Iout $=170 \mathrm{~mA}$

NOTE:
*1 Although the IC starts step-up operations from a VDD of 0.8 V , the output voltage and oscillation frequency are stabilized at $\mathrm{VDD} \geqq 1.8 \mathrm{~V}$. Therefore, a VDD of more than 1.8 V is recommended when VDD is supplied from VIN or other power sources.
*2 With the XC9105 series, the CE pin also serves as a PWM/PFM switching pin. In operation, PWM control is selected when the voltage at the CE pin is more than VDD -0.2V. On the other hand, PWM/PFM automatic switching control at a duty $=25 \%$ is selected when the voltage at the CE pin is less than Vdd -1.0V and more than Vcen.

ELECTRICAL CHARACTERISTICS

XC9103B092MR, XC9104B092MR, XC9105B092MR XC9103D092MR, XC9104D092MR, XC9105D092MR				(fosc $=180 \mathrm{kHz}$)		$\mathrm{Ta}=25^{\circ} \mathrm{C}$	
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage	Vout		3.234	3.300	3.366	V	(1)
Output Voltage Range	Voutset	$\begin{aligned} & \text { VIN=Voutsetx0.6, VDD=3.3V } \\ & \text { Iout=10mA, Using 2SD1628 } \end{aligned}$	1.5	-	30.0	V	(2)
FB Control Voltage	VFB		0.882	0.900	0.918	V	(4)
Supply Voltage Range (*1)	VDD		1.8	-	10.0	V	
Operation Start Voltage	Vst1	Recommended circuit using 2SD1628, I IOUT $=1.0 \mathrm{~mA}$	-	-	0.9	V	(3)
Oscillation Start Voltage $\left({ }^{*} 1\right)$	VsT2	No external components, CE connected to VDD, Voltage applied, FB=0V	-	-	0.8	V	(4)
Operation Hold Voltage	Vhld	Recommended circuit using 2SD1628, Iout $=1.0 \mathrm{~mA}$	-	-	0.7	V	(3)
Supply Current 1	IDD1	Same as Vst2, Vdd $=3.3 \mathrm{~V}$	-	45	64	$\mu \mathrm{A}$	(4)
Supply Current 2	IDD2	Same as IDD1, FB=1.2V	-	17	24	$\mu \mathrm{A}$	(4)
Stand-by Current	IstB	Same as IDD1, CE=0V	-	-	1.0	$\mu \mathrm{A}$	(5)
Oscillation Frequency	fosc	Same as IDD1	153	180	207	kHz	(4)
Maximum Duty Cycle	MAXDTY	Same as IDD1	75	81	87	\%	(4)
PFM Duty Rate	PFMDTY	No load (XC9104B/D, XC9105B/D)	20	28	36	\%	(1)
Overcurrent Sense Voltage (*3)	VLmt	Step input to FB (Pulse width: $2.0 \mu \mathrm{~s}$ or more), EXT=Low level voltage (XC9103B, XC9104B, XC9105B)	170	250	330	mV	(6)
Efficiency	EFFI	Recommended circuit using XP161A1355	-	85	-	\%	(1)
Soft-Start Time	$\mathrm{t}_{\text {ss }}$		5.0	10.0	20.0	ms	(1)
CE "High" Voltage (*2)	Vcen	Same as IDD1	0.65	-	-	V	(5)
CE "Low" Voltage (*2)	Vcel	Same as IDD1	-	-	0.20	V	(5)
PWM "High" Voltage (*2)	VpWMH	Iout $=1.0 \mathrm{~mA}$ (XC9105B/D)	$V_{D D}-0.2$	-		V	(1)
PWM "Low" Voltage (*2)	VPWML	IOUT $=1.0 \mathrm{~mA}$ (XC9105B/D)	-	-	$V_{\text {DD }}-1.0$	V	(1)
EXT "High" On Resistance	Rexth	Same as IDD1, VExt=Vout-0.4V	-	24	36	Ω	(4)
EXT "Low" On Resistance	Rextl	Same as IDD2, VExT $=0.4 \mathrm{~V}$	-	16	24	Ω	(4)
CE "High Current	IcE,	Same as IDD2, CE=VDD	-	-	0.1	$\mu \mathrm{A}$	(5)
CE "Low" Current	ICEL	Same as IDD2, CE=0V	-	-	-0.1	$\mu \mathrm{A}$	(5)
FB "High" Current	IFBH	Same as IDD2, FB=VDD	-	-	0.1	$\mu \mathrm{A}$	(5)
FB "Low" Current	IFBL	Same as IDD2, FB=1V	-	-	-0.1	$\mu \mathrm{A}$	(5)

Test Conditions: Unless otherwise stated, C_{L} : ceramic, recommended MOSFET should be connected.
Vout $=3.3 \mathrm{~V}, \mathrm{VIN}=2.0 \mathrm{~V}$, Iout $=170 \mathrm{~mA}$
NOTE:
*1 Although the IC starts step-up operations from a VDD of 0.8 V , the output voltage and oscillation frequency are stabilized at $\mathrm{VDD} \geqq 1.8 \mathrm{~V}$. Therefore, a VDD of more than 1.8 V is recommended when VDD is supplied from Vin or other power sources.
*2 With the XC9105 series, the CE pin also serves as a PWM/PFM switching pin. In operation, PWM control is selected when the voltage at the CE pin is more than VDD - 0.2 V . On the other hand, PWM/PFM automatic switching control at a duty $=25 \%$ is selected when the voltage at the CE pin is less than Vdd -1.0 V and more than Vcer.
*3 The overcurrent limit circuit of this IC is designed to monitor the ripple voltage so please select your external components carefully to prevent VLмт being reached under low temperature conditions as well as normal operating conditions. Following current limiter circuit operations, which in turn causes the IC's operations to stop, the operations of the IC can be returned to normal with a toggle of the CE pin or by turning the power supply back on.

■ELECTRICAL CHARACTERISTICS (Continued)

XC9103B093MR, XC9104B093MR, XC9105B093MR
XC9103D093MR, XC9104D093MR, XC9105D093MR
(fosc $=300 \mathrm{kHz}) \quad \mathrm{Ta}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage	Vout		3.234	3.300	3.366	V	(1)
Output Voltage Range	Voutset	VIN=VOUTSET×0.6, VDD=3.3V IOUT=10mA, Using 2SD1628	1.5	-	30.0	V	(2)
FB Control Voltage	VFB		0.882	0.900	0.918	V	(4)
Supply Voltage Range (*1)	VDD		1.8	-	10.0	V	
Operation Start Voltage	Vst1	Recommended circuit using 2SD1628, IOUT $=1.0 \mathrm{~mA}$	-	-	0.9	V	(3)
Oscillation Start Voltage $(* 1)$	VsT2	No external components, CE connected to VDD, Voltage applied, FB=0V	-	-	0.8	V	(4)
Operation Hold Voltage	VhLD	Recommended circuit using 2SD1628, Iout $=1.0 \mathrm{~mA}$	-	-	0.7	V	(3)
Supply Current 1	IDD1	Same as Vst2, Vdd $=3.3 \mathrm{~V}$	-	62	88	$\mu \mathrm{A}$	(4)
Supply Current 2	IDD2	Same as IDD1, FB=1.2V	-	16	22	$\mu \mathrm{A}$	(4)
Stand-by Current	IstB	Same as IDD1, CE=0V	-	-	1.0	$\mu \mathrm{A}$	(5)
Oscillation Frequency	fosc	Same as IDD1	255	300	345	kHz	(4)
Maximum Duty Cycle	MAXDTY	Same as IDD1	75	81	87	\%	(4)
PFM Duty Rate	PFMDTY	No load (XC9104B/D, XC9105B/D)	24	32	40	\%	(1)
Overcurrent Sense Voltage (*3)	VLmt	Step input to FB (Pulse width: $2.0 \mu \mathrm{~s}$ or more), EXT=Low level voltage (XC9103B, 9104B, 9105B)	220	300	380	mV	(6)
Efficiency	EFFI	Recommended circuit using XP161A1355	-	85	-	\%	(1)
Soft-Start Time	tss		5.0	10.0	20.0	ms	(1)
CE "High" Voltage (*2)	Vcen	Same as IDD1	0.65	-	-	V	(5)
CE "Low" Voltage (*2)	Vcel	Same as IDD1	-	-	0.20	V	(5)
PWM "High" Voltage (*2)	VPWm	Iout $=1.0 \mathrm{~mA}$ (XC9105B/D)	$V_{\text {DD }}-0.2$	-	-	V	(1)
PWM "Low" Voltage (*2)	VPWML	lout $=1.0 \mathrm{~mA}$ (XC9105B/D)	-	-	$V_{D D}-1.0$	V	(1)
EXT "High" On Resistance	Rexth	Same as IDD1, Vext=Vout-0.4V	-	24	36	Ω	(4)
EXT "Low" On Resistance	Rextl	Same as IDD2, VEXT $=0.4 \mathrm{~V}$	-	16	24	Ω	(4)
CE "High Current	ICEH	Same as IDD2, CE=VDD	-	-	0.1	$\mu \mathrm{A}$	(5)
CE "Low" Current	Icel	Same as IDD2, CE=0V	-	-	-0.1	$\mu \mathrm{A}$	(5)
FB "High" Current	IFBH	Same as IDD2, FB=VDD	-	-	0.1	$\mu \mathrm{A}$	(5)
FB "Low" Current	IFBL	Same as IDD2, FB =1V	-	-	-0.1	$\mu \mathrm{A}$	(5)

Test Conditions: Unless otherwise stated, C_{L} : ceramic, recommended MOSFET should be connected.
Vout=3.3V, VIN $=2.0 \mathrm{~V}$, Iout $=170 \mathrm{~mA}$
NOTE:
*1 Although the IC starts step-up operations from a VDD of 0.8 V , the output voltage and oscillation frequency are stabilized at $\mathrm{VDD} \geqq 1.8 \mathrm{~V}$. Therefore, a VDD of more than 1.8 V is recommended when VDD is supplied from VIN or other power sources.
*2 With the XC9105 series, the CE pin also serves as a PWM/PFM switching pin. In operation, PWM control is selected when the voltage at the CE pin is more than VDD -0.2 V . On the other hand, PWM/PFM automatic switching control at a duty $=25 \%$ is selected when the voltage at the CE pin is less than Vdd -1.0 V and more than Vcer.
*3 The overcurrent limit circuit of this IC is designed to monitor the ripple voltage so please select your external components carefully to prevent Vடмт being reached under low temperature conditions as well as normal operating conditions. Following current limiter circuit operations, which in turn causes the IC's operations to stop, the operations of the IC can be returned to normal with a toggle of the CE pin or by turning the power supply back on.

■ELECTRICAL CHARACTERISTICS (Continued)

XC9103D095, XC9104D095, XC9105D095

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage	Vout		3.234	3.300	3.366	V	(1)
Output Voltage Range	Voutset	VIN=Voutsetx0.6, Vdd=3.3V Iout=10mA, Using 2SD1628	1.5	-	30.0	V	(2)
FB Control Voltage	VFB		0.882	0.900	0.918	V	(4)
Supply Voltage Range (*1)	VDD		1.8	-	10.0	V	
Operation Start Voltage	Vst1	Recommended circuit using 2SD1628, Iout $=1.0 \mathrm{~mA}$	-	-	0.9	V	(3)
Oscillation Start Voltage (*1)	VsT2	No external components, CE connected to VDd, Voltage applied, FB=0V	-	-	0.8	V	(4)
Operation Hold Voltage	Vhld	Recommended circuit using 2SD1628, IOUT=1.0mA	-	-	0.7	V	(3)
Supply Current 1	IDD1	Same as Vst2, Vdd $=3.3 \mathrm{~V}$	-	97	137	$\mu \mathrm{A}$	(4)
Supply Current 2	IDD2	Same as IDD1, FB=1.2V	-	20	28	$\mu \mathrm{A}$	(4)
Stand-by Current	Istb	Same as IDD1, CE=0V	-	-	1.0	$\mu \mathrm{A}$	(5)
Oscillation Frequency	fosc	Same as IDD1	425	500	575	kHz	(4)
Maximum Duty Cycle	MAXDTY	Same as IDD1	74	80	86	\%	(4)
PFM Duty Rate	PFMDTY	No load (XC9104D, XC9105D)	24	32	40	\%	(1)
Efficiency	EFFI	Recommended circuit using XP161A1355	-	85	-	\%	(1)
Soft-Start Time	$\mathrm{t}_{\text {ss }}$		5.0	10.0	20.0	ms	(1)
CE "High" Voltage (*2)	Vcen	Same as IDD1	0.65	-	-	V	(5)
CE "Low" Voltage (*2)	Vcel	Same as IDD1	-	-	0.20	V	(5)
PWM "High" Voltage (*2)	VpWmh	IOUT $=1.0 \mathrm{~mA}$ (XC9105D)	$\mathrm{V}_{D D}-0.2$	-	-	V	(1)
PWM "Low" Voltage (*2)	VPWML	IOUT $=1.0 \mathrm{~mA}$ (XC9105D)	-	-	$V_{D D}-1.0$	V	(1)
$\begin{gathered} \text { EXT "High" } \\ \text { On Resistance } \end{gathered}$	Rexth	Same as IDD1, VEXT=Vout-0.4V	-	24	36	Ω	(4)
EXT "Low" On Resistance	Rextl	Same as IDD2, VEXT=0.4V	-	16	24	Ω	(4)
CE "High Current	ICEH	Same as IDD2, CE=VDD	-	-	0.1	$\mu \mathrm{A}$	(5)
CE "Low" Current	Icel	Same as IDD2, CE=0V	-	-	-0.1	$\mu \mathrm{A}$	(5)
FB "High" Current	IFBH	Same as IDD2, FB=VDD	-	-	0.1	$\mu \mathrm{A}$	(5)
FB "Low" Current	IFBL	Same as IDD2, FB =1V	-	-	-0.1	$\mu \mathrm{A}$	(5)

Test Conditions: Unless otherwise stated, C_{L} : ceramic, recommended MOSFET should be connected.
Vout $=3.3 \mathrm{~V}, \mathrm{~V}$ IN $=2.0 \mathrm{~V}$, Iout $=170 \mathrm{~mA}$
NOTE:
*1 Although the IC starts step-up operations from a VDD of 0.8 V , the output voltage and oscillation frequency are stabilized at $\mathrm{VDD} \geqq 1.8 \mathrm{~V}$. Therefore, a VDD of more than 1.8 V is recommended when VDD is supplied from VIN or other power sources.
*2 With the XC9105 series, the CE pin also serves as a PWM/PFM switching pin. In operation, PWM control is selected when the voltage at the CE pin is more than VDD -0.2 V . On the other hand, PWM/PFM automatic switching control at a duty $=25 \%$ is selected when the voltage at the CE pin is less than Vdd -1.0 V and more than Vceh.

TYPICAL APPLICATION CIRCUIT

When obtaining VDD from a source other than Vout, please insert a capacitor CdD between the VDD pin and the GND pin in order to provide stable operations.
Please place Cl and CdD as close as to the Vout and VDD pins respectively and also close to the GND pin. Strengthen the wiring sufficiently. RSENSE should be removed and shorted when the CL capacitor except for ceramic or low ESR capacitor is used.

Insert Rb and CB when using a bipolar NPN Transistor.

NOTES ON USE

<XC9105 CE/PWM PIN>

Sce	SPWM	CONDITIONS
ON	-	Chip Disable
OFF	ON	Duty=25\%, PWM/PFM automatic switching
OFF	OFF	PWM

By using external signals, the control of the XC9105 series can be alternated between PWM control and PWM/PFM automatic switching control. By inputting a voltage of more than VDD -0.2 V to the CE/PWM pin, PWM control can be selected. On the other hand, PWM/PFM automatic switching control can be selected by inputting a voltage of less than Vdd -1.0V.
With the XC9105, by connecting resistors of the same value (Rм1, Rм2) as shown in the diagram to the left, it is possible to obtain chip disable with Sce ON and, Spwm ON or OFF, PWM/PFM auto switching at Duty=25\% with Sce OFF \& Spwm ON, \& PFM control with both switches OFF.

Note:
When operating at $\mathrm{VDD}-1.8 \mathrm{~V}$ and below (stepping-up from $\mathrm{VIN}=0.9 \mathrm{~V}$), it is necessary to pull-up to VDD in order to allow the CE/PWM pin reach the VCEH voltage level. Please make sure that the IC is in PWM control (Spwm=OFF) when operations start. If Spwm is ON, there are times when chip enable might not operate.

[^1]
■ OPERATIONAL EXPLANATION

The XC9103/04/05 series are step-up DC/DC converter controller ICs with built-in high speed, low ON resistance drivers.

<Error Amp.>

Error amplifier is designed to monitor the output voltage, comparing the feedback voltage (FB) with the reference voltage Vref. In response to feedback of a voltage lower than the reference voltage Vref, the output voltage of the error amp. decreases.
<OSC Generator>
This circuit generates the internal reference clock.

<Ramp Wave Generator>

The ramp wave generator generates a saw-tooth waveform based on outputs from the OSC Generator.

<PWM Comparator>

The PWM comparator compares outputs from the error amp. and saw-tooth waveform. When the voltage from the Error Amp's output is low, the external switch will be set to ON.

<PWM/PFM Controller>

This circuit generates PFM pulses.
The PWM/PFM automatic switching mode switches between PWM and PFM automatically depending on the load. The PWM/PFM automatic switching mode is selected when the voltage of the CE pin is less than VDD -1.0 V , and the control switches between PWM and PFM automatically depending on the load. PWM/PFM control turns into PFM control when threshold voltage becomes lower than voltage of error amps. PWM control mode is selected when the voltage of the CE pin is more than VDD -0.2 V . Noise is easily reduced with PWM control since the switching frequency is fixed. The series is suitable for noise sensitive portable audio equipment as PWM control can suppress noise during operation and PWM/PFM switching control can reduce consumption current during light load in stand-by.
<Vref 1 with Soft Start>
The reference voltage, Vref (FB pin voltage) $=0.9 \mathrm{~V}$, is adjusted and fixed by laser trimming (for output voltage settings, please refer to the notes on next page). To protect against inrush current, when the power is switched on, and also to protect against voltage overshoot, soft-start time is set internally to 10 ms . It should be noted, however, that this circuit does not protect the load capacitor (CL) from inrush current. With the Vref voltage limited and depending upon the input to the error amps, the operation maintains a balance between the two inputs of the error amps and controls the EXT pin's ON time so that it doesn't increase more than is necessary.

<Enable Function>

This function controls the operation and shutdown of the IC. When the voltage of the CE pin is 0.2 V or less, the mode will be disable, the channel's operations will stop and the EXT1 pin will be kept at a low level (the external N-type MOSFET will be OFF). When the IC is in a state of disable, current consumption will be no more than $1.0 \mu \mathrm{~A}$.
When the CE pin's voltage is 0.65 V or more, the mode will be enabled and operations will recommence.

■ OPERATIONAL EXPLANATION (Continued)

(1) Output Voltage Setting

Output voltage can be set by adding external split resistors. Output voltage is determined by the following equation, based on the values of RFB1 and RFB2. The sum of RFB1 and RFB2 should normally be $2 M \Omega$ or less.

```
VOUT = 0.9 x (RFB1 + RFB2) / RFB2
```

The value of CFB1, speed-up capacitor for phase compensation, should result in $\mathrm{fzfb}=1 /\left(2 \pi \times \mathrm{CFB}^{2} \times\right.$ RFB1 $)$ equal to 5 to 30 kHz . Adjustments are required depending on the application, value of inductance (L), and value of load capacity $\left(\mathrm{C}_{\mathrm{L}}\right)$.

$\mathrm{fzfb}=30 \mathrm{kHz}(\mathrm{L}=10 \mu \mathrm{H})$	[Example of Equation]	
$\mathrm{fzfb}=20 \mathrm{kHz}(\mathrm{L}=22 \mu \mathrm{H})$	RFB1 $: 120 \mathrm{k} \Omega$	RFB2 $: 45 \mathrm{k} \Omega$
$\mathrm{fzfb}=10 \mathrm{kHz}(\mathrm{L}=47 \mu \mathrm{H})$	CFB $: 47 \mathrm{pF}$	$(\mathrm{fzfb}=30 \mathrm{kHz}, \mathrm{L}=10 \mu \mathrm{H})$
		68 pF
	$(\mathrm{fzfb}=20 \mathrm{kHz}, \mathrm{L}=22 \mu \mathrm{H})$	
		130 pF
	$(\mathrm{fzfb}=10 \mathrm{kHz}, \mathrm{L}=47 \mu \mathrm{H})$	

(2) The use of ceramic capacitor C_{L}

The circuit of the XC9103/04/05 series is organized by a specialized circuit, which reenacts negative feedback of both voltage and current. Also by insertion of approximately $100 \mathrm{~m} \Omega$ of a low and inexpensive sense resistor as current sense, a high degree of stability is possible even using a ceramic capacitor, a condition which used to be difficult to achieve. Compared to a tantalum condenser, because the series can be operated in a very small capacity, it is suited to use of the ceramic capacitor, which is cheap and small.
(3) External Components
$\mathrm{Tr} \quad$:*When a MOSFET is used:

XP161A1355PR (N-ch Power MOSFET, TOREX)
Note*: As the breakdown voltage of XP161A1355 is 8V, take care with the power supply voltage. With output voltages over 6V, use the XP161A1265 with a breakdown voltage of 12 V .
VST1: XP161A1355PR =1.2V (MAX.) XP161A1265PR = 1.5V (MAX.)
SD :MA2Q737 (Schottky type, Panasonic)
L, $C_{L} \quad$:When Using Ceramic Type
*When a NPN Tr. Is used:
2SD1628 (SANYO)
Rb : 500Ω (Adjust with Tr's HFE or load)
CB: 2200pF (Ceramic type set so that Rb and pole is less than 70\% of fosc) $C_{B \leq 1} /\left(2 \pi \times R B \times f_{O S C} \times 0.7\right)$

Ceramic Type

L $22 \mu \mathrm{H}($ CDRH5D28, SUMIDA, $\mathrm{fosc}=100,180 \mathrm{kHz})$
$10 \mu \mathrm{H}$ (CDRH5D18, SUMIDA, fosc $=300,500 \mathrm{kHz})$
CL :10V $10 \mu \mathrm{~F}$ (Ceramic Type, LMK325BJ106ML, TAIYO YUDEN)
Use the formula below when step-up ratio and output current is large.
$C_{L}=\left(C_{L}\right.$ standard value) \times (Iout(mA) / 300mA x Vout / VIN)
RSENSE : $100 \mathrm{~m} \Omega$ (fosc $=180,300,500 \mathrm{kHz})$
$50 \mathrm{~m} \Omega$ (fosc $=100 \mathrm{kHz}$)

Tantalum Type

Use the formula below when step-up ratio and output current is large.
$C_{L}=\left(C_{L}\right.$ standard value) \times (Iout $(\mathrm{mA}) / 300 \mathrm{~mA} \times$ Vout $\left./ \mathrm{VIN}\right)$
RSENSE :Not required, but short out the wire.

AL Electrolytic Type

L $\quad: 22 \mu \mathrm{H}$ (CDRH5D28 SUMIDA, $\mathrm{fosc}=300 \mathrm{kHz})$
$47 \mu \mathrm{H}$ (CDRH5D28 SUMIDA, fosc $=100,180 \mathrm{kHz})$
Except when Iout(mA)/100mA x Vout/ Vin >2 $\rightarrow 22 \mu \mathrm{H}$
CL :16V, $100 \mu \mathrm{~F}$ (AL Electrolytic Type) $+10 \mathrm{~V}, 2.2 \mu \mathrm{~F}$ (Ceramic Type)
Strengthen appropriately when step-up ratio and output current is large.
RSENSE :Not required, but short out the wire.
CFB \quad Set up so that $\mathrm{fzfb}=100 \mathrm{kHz}$.
(4) For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
(5) Torex places an importance on improving our products and their reliability. We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems.

■ TEST CIRCUITS

Circuit (5)

Circuit (4)

Circuit (6)
Pulse voltage is applied at the FB pin using the test circuit (1)

■TYPICAL PERFORMANCE CHARACTERISTICS

(1) Output Voltage vs. Output Current

XC9103D093MR(PWM, 300kHz, 3.3V)

XC9103D091MR(PWM, 100kHz, 3.3V)

XC9104D092MR(PWMPFM, 180kHz, 3.3V)

XC9104D092MR(PWMIPFM, 300kHz, 3.3V)

XC9104D091MR(PWMPFFM, 100kHz, 3.3V)

-TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(1) Output Voltage vs. Output Current (Continued)

XC9103D092MR(PWM, 180kHz, 3.3V)
$\mathrm{L}=22 \mu \mathrm{H}$ (CDRH5D28), $\mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}$ (Tantalum)

XC9103D093MR(PWM, 300kHz, 3.3V)

XC9104D092MR(PMMPFM, 180KHz, 3.3V)
$\mathrm{L}=22 \mu \mathrm{H}$ (CDRH5D28), $\mathrm{C}=47 \mu \mathrm{~F}$ (Tantalum)

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(2) Efficiency vs. Output Current (Continued)

XC9103D093MR(PWM, 300kHz, 3.3V)
$\mathrm{L}=10 \mu \mathrm{H}$ (CDRH5D18), $\mathrm{C}=20 \mu \mathrm{~F}$ (ceramic)

XC9103D091MR(PWM, 100kHz, 3.3V)
$\mathrm{L}=22 \mu \mathrm{H}$ (CDRH5D28), $\mathrm{CL}=20 \mu \mathrm{~F}$ (ceramic)

XC9104D092MR(PWMPFM, 180kHz, 3.3V)

XC9104D093MR(PWMPFFM, 300kHz, 3.3V) $\mathrm{L}=10 \mu \mathrm{H}$ (CDRH5D18), $\mathrm{CL}=20 \mu \mathrm{~F}$ (ceramic)

XC9104D091MR(PWM/PFM, 100kHz, 3.3V) $\mathrm{L}=22 \mu \mathrm{H}$ (CDRH5D28), $\mathrm{CL}=20 \mu \mathrm{~F}$ (ceramic)

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(2) Efficiency vs. Output Current (Continued)

XC9104D095MR(PWMPFM, 500kHz, 3.3V)

XC9104D092MR(PWMPFM, 180kHz, 3.3V)

XC9104D093MR(PWMPFM, 300kHz, 3.3V)

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(3) Load Transient Response

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(3) Load Transient Response (Continued)

XC9104D093MR(PWMPFM, 300kHz, 3.3V)

XC9103D092MR(PWM, 180kHz, 3.3V)

XC9103D092MR(PWM, 180kHz, 3.3V)

XC9104D092MR(PMMPFFM, 180kHz, 3.3V)

XC9104D092MR(PWMPFM, 180kHz, 3.3V)

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(4) Output Voltage vs. Power Supply Voltage

(6) Supply Current 2 vs. Power Supply Voltage

(8) Oscillation Frequency vs. Power Supply Voltage

XC9105D092MR(180kHz)

(5) Supply Current 1 vs. Power Supply Voltage

XC9105D092MR (180kHz)

(7) Stand-By Current vs. Power Supply Voltage

XC9105D092MR(180kHz)

(9) Maximum Duty Ratio vs. Power Supply Voltage

XC9105D092MR(180kHz)

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(10) PFM Duty Ratio vs. Power Supply Voltage

(12) Soft Start Time vs. Power Supply Voltage

(14) PWM "H" "L" Voltage vs. Power Supply Voltage

XC9105D092MR(180kHz)

(11) Overcurrent Sense Voltage vs. Power Supply Voltage

XC9105D092MR(180kHz)

(13) CE "H" "L" Voltage vs. Power Supply Voltage

XC9105D092MR(180kHz)

(15) EXT "H" On Resistance vs. Power Supply Voltage

XC9105D092MR(180kHz)

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(16) EXT "L" On Resistance vs. Power Supply Voltage

XC9105D092MR(180kHz)

(18) Operation Hold Voltage vs. Ambient Temperature

Ambient Temperature: $\mathrm{Ta}\left({ }^{\circ} \mathrm{C}\right)$
(20) Supply Current 1 vs. Power Supply Voltage

(17) Operation Start Voltage vs. Ambient Temperature

(19) Oscillation Start Voltage vs. Ambient Temperature

XC9105D092MR (180kHz,3.3V)

Ambient Temperature: $\mathrm{Ta}\left({ }^{\circ} \mathrm{C}\right)$
(21) Supply Current 2 vs. Power Supply Voltage

XC9105D093/095MR(300,500kHz)

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(22) Oscillation Frequency vs. Power Supply Voltage

(24) PFM Duty Ratio vs. Power Supply Voltage
(23) Maximum Duty Cycle vs. Power Supply Voltage

XC9105D093/095MR(300,500kHz)

- PACKAGING INFORMATION

-SOT-25

OUSP-6B
Unit : mm

■PACKAGING INFORMATION (Continued)

-USP-6B Reference Pattern Layout

-USP-6B Reference Metal Mask Design

MARKING RULE

-SOT-25

(1) represents product series

MARK	PRODUCT SERIES
3	XC9103x09xMx
4	XC9104x09xMx
5	XC9105x09xMx

(2) represents current limit function

MARK	FUNCTIONS	PRODUCT SERIES
B	With current limit function	XC9103/9104/9105B09xMx
D	Without current limit function	XC9103/9104/9105D09xMx

(3) represents oscillation frequency

MARK	OSCILLATION FREQUENCY	PRODUCT SERIES
1	100	$\mathrm{XC9103/9104/9105} \mathrm{\times 091Mx}$
2	180	$\mathrm{XC9103/9104/9105} \mathrm{\times 092Mx}$
3	300	$\mathrm{XC9103/9104/9105} \mathrm{\times 093Mx}$
5	500	$\mathrm{XC9103/9104/9105} \mathrm{\times 095Mx}$

(4) represents production lot number 0 to 9 and A to Z, reversed character of 0 to 9 and A to Z repeated.
(G, I, J, O, Q, W excluded)
(1) represents product series

MARK	PRODUCT SERIES
6	XC9103x09xDx
Y	XC9104x09xDx
9	XC9105x09xDx

(2) represents current limit function

MARK	FUNCTIONS	PRODUCT SERIES
B	With current limit function	XC9103/9104/9105B09xDx
D	Without current limit function	XC9103/9104/9105D09xDx

(3)(4) represents FB voltage value

MARK		FB VOLTAGE	PRODUCT SERIES
(3)	4		
0	9	09	

(5) represents oscillation frequency

MARK	OSCILLATION FREQUENCY	PRODUCT SERIES
1	100	XC9103/9104/9105x091Dx
2	180	XC9103/9104/9105x092Dx
3	300	XC9103/9104/9105x093Dx
5	500	XC9103/9104/9105x095Dx

(6) represents production lot number 0 to 9 and A to Z repeated. (G, I, J, O, Q, W excluded) Note: No character inversion used.

1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.
(e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)
5. Please use the products listed in this datasheet within the specified ranges.

Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
6. We assume no responsibility for damage or loss due to abnormal use.
7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

TOREX SEMICONDUCTOR LTD.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Torex Semiconductor manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X MP2374DS-LF-Z FAN48610BUC45X FAN48617UC50X R3 430464BB FAN53611AUC12X MAX809TTR NCV891234MW50R2G AST1S31PUR NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG SCY1751FCCT1G NCP81109JMNTXG NCP81241MNTXG MP2388GQEU-Z MPQ4481GU-AEC1-P MPQ2171GJ-P IR3888MTRPBFAUMA1 MPQ2171GJ-AEC1-P MP2171GJ-P NCV1077CSTBT3G MP28160GC-Z LTM4691EV\#PBF XCL207A123CR-G XDPE132G5CG000XUMA1 XDPE12284C0000XUMA1 MP5461GC-P MIC23356YFT-TR XC9236D08CER-G ISL95338IRTZ TPS55162QPWPRQ1 MP3416GJ-P BD9S201NUX-CE2 ISL9113AIRAZ-T MP5461GC-Z MPQ2172GJ-AEC1-Z MPQ4415AGQB-Z MPQ4590GS-Z FAN53526UC224X S-19903DA-A8T1U7 S-19903CA-A6T8U7 S-19915BA-A8T1U7 S-19903CA-S8T1U7 S-19902BAA6T8U7 S-19914AA-A8T1U7 S-19902CA-A6T8U7

[^0]: \qquad

[^1]: * Please select your external components carefully.

