16V Driver Transistor Built-In Step-Down DC/DC Converters

GENERAL DESCRIPTION

XC9246/XC9247 series is a 16V step-down DC/DC converter with a built-in driver transistor. The series provides high efficiency, and a stable power supply with output currents up to 1A. The series is designed for use with small ceramic capacitors.
The series has a 1.0 V reference voltage, and using externally connected resistors, the output voltage can be set freely. With an internal switching frequency of 1.2 MHz , small external components can be used. The soft-start time is internally set to 1.5 ms (TYP.), but can be adjusted to set a longer time using an external resistor and capacitor.
As for operation mode, the XC9246 series is PWM control and the XC9247 series is automatic PWM/PFM switching control. In PWM/PFM switching control mode, provides fast response, low ripple and high efficiency over the full range of loads (from light load to heavy load).
With the UVLO (Under Voltage Lock Out) function, the internal driver transistor is forced OFF when input voltage becomes lower than detect voltage. The series includes current limit, thermal shutdown, and short-circuit protection.
Two types of package SOT-26W and USP-6C are available.

APPLICATIONS

- LCD-TVs
-BD/HDD recorders
- Set top box
- Home video game consoles
- Multifunction printers

■FEATURES
Input Voltage
Output Voltage Range
Output Current

Efficiency
Oscillation Frequency
Maximum Duty Cycle
Soft-start Time

Control Methods

Protection Circuits

UVLO
Output Capacitor
Operating Ambient Temperature
Packages
Environmentally Friendly
: 4.5V~16V
(The $\mathrm{V}_{\text {IN }}$ range depends on the product)
: $1.2 \mathrm{~V} \sim 5.6 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{FB}}=1.0 \mathrm{~V}\right)$
(The Vout range depends on the product)
: $1 \mathrm{~A}\left(\mathrm{~V}_{\mathrm{IN}} \geqq 6 \mathrm{~V}\right.$ and $\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {IN }} \leqq 50 \%$)
1 A (Vin $<6 \mathrm{~V}$ and $\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {IN }} \leqq 40 \%$)
: $90 \%\left(\mathrm{~V}_{\text {IN }}=12 \mathrm{~V}\right.$, V $_{\text {out }}=5 \mathrm{~V}$, lout $\left.=200 \mathrm{~mA}\right)$
: 1.2 MHz
: 80\%
: Internally fixed 1.5 ms
Adjustable by RC
: PWM Control (XC9246) PWM/PFM Automatic switching control (XC9247)
: Current limiter (Integral Latching)
Thermal shutdown
Short-circuit protection
: 4.15V, 5.65V, 7.65V
: Ceramic Capacitor Compatible
: $-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
: USP-6C, SOT-26W
: EU RoHS Compliant, Pb Free

-TYPICAL APPLICATION CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS

BLOCK DIAGRAM ${ }^{(* 1)(* 2)(* 3)}$

${ }^{\left({ }^{* 1)}\right)}$ Diodes inside the circuit are an ESD protection diode and a parasitic diode.
${ }^{\left({ }^{*}\right)}$) The XC9246 offers a fixed PWM control, a Control Logic to PWM/PFM Selector is fixed internally.
${ }^{\left({ }^{*} 3\right)}$ The XC9247 control scheme is a fixed PWM/PFM automatic switching, a Control Logic to PWM/PFM Selector is fixed internally.

PRODUCT CLASSIFICATION

- Ordering Information

XC9246B(1)(2)(4)(5)-6) PWM Control
XC9247B(1)(2)(4)(5)-6) PWM/PFM Automatic switching control

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION
(1)(2)	UVLO Release Voltage	42	$4.15 \mathrm{~V}(1.2 \mathrm{~V} \leqq$ Vout $\leqq 2.7 \mathrm{~V})$
		65	5.65 V (1.2V \leqq Vout $\leqq 3.8 \mathrm{~V}$)
		75	$\begin{aligned} & 7.65 \mathrm{~V} \\ & \left(\mathrm{XC} 9246: 1.5 \mathrm{~V} \leqq \mathrm{Vout}_{\text {out }} \leqq 5.0 \mathrm{~V}\right) \\ & (\mathrm{XC9247:} 1.5 \mathrm{~V} \leqq \mathrm{Vout} \leqq 5.6 \mathrm{~V}) \end{aligned}$
(3)	Oscillation Frequency	C	1.2MHz
(4)(5)-6 (*1)	Packages (Order Unit)	ER-G	USP-6C (3,000pcs/Reel)
		MR-G	SOT-26W (3,000pcs/Reel)

${ }^{(* 1)}$ The "-G" suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.

- Selection Guide

TYPE	EN/SS	CURRENT LIMIT	LATCH	UVLO	THERMAL SHUTDOWN
B	Yes	Yes	Yes	Yes	Yes

IPIN CONFIGURATION

USP-6C
(BOTTOM VIEW)
 mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to the GND (No. 5) pin.

■PIN ASSIGNMENT

PIN NUMBER		PIN NAME	FUNCTIONS
SOT-26W	USP-6C		
1	6	BST	Ground
2	5	GND	Output Voltage Monitor
3	4	FB	Enable Soft-start
4	3	EN/SS	Power Input
5	2	VIN	Switching Output
6	1	Lx	

■FUNCTION

PIN NAME	SIGNAL	STATUS
EN/SS $\left.{ }^{*}{ }^{*} 1\right)$	L	Stand-by
	H	Active

${ }^{(* 1)}$ Please do not leave the EN/SS pin open.

ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNITS
Vin Pin Voltage		VIN	$-0.3 \sim+22.0$	V
BST Pin Voltage		$V_{\text {bSt }}$	$\begin{gathered} -0.3 \sim+22.0 \\ \text { and } \\ L x-0.3 \sim L x+6.0 \end{gathered}$	V
FB Pin Voltage		$V_{\text {FB }}$	-0.3~+6.0	V
EN/SS Pin Voltage		$\mathrm{V}_{\text {EN/Ss }}$	-0.3~+22.0	V
Lx Pin Voltage		VLX	$-0.3 \sim \mathrm{~V}_{\text {IN }}+0.3$ or $\mathrm{V}_{\text {BST }}+0.3$ or 22.0 (*1)	V
Lx Pin Current		ILx	4000	mA
Power Dissipation	SOT-26W	Pd	250	mW
			600 (40mm x 40mm standard board) ${ }^{\left({ }^{(2)}\right)}$	
	USP-6C		120	
			1000 (40mm $\times 40 \mathrm{~mm}$ standard board) ${ }^{(2)}$	
			1250 (JEDEC board) ${ }^{\left({ }^{(2)}\right)}$	
Operating Ambient Temperature		Topr	-40~+85	${ }^{\circ} \mathrm{C}$
Storage Temperature		Tstg	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

All voltages are described based on the AGND and PGND pin.
${ }^{(* 1)}$ The maximum value is the lowest one among $\mathrm{V}_{\mathrm{IN}}+0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{BST}}+0.3 \mathrm{~V}$ or +22 V .
${ }^{\left({ }^{*} 2\right)}$ The power dissipation figure shown is PCB mounted and is for reference only.
Please see the power dissipation page for the mounting condition

IELECTRICAL CHARACTERISTICS

$\mathrm{Ta}=25^{\circ} \mathrm{C}$							
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
FB Voltage	$\mathrm{V}_{\text {FB }}$	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN} / \mathrm{SS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.9 \mathrm{~V} \rightarrow 1.1 \mathrm{~V}$ Voltage to start oscillation while		D1 ${ }^{(11)}$		V	(2)
Operating Voltage Range	$\mathrm{V}_{\text {IN }}$	-		D2 ${ }^{(11)}$		V	(1)
Maximum Output Current	Ioutmax	-	1000	-	-	mA	(1)
UVLO Detection Voltage	Vuvlod	$\begin{array}{\|l} \hline V_{\text {EN/SS }}=5 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=0.9 \mathrm{~V} \\ \text { Voltage which } \mathrm{Lx} \text { pin holding "L" level ("6) } \\ \hline \end{array}$		D3 ${ }^{(11)}$		V	(2)
UVLO Release Voltage	Vuvlor	$\mathrm{V}_{\mathrm{EN} / \mathrm{SS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.9 \mathrm{~V}$ Voltage to start oscillation while		D4 ${ }^{(11)}$		V	(2)
UVLO Hysteresis Voltage	VuvLohys	-		D5 ${ }^{(11)}$		V	-
Supply Current	I_{q}	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {EN/SS }}=5 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=1.1 \mathrm{~V}$	-	150	300	$\mu \mathrm{A}$	(3)
Stand-by Current	$\mathrm{I}_{\text {¢тв }}$	$\mathrm{V}_{\text {IN }}=16 \mathrm{~V}, \mathrm{~V}_{\text {EN/Ss }}=0 \mathrm{~V}$	-	6	15	$\mu \mathrm{A}$	(3)
Oscillation Frequency	fosc	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {ENSS }}=5 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=0.9 \mathrm{~V}$	1020	1200	1380	kHz	(2)
Maximum Duty Cycle	$\mathrm{D}_{\text {max }}$	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {EN/S }}=5 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=0.9 \mathrm{~V}$	72	80	88	\%	(2)
Minimum Duty Cycle	$\mathrm{D}_{\text {MIN }}$	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {EN/SS }}=5 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=1.1 \mathrm{~V}$	-	-	0	\%	(2)
PFM Switch Current ${ }^{\left({ }^{(2)}\right.}$	Ipfm	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN} / \mathrm{SS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=10 \mathrm{~mA}$ When connected to external components	-	300	-	mA	(1)
PFM Duty Limit ${ }^{\left({ }^{(2)} \text {) }\right.}$	DTY LIMIT_PFM	-	-	200	-	\%	(1)
Lx SW ON Resistance	R_{Lx}	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {EN/SS }}=5 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=0.9 \mathrm{~V}$	-	$0.35{ }^{(4)}$	$0.5{ }^{(4)}$	Ω	-
Current Limit ${ }^{(+5)}$	lıIM	$\mathrm{V}_{1 N}=12 \mathrm{~V}, \mathrm{~V}_{\text {EN/SS }}=5 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=0.9 \mathrm{~V}$	1600	2500	-	mA	(2)
Integral Latch Time	tLat	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {ENSS }}=5 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=0.9 \mathrm{~V}$	0.75	1.5	3	ms	(2)
Short Detect Voltage	$\mathrm{V}_{\text {SHort }}$	Sweeping $\mathrm{V}_{\mathrm{FB}}, \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN} / \mathrm{SS}}=5 \mathrm{~V}$, Short $\mathrm{V}_{\text {Out }}$ at 1Ω Resistance, V_{FB} voltage which Lx becomes " L " level within $300 \mu s$	0.3	0.5	0.7	V	(4)
Internal Soft-start Time	tss 1	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {EN/SS }}=0 \mathrm{~V} \rightarrow 5 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=0.9 \mathrm{~V}$	0.75	1.5	3	ms	(2)
External Soft-start Time	tss^{2}	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN} / \mathrm{SS}}=0 \mathrm{~V} \rightarrow 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.9 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{SS}}=120 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{SS}}=0.47 \mu \mathrm{~F} \end{aligned}$ When connected to external components	18	26	35	ms	(5)
Efficiency	EFFI	Target Output Voltage $=5.0 \mathrm{~V}$ $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=200 \mathrm{~mA}^{\left({ }^{(3)}\right)}$	-	90	-	\%	(1)
Output Voltage Temperature Characteristics	$\begin{gathered} \Delta \mathrm{V}_{\text {out }} \\ \left(\mathrm{V}_{\text {out }} \cdot \Delta \mathrm{Topr}\right) \end{gathered}$	$\begin{aligned} & \hline \text { lout }=100 \mathrm{~mA} \\ & -40^{\circ} \mathrm{C} \leqq \mathrm{Topr} \leqq 85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	-	± 100	-	ppm $/{ }^{\circ} \mathrm{C}$	(1)
Thermal Shutdown Temperature	$\mathrm{T}_{\text {TSD }}$	-	-	150	-	${ }^{\circ} \mathrm{C}$	-
Hysteresis Width	$\mathrm{T}_{\mathrm{HYS}}$	- ${ }^{\text {a }}$	-	20	-	${ }^{\circ} \mathrm{C}$	-
EN/SS "H" Voltage	$V_{\text {EN/SSH }}$	$\begin{aligned} & \hline \mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=\mathrm{V}_{\mathrm{FB}(\mathrm{E})}-10 \mathrm{mV}{ }^{\left({ }^{(7)}\right),} \\ & \mathrm{V}_{\mathrm{EN} / \mathrm{SS}}=5 \mathrm{~V} \rightarrow 1 \mathrm{~V}, \text {, Voltage to stop oscillation while } \\ & \hline \end{aligned}$	-	2.0	2.5	V	(2)
EN/SS "L" Voltage	$V_{\text {ENSSLL }}$	$\begin{array}{\|l\|} \hline \mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{ENSS}}=5 \mathrm{~V} \rightarrow 0 \mathrm{~V} \text {, Voltage to stop oscillation while } \\ \hline \end{array}$	0.4	-	-	V	(2)
EN/SS "H" Current	$\mathrm{I}_{\text {EN/SSH }}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {EN/S }}=16 \mathrm{~V}$	-	7	15	$\mu \mathrm{A}$	(6)
EN/SS "L" Current	$I_{\text {ENSSL }}$	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {EN/Ss }}=0 \mathrm{~V}$	-0.1	-	0.1	$\mu \mathrm{A}$	(6)
FB "H" Current	$\mathrm{I}_{\text {FbH }}$	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {ENSS }}=0 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=5.5 \mathrm{~V}$	-0.1	-	0.1	$\mu \mathrm{A}$	(6)
FB "L" Current	$\mathrm{I}_{\text {fbL }}$	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {ENSS }}=0 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=0 \mathrm{~V}$	-0.1	-	0.1	$\mu \mathrm{A}$	(6)
Lx "L" Current	ILxL	$\mathrm{V}_{\mathbb{N}}=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN} / S S}=5 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=1.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{Lx}}=0 \mathrm{~V}$	-7.5	-4	-	$\mu \mathrm{A}$	(7)

Unless otherwise stated, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN} / \mathrm{ss}}=5 \mathrm{~V}$
${ }^{\left({ }^{*} 1\right)}$ Please refer to SPEC Table below.

${ }^{(* 3)}$ EFFI=[(output voltage x output current) $\div($ input voltage x input current) $] \times 100$
${ }^{(* 4)}$ Design value

(*6) "H"= $\mathrm{V}_{\text {IN }} \sim \mathrm{V}_{\text {IN }}-1.2 \mathrm{~V}, ~ " \mathrm{~L} "=+0.1 \mathrm{~V} \sim-0.1 \mathrm{~V}$
${ }^{\left({ }^{*}\right)} \mathrm{V}_{\mathrm{FB}(\mathrm{E})}$ is effective value of FB voltage.

ELECTRICAL CHARACTERISTICS (Continued)
SPEC Table

No.	PARAMETER	SYNBOL	SOT-26W			USP-6C			UNITS
			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
D1	FB Voltage	$\mathrm{V}_{\text {FB }}$	0.985	1.000	1.015	0.98	1.00	1.02	V

No.	PARAMETER	SYNBOL	XC9246B42/XC9247B42			XC9246B65/XC9247B65			XC9246B75/XC9247B75			UNITS
			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
D2	Operating Voltage Range	$\mathrm{V}_{\text {IN }}$	4.5	-	16.0	6.0	-	16.0	8.0	-	16.0	V
D3	UVLO Detection Voltage	V uvlod	3.7	4.0	-	4.8	5.5	-	6.9	7.4	-	V
D4	UVLO Release Voltage	V uvlor	-	4.15	4.48	-	5.65	5.98	-	7.65	7.98	V
D5	UVLO Hysteresis Voltage	V UVLOHYS	-	0.12	-	-	0.15	-	-	0.25	-	V

TEST CIRCUITS

〈Circuit No．（1）〉

〈Circuit No．（3）＞

＊External components
$\mathrm{C}_{\mathbb{N}}: 10 \mu \mathrm{~F}$（ceramic）
${ }^{\mathrm{C}_{\mathrm{N}}: 10 \mu \mathrm{~F} \text {（ceramic）}}$
$\mathrm{C}_{\mathrm{L}}: 22 \mu \mathrm{~F}$（ceramic）
$\mathrm{C}_{\text {BST }} 0.022 \mu \mathrm{~F}$（ceramic）
$\mathrm{L}: 4.7 \mu \mathrm{H}$
SBD：XBS204S19R－G

TEST CIRCUITS (Continued)

<Circuit No.(5)>

〈Circuit No.(6)>

〈Circuit No.(7)>

■TYPICAL APPLICATION CIRCUIT

【Typical Examples】

	MANUFACTURER	PRODUCT NUMBER	VALUE
L	Coilcraft	XFL4020－332MEB	$3.3 \mu \mathrm{H}$
	Coilcraft	XFL4020－472MEB	$4.7 \mu \mathrm{H}$
	TDK	VLP4045LT－4R7M	$4.7 \mu \mathrm{H}$
	TDK	VLP4045LT－6R8M	$6.8 \mu \mathrm{H}$
SBD（＊）	TOREX	XBS204S19R	$\mathrm{VF}=0.42 \mathrm{~V}(1 \mathrm{~A})$
	TOREX	XBS203V19R	$\mathrm{VF}=0.305 \mathrm{~V}(1 \mathrm{~A})$
	SHINDENGEN	D1FJ4	$\mathrm{VF}=0.48 \mathrm{~V}(1 \mathrm{~A})$
	VISHAY	SS2P3L	$\mathrm{VF}=0.45 \mathrm{~V}(2 \mathrm{~A})$
	TOSHIBA	CMS17	$\mathrm{VF}=0.42 \mathrm{~V}(1 \mathrm{~A})$
Cin	TDK	C2012X5R1E106K	$10 \mu \mathrm{~F} / 25 \mathrm{~V}$
	TAIYO YUDEN	TMK316BJ106KL	$10 \mu \mathrm{~F} / 25 \mathrm{~V}$
C_{L}	TDK	C2012X5R1A106K	$10 \mu \mathrm{~F} / 10 \mathrm{~V}$ 2parallel
	TAIYO YUDEN	LMK212ABJ106KG	$10 \mu \mathrm{~F} / 10 \mathrm{~V} 2 \mathrm{parallel}$
$\mathrm{CbST}^{\text {ct }}$	－	－	$0.22 \mu \mathrm{~F} / 10 \mathrm{~V}$

${ }^{(* 1)}$ The Inter－Terminal Capacitance of the schottky barrier diode should be around 180pF．
Ct Test Conditions： $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}$

【Recommended L Value and Vout Range】

Vout	Recommended LValue ${ }^{\left({ }^{*} 1\right)}$	
$1.2 \mathrm{~V} \leqq$ V OUT $\leqq 3.5 \mathrm{~V}$	$3.3 \mu \mathrm{H}$	$4.7 \mu \mathrm{H}$
$3.5 \mathrm{~V}<$ V OUT $_{\text {OU }} \leqq 4.0 \mathrm{~V}$	-	$4.7 \mu \mathrm{H}$
$4.0 \mathrm{~V}<$ V OUT $\leqq 5.6 \mathrm{~V}$	-	$6.8 \mu \mathrm{H}$

[^0]
TYPICAL APPLICATION CIRCUIT（Continued）

＜Output Voltage Setting＞
The output voltage can be set by connecting external dividing resistors．The output voltage is determined by the values of $\mathrm{R}_{\mathrm{FB} 1}$ and $\mathrm{R}_{\mathrm{FB} 2}$ as given in the equation below．The total of $\mathrm{R}_{\mathrm{FB} 1}$ and $\mathrm{R}_{\mathrm{FB} 2}$ should be less than $100 \mathrm{k} \Omega$ or less．Output voltage range can be set freely from 1.2 V to 5.6 V with a 1.0 V reference voltage．（The step down ratio is determined based on the version．Refer to the＂Output voltage range classified by product＂graph below．）However，it should be noted that the output voltage can not be stable when $\mathrm{V}_{\mathbb{I}}=16 \mathrm{~V}$ and $\mathrm{V}_{\text {out }}=1.2 \mathrm{~V}$ so please set the step down ration under the condition of $V_{\text {Out }} / V_{\operatorname{IN}} \times 100 \geqq 18 \%$

$$
V_{\text {OUT }}=1.0 \times\left(R_{F B 1}+R_{F B 2}\right) / R_{F B 2}
$$

Adjust the value of the phase compensation speed－up capacitor $C_{F B}$ so that $f_{z f p}=1 /\left(2 \times \pi \times C_{F B} \times R_{F B 1}\right)$ is about 20 kHz ．
Adjustments are required from 10 kHz to 50 kHz depending on the application，value of inductance（L），and value of load capacitance（ C_{L} ）．

【Examples】

When $R_{F B 1}=30 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{FB} 2}=7.5 \mathrm{k} \Omega$ ， $\mathrm{V}_{\text {out }}=1.0 \times(30 \mathrm{k} \Omega+7.5 \mathrm{k} \Omega) / 7.5 \mathrm{k} \Omega=5 \mathrm{~V}$
When $\mathrm{C}_{\mathrm{Fb}}=270 \mathrm{pF}, \mathrm{fzfb}=1 /(2 \times \pi \times 270 \mathrm{pF} \times 30 \mathrm{k} \Omega)=19.65 \mathrm{kHz}$

【Typical Examples】

$V_{\text {OUT }}(\mathrm{V})$	$\mathrm{R}_{\text {FB1 } 1}(\mathrm{k} \Omega)$	$\mathrm{R}_{\mathrm{FB} 2}(\mathrm{k} \Omega)$	$\mathrm{C}_{\mathrm{FB}}(\mathrm{pF})$	$\mathrm{V}_{\text {OUT }}(\mathrm{V})$	$\mathrm{R}_{\mathrm{FB} 1}(\mathrm{k} \Omega)$	$\mathrm{R}_{\mathrm{FB2} 2}(\mathrm{k} \Omega)$	$\mathrm{C}_{\mathrm{FB}}(\mathrm{pF})$
1.2	15	75	510	2.5	36	24	220
1.5	18	36	430	3.0	36	18	220
1.8	24	30	330	3.3	62	27	130
2.0	47	47	160	5.0	30	7.5	270

Output voltage range classified by product

TYPICAL APPLICATION CIRCUIT (Continued)

<C BST Setting>
$0.22 \mu \mathrm{~F}$ is recommended for the $\mathrm{C}_{\text {вSt }}$ capacitance when $\mathrm{C}_{\llcorner }=22 \mu \mathrm{~F}$. Do not fix it at $\mathrm{C}_{\text {BST }}=0.22 \mu \mathrm{~F}$ for all conditions but rather change it depending on the $\mathrm{C}_{\llcorner }$capacitance ${ }^{\left({ }^{(1)}\right)}$.
As a guideline, make it about C_{L} : $\mathrm{C}_{\mathrm{BST}}=100: 1$.
${ }^{(* 1)}$ Think of the C_{L} capacitance as the total capacitance connected to the $V_{\text {OUT }}$ of XC9246/XC9247.

【CBST Optimum Settings】

$\mathrm{C}_{\mathrm{L}}(\mu \mathrm{F})$	$\mathrm{C}_{\mathrm{BST}}(\mu \mathrm{F})$
$\mathrm{C}_{\mathrm{L}} \leqq 22$	0.22
$22<\mathrm{C}_{\mathrm{L}} \leqq 47$	0.47
$47<\mathrm{C}_{\mathrm{L}} \leqq 100$	1
$100<\mathrm{C}_{\mathrm{L}} \leqq 220$	2.2

<Soft-start Time Setting>
The Vref voltage applied to the error amplifier is restricted by the start-up voltage of the EN/SS pin. This ensures that the error amplifier operates with its two inputs in balance, thereby preventing ON-time signal from becoming longer than necessary.
Therefore, start-up time of the EN/ESS pin becomes the set-time of soft-start. The soft-start time can be adjusted by adding a capacitor and a resistor to the EN/SS pin. If the EN/SS pin voltage rises steeply without connecting Css and Rss ($\mathrm{Rsss}_{\mathrm{ss}}=0 \Omega$), Output rises with taking the soft-start time of 1.5 ms (TYP.) which is fixed internally. The soft-start function operates when the voltage at the EN/SS pin is between 0.4 V to 2.5 V . If the voltage at the EN/SS pin does not start from 0 V but from a mid level voltage when the power is switched on, the soft-start function will become ineffective and the possibilities of large inrush currents and ripple voltages occurring will be increased. Soft-start time is approximated by the equation below according to values of Ven, Rss, and Css.

$$
t s s=-C s s \times R s s \times \ln \left\{\left(V_{E N / S S}-2\right) / V_{E N / S s}\right\}
$$

Example: When Css $=0.47 \mu \mathrm{~F}$, Rss=120k Ω and $\mathrm{V}_{\text {EN } / S s}=5 \mathrm{~V}$, tss $=-0.47 \times 10^{-6} \times 120 \times 10^{3} \times \ln ((5-2) / 5)=29 \mathrm{~ms}$ (Approx.)

* When $R_{s s}=0 \Omega$ and $C_{s s}=0 F$, the soft-start time is 1.5 ms (TYP.) and it's set internally.

> > Circuit Example1: N-ch Open Drain
> Circuit Examle2: CMOS logic (low current dissipation)
$>$ Cicuit Examle3: CMOS logic (low current dissipation, quick off)

OPERATIONAL EXPLANATION

The XC9246/XC9247 series consists of a reference voltage source (Vref), an internal reference voltage source (VL), ramp wave circuit, error amplifier, PWM comparator, phase compensation circuit, N-ch MOS driver transistor, current limiter circuit, short protection circuit, UVLO circuit, thermal shutdown circuit, over voltage protection, load disconnect control and others. (See the BLOCK DIAGRAM below.)
By using the error amplifier, the FB pin voltage is compared with the reference voltage. The error amplifier output is sent to the PWM comparator in order to determine the duty cycle of PWM switching. The signal from the error amplifier is compared with the ramp wave from the ramp wave circuit, and the resulting output is delivered to the buffer driver circuit to provide on-time of the duty cycle at the LX pin. This process is continuously performed to ensure stable output voltage.
The current feedback circuit monitors the N-ch MOS driver transistor current for each switching operation, and modulates the error amplifier output signal to provide multiple feedback signals. This enables a stable feedback loop even when using a low ESR capacitor such as ceramic, which results in ensuring stable output voltage.

<Reference Voltage Source>
The reference voltage source (Vref voltage) provides the reference voltage to ensure stable output voltage of the DC/DC converter.

<Ramp Wave Circuit>

The ramp wave circuit determines switching frequency. The frequency is fixed 1.2 MHz internally. Clock pulses generated in this circuit are used to produce ramp waveforms needed for PWM operation, and to synchronize all the internal circuits.

<Error Amplifier>

The error amplifier is designed to monitor output voltage. The amplifier compares the reference voltage with the feedback voltage. When a voltage lower than the reference voltage is fed back, the output voltage of the error amplifier increases. The gain and frequency characteristics of the error amplifier output are fixed internally to deliver an optimized signal to the mixer. The error amplifier output signal optimized in the mixer is modulated with the current feedback signal. This signal is delivered to the PWM comparator.

OPERATIONAL EXPLANATION (Continued)
 <Current Limit>

The current limit circuit monitors the current flowing through the N-ch MOS driver transistor, and features a combination of the current limit mode and the operation suspension mode.
(1) When the driver current is greater than a specific level, the current limit operates to turn off the pulses from the LX pin at any given timing.
(2) When the N-ch MOS driver transistor is turned off, the limiter circuit is then released from the current limit detection state.
(3) At the next pulse, the N -ch MOS driver transistor is turned on. However, the N -ch MOS transistor is immediately turned off in the case of an over current state.
(4) When the over current state is eliminated, the IC resumes its normal operation.

As (1) to (3) are repeated and an over-current state continues for about $20 \mu \mathrm{~s}$, the off period of the N -ch MOS driver Tr.will be longer to prevent from DC overlapping of the coil current. The over-current state continues for several ms. and as (1) to (3) are repeated, the off state of the N-ch MOS driver will be latched and IC will be stopped. Once IC is in the state, operation can be resumed by feeding H-level to EN/SS pin after L-level is fed to the pin, or by turning the VIN power off and turning it on again. Under the function-stop state, clock is stopped, however it is not the shutdown state. So the internal circuitries operate. The current limiting value is 2500 mA typically.
The latch time may be longer than spec., or the latch situation may not happen in spite of the over-current condition due to the ambient noise or the allocation of external components on PCB. Putting the input capacitor to IC as close as possible is recommended.

<Thermal Shutdown>
For protection against heat damage of the ICs, thermal shutdown function monitors chip temperature. The thermal shutdown circuit starts operating and the N-ch MOS driver transistor will be turned off when the chip's temperature reaches $150^{\circ} \mathrm{C}$. When the temperature drops to $130^{\circ} \mathrm{C}$ or less after shutting of the current flow, the IC performs the soft-start function to initiate output startup operation.

<UVLO Circuit>

When the $\mathrm{V}_{\text {IN }}$ voltage becomes 4.0V (XC9246B42 / XC9247B42) either 5.5V (9246B65 / XC9247B65) and 7.4V (9246B75 / XC9247B75) or lower, the N-ch MOS driver transistor is forced OFF to prevent false pulse output caused by unstable operation of the internal circuitry. When the V_{IN} voltage becomes 4.15 V (TYP.) either 5.65 V (TYP.) and 7.65 V (TYP.) or higher, switching operation takes place. By releasing the UVLO function, the IC performs the soft-start function to initiate output startup operation. The soft-start function operates even when the VIN voltage falls momentarily below the UVLO detect voltage. The UVLO circuit does not cause a complete shutdown of the IC, but causes pulse output to be suspended; therefore, the internal circuitry remains in operation.

<Boot Strap Method>

An N -ch MOS driver transistor is used in the high side driver, so a voltage higher than the V_{IN} voltage is required in order to turned the driver on. Therefore, the boot strap method is used to generate a voltage that is higher than the $V_{\text {IN }}$ voltage. The boot strap method is connecting the $C_{B S T}$ capacitor between the BST-Lx to cause the $V_{L x}$ to be lower than the $V_{L}\left(V_{L}\right.$ voltage $=$ 4 V), which is the internal power supply, so that the V_{L} charges the $C_{B S T}$. Charging the $\mathrm{C}_{B S T}$ requires more than a certain time when $V_{L x}$ is $O V$ or less. If the load current is below several mA , sufficient time to charge the $\mathrm{C}_{B S T}$ cannot be obtained, so oscillation might stop, but the product compulsorily increases the load current to provide stable operation even at light loads.

OPERATIONAL EXPLANATION (Continued)

<Short-Circuit Protection>

Vout voltage is observed with the voltage at FB pin (hence FB voltage) and the voltage is produced by RFB1 and RFB2 which are connected between Vout and GND. And in the event that Vout is shorted to GND accidentally, the FB voltage drops to one half of the reference voltage or less, and if a current which is greater than ILı flows to the driver, the short-circuit protection is activated instantaneously and turns off the driver and the driver latches. Once IC is in the latch state, operation can be resumed by feeding H-level to EN/SS pin after L-level is fed to the pin, or by turning the Vin power off and turning it on again. In this case, Vin should go down to lower voltage than UVLO detect voltage, and after that Vin should go up to higher voltage than UVLO release voltage.
<PFM Switch Current> (*1)
In PFM control operation, until coil current reaches to a specified level (IPFM), the IC keeps the N-ch MOS driver transistor on. In this case, time that the N-ch MOS driver transistor is kept on (ton) can be given by the following formula. \rightarrow IpFm(1)

$$
t_{O N}=L \times I_{\text {PFM }} /\left(V_{I N}-V_{\text {OUT }}\right)
$$

< PFM Duty Limit > (${ }^{* 1}$)
In the PFM control operation, the PFM Duty Limit (DTYLIMIT_PFM) is set to 200% (TYP.). Therefore, under the condition that the duty increases (e.g. the condition that the step-down ratio is small), it's possible for N-ch MOS driver transistor to be turned off even when coil current does not reach to IPFM. \rightarrow IPFM(2)
${ }^{(* 1)}$ XC9246 series excluded.

$\mathrm{I}_{\text {PFM }}(1)$

IPFM (2)

NOTE ON USE

1. For the phenomenon of temporal and transitional voltage decrease or voltage increase, the IC may be damaged or deteriorated if IC is used beyond the absolute MAX. Specifications.
2. Make sure that the absolute maximum ratings of the external components and of this IC are not exceeded.
3. The DC/DC converter characteristics depend greatly on the externally connected components as well as on the characteristics of this IC, so refer to the specifications and standard circuit examples of each component when carefully considering which components to select. Be especially careful of the capacitor characteristics and use B characteristics (JIS standard) or X7R, X5R (EIA standard) ceramic capacitors.
4. If there is a large dropout voltage, then a stable output voltage will not always be supplied under all conditions. Please use it under the condition of $\mathrm{V}_{\text {out }} / \mathrm{V}_{\operatorname{IN}} \times 100 \geqq 18 \%$. The operation might become unstable if used under 18%.
5. If there is a large dropout voltage, then there might be pulse-skip during light loads even with PWM control.
6. The DC/DC converter of this IC uses a current-limiting circuit to monitor the coil peak current. If the potential dropout voltage is large or the load current is large, the peak current will increase, which makes it easier for current limitation to be applied which in turn could cause the operation to become unstable. When the peak current becomes large, adjust the coil inductance and sufficiently check the operation. The following formula is used to show the peak current.
```
Peak Current: Ipk = (VIN - Vout ) > OnDuty / (2 < L x fosc) + lout
    L: Coil Inductance
    fosc: Oscillation Frequency
```

7. If an over-current (peak current) that exceeds the current limitation flows for a set time, N-ch MOS driver transistor is turned off (integral latch circuit). The current limited portion of the current will flow during the time from when the over-current is detected until N-ch MOS driver transistor is turned off, so be careful about the coil ratings.
8. If there is a large dropout voltage, a circuit delay could create the ramp-up of coil current with staircase waveform exceeding the current limit.
9. When the over-current state continues for $20 \mu \mathrm{~s}$, the driver off time is lengthened to prevent superimposing of the coil current. The lengthened driver off time causes the Vout to lower and thus triggering the short circuit protection without waiting for the integral latch time.
10. If a steep load change occurs, the voltage drop of the Vout voltage is directly transmitted to the FB via the C_{FB}, so the short circuit protection is triggered when the voltage is more than half the Vout voltage.
11. The ripple current might rise during light loads. This is done to charge the $\mathrm{C}_{\mathrm{BSt}}$ to ensure normal operation. Although it depends on the input and output conditions, this can be improved by pulling a load of several mA.
12. When using $\mathrm{C}_{\llcorner }=22 \mu \mathrm{~F}$ or above, also correspondingly increase the $\mathrm{C}_{\text {BST }}$ capacitance. When not using the specified capacitance, the oscillation stops and the output voltage may become unstable.

【CBST Optimum Settings】

$\mathrm{C}_{\mathrm{L}}(\mu \mathrm{F})$	$\mathrm{C}_{\text {BST }}(\mu \mathrm{F})$
$\mathrm{C}_{\mathrm{L}} \leqq 22$	0.22
$22<\mathrm{C}_{\mathrm{L}} \leqq 47$	0.47
$47<\mathrm{C}_{\mathrm{L}} \leqq 100$	1.0
$100<\mathrm{C}_{\mathrm{L}} \leqq 220$	2.2

■NOTE ON USE (Continued)

13. When the voltage difference between input and output is small and the load is light, the voltage between the BST-Lx will lower and prevent driver on/off control, which could cause oscillation to stop and the output voltage to become unstable. Use the specified input-output voltage range and set to the recommended coil inductance each.
Also use about 180 pF for the capacitance between SBD terminals. Using a large capacitance between terminals could cause oscillation stop.

Output voltage range classified by product

【Recommended L Value and Vout Range】

Vout	Recommended L Value	
$1.2 \mathrm{~V} \leqq$ V out $\leqq 3.5 \mathrm{~V}$	$3.3 \mu \mathrm{H}$	$4.7 \mu \mathrm{H}$
$3.5 \mathrm{~V}<$ Vout $_{\text {O }} \leqq 4.0 \mathrm{~V}$	-	$4.7 \mu \mathrm{H}$
$4.0 \mathrm{~V}<$ V out $_{\text {O }} \leqq 5.6 \mathrm{~V}$	-	$6.8 \mu \mathrm{H}$

14. When the input voltage is high and the load is light, the Vout could rise above the set voltage. Use the recommended coil inductance specified for each set voltage. Also please use the SBD which has inter-terminal capacitance of approx. 180pF. The over voltage situation may be caused at the output if the SBD with smaller inter-terminal capacitance than 180pF is used.
15. When using the EN/SS pin to switch between enable status and disable status, switch to the enable status after the Vout voltage has become 1 V or less. When switching to enable status when the Vout is over 1 V , sufficient voltage will not be applied between the BST-Lx, which could cause oscillation stop and the output voltage to become unstable.
16. If the voltage at the EN/SS Pin does not start from $O V$ but it is at the midpoint potential when the power is switched on, the soft start function may not work properly and it may cause the larger inrush current and bigger ripple voltages.
17. When using at an ambient temperature of $-30^{\circ} \mathrm{C}$ or less, use $\mathrm{C}_{\llcorner }=47 \mu \mathrm{~F}$ or higher. Abnormal oscillation may occur at $\mathrm{C}_{\mathrm{L}}=22 \mu \mathrm{~F}$.
18. The ripple voltage could be increased when switching from discontinuous conduction mode to Continuous conduction mode.
19. For the XC9246B42 and XC9247B42, when the IC is operated under $\mathrm{V}_{\mathbb{N}}=5.0 \mathrm{~V}$, the efficiency may get lower significantly in the discontinuous conduction mode.
20. There is the possibility to get the ripple voltage larger in case the peak current is unstable at the light current load in PFM control operation.
21. Torex places an importance on improving our products and their reliability.

We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems.

NOTE ON USE (Continued)

The operation may become unstable due to noise and/or phase lag from the output current when the wire impedance is high, please place the input capacitor $\left(\mathrm{C}_{\mathrm{IN}}\right)$ and the output capacitor $\left(\mathrm{C}_{\mathrm{L}}\right)$ as close to the IC as possible.

- Instructions of pattern layouts
(1) In order to stabilize Vin voltage level, we recommend that a by-pass capacitor (Cin) be connected as close as possible to the Vin and GND pins.
(2) Please mount each external component as close to the IC as possible.
(3) Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance.
(4) Make sure that the GND traces are as thick as possible, as variations in ground potential caused by high ground currents at the time of switching may result in instability of the IC.
(5) Please note that internal driver transistors bring on heat because of the load current and ON resistance of the N-ch MOS driver transistors.

Recommended Pattern Layout (SOT-26W)

$3^{\text {rd }}$ Layer

$4^{\text {th }}$ Layer

Recommended Pattern Layout (USP-6C)
$1^{\text {st }}$ Layer

■NOTE ON USE (Continued)

PCB mounted (SOT-26W)

PCB mounted (USP-6C)

TYPICAL PERFORMANCE CHARACTERISTICS

(1) Efficiency vs. Output current

XC9246B75/XC9247B75 ($\mathrm{V}_{\text {out }}=3.3 \mathrm{~V}$)
L=4.7 H (VLP4045LT-4R7M), SBD=XBS204S19R $\mathrm{C}_{\mathbb{N}}=10 \mu \mathrm{~F}(\mathrm{TMK316BJ} 106 \mathrm{KL}), \quad \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F} \times 2$ (LMK212ABJ106KG)

(2) Output Voltage vs. Output Current

XC9246B65/XC9247B65 ($\mathrm{V}_{\text {out }}=3.3 \mathrm{~V}$)
L=4.7 H (VLP4045LT-4R7M), SBD=XBS204S19R $\mathrm{C}_{\mathbb{N}}=10 \mu \mathrm{~F}(\mathrm{TMK} 316 \mathrm{BJ} 106 \mathrm{KL}), \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F} \times 2(\mathrm{LMK212ABJ} 106 \mathrm{KG})$

XC9246B75/XC9247B75 ($\mathrm{V}_{\text {our }}=5.0 \mathrm{~V}$)
$L=6.8 \mu \mathrm{H}$ (VLP4045LT-6R8M), SBD=XBS204S19R $\mathrm{C}_{\mathbb{N}}=10 \mu \mathrm{~F}(\mathrm{TMK316BJ} 106 \mathrm{KL}), \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F} \times 2(\mathrm{LMK} 212 \mathrm{ABJ} 106 \mathrm{KG})$

XC9246B65/XC9247B65($\mathrm{V}_{\text {out }}=3.3 \mathrm{~V}$)
$L=4.7 \mu \mathrm{H}(\mathrm{VLP4045LT-4R7M}), \mathrm{SBD}=\mathrm{XBS} 204 \mathrm{~S} 19 \mathrm{R}$ $\mathrm{C}_{\mathrm{i}}=10 \mu \mathrm{~F}(\mathrm{TMK} 316 \mathrm{BJ} 106 \mathrm{KL}), \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F} \times 2(\mathrm{LMK} 212 \mathrm{ABJ} 106 \mathrm{KG})$

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(2) Output Voltage vs. Output Current (Continued)

XC9246B75/XC9247B75 ($\mathrm{V}_{\text {OuT }}=3.3 \mathrm{~V}$)
L=4.7 $\mu \mathrm{H}$ (VLP4045LT-4R7M), SBD=XBS204S19R $\mathrm{C}_{\mathbb{N}}=10 \mu \mathrm{~F}(\mathrm{TMK316BJ} 106 \mathrm{KL}), \quad \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F} \times 2(\mathrm{LMK} 212 \mathrm{ABJ} 106 \mathrm{KG})$

(3) Ripple Voltage vs. Output Current

XC9246B42/XC9247B42 ($\mathrm{V}_{\text {ouT }}=1.8 \mathrm{~V}$)
$L=4.7 \mu \mathrm{H}$ (VLP4045LT-4R7M), SBD=XBS204S19R $\mathrm{C}_{\mathbb{N}}=10 \mu \mathrm{~F}(\mathrm{TMK} 316 \mathrm{BJ} 106 \mathrm{KL}), \quad \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F} \times 2(\mathrm{LMK} 212 \mathrm{ABJ} 106 \mathrm{KG})$

(3) Ripple Voltage vs. Output Current

XC9246B75/XC9247B75 ($\mathrm{V}_{\text {OUT }}=5.0 \mathrm{~V}$)
L=6.8 $\mu \mathrm{H}$ (VLP4045LT-6R8M), SBD=XBS204S19R $C_{\mathbb{N}}=10 \mu F(T M K 316 B J 106 K L), \quad C_{L}=10 \mu F \times 2(L M K 212 A B J 106 K G)$

XC9246B75/XC9247B75 ($\mathrm{V}_{\text {out }}=5.0 \mathrm{~V}$)
L=6.8 H (VLP4045LT-6R8M), SBD=XBS204S19R $\mathrm{C}_{\mathbb{N}}=10 \mu \mathrm{~F}(\mathrm{TMK316BJ} 106 \mathrm{KL}), \quad \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F} \times 2(\mathrm{LMK} 212 \mathrm{ABJ} 106 \mathrm{KG})$

XC9246B75/XC9247B75 ($\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}$)
L=4.7 $\mu \mathrm{H}$ (VLP4045LT-4R7M), SBD=XBS204S19R $\mathrm{C}_{\mathbb{N}}=10 \mu \mathrm{~F}(\mathrm{TMK} 316 \mathrm{BJ} 106 \mathrm{KL}), \quad \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F} \times 2(\mathrm{LMK} 212 \mathrm{ABJ} 106 \mathrm{KG})$

(4) FB Voltage vs. Ambient Temperature

XC9246B/XC9247B

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(5) UVLO Voltage vs. Ambient Temperature XC9246B42/XC9247B42

Ambient Temperature : $\mathrm{Ta}\left({ }^{\circ} \mathrm{C}\right)$

75/XC9247B75

(7) Supply Current vs. Ambient Temperature

XC9246B65/XC9247B65

(6) Oscillation Frequency vs. Ambient Temperature

XC9246B

XC9246B/XC9247B

Ambient Temperature : $\mathrm{Ta}\left({ }^{\circ} \mathrm{C}\right)$

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(9) PFM Switch Current vs. Output current

(10) Lx SW ON Resistance vs. Ambient Temperature

XC9246B/XC9247B

(12) Current Limit vs. Ambient Temperature

$\mathrm{XC9247B}$ ($\mathrm{V}_{\text {out }}=5.0 \mathrm{~V}$)
L=6.8 $\mu \mathrm{H}$ (VLP4045LT-6R8M), SBD=XBS204S19R $\mathrm{C}_{\mathbb{N}}=10 \mu \mathrm{~F}(\mathrm{TMK} 316 \mathrm{BJ} 106 \mathrm{KL}), \quad \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F} \times 2(\mathrm{LMK} 212 \mathrm{ABJ} 106 \mathrm{KG})$

(11) Lx "L" Current vs. Ambient Temperature

XC9246B/XC9247B

(13) FB Voltage vs. EN/SS Voltage

XC9246B/XC9247B

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(14) Internal Soft-Start Time vs. Ambient Temperature

(15) External Soft-Start Time vs. Ambient Temperature

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(16) Load Transient Response

XC9246B
$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA} \rightarrow 200 \mathrm{~mA}$
L=4.7 HH (XFL4020-472MEB), SBD $=$ XBS $204 \mathrm{~S} 19 R$

XC9246B
$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA} \rightarrow 500 \mathrm{~mA}$

XC9246B
$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=200 \mathrm{~mA} \rightarrow 800 \mathrm{~mA}$

XC9246B

$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=200 \mathrm{~mA} \rightarrow 10 \mathrm{~mA}$
L=4.7 H ($(\mathrm{XFL4020-472MEB)}, \mathrm{SBD=XBS204S19R}$ $C_{\text {IN }}=10 \mu F(T M K 316 B J 106 \mathrm{KL}), C L=10 \mu \mathrm{~F} \times 2(\mathrm{LMK} 212 A B J 106 \mathrm{KG})$

XC9246B

$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=500 \mathrm{~mA} \rightarrow 10 \mathrm{~mA}$
L=4.7 $\mu \mathrm{H}$ (XFL4020-472MEB), SBD=XBS204S19R $C_{I N}=10 \mu F(T M K 316 B J 106 K L), C L=10 \mu F \times 2(L M K 212 A B J 106 K G)$

XC9246B
$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=800 \mathrm{~mA} \rightarrow 200 \mathrm{~mA}$
L=4.7 $\mu \mathrm{H}$ (XFL4020-472MEB), SBD=XBS204S19R

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(16) Load Transient Response (Continued)

XC9247B
$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA} \rightarrow 200 \mathrm{~mA}$
$\mathrm{L}=4.7 \mu \mathrm{H}(\mathrm{XFL} 4020-472 \mathrm{MEB}), \mathrm{SBD}=\mathrm{XBS} 204 \mathrm{~S} 19 \mathrm{R}$
$C=10 \mu \mathrm{~F}(\mathrm{TMK} 316 \mathrm{BJ} 106 \mathrm{KL}), \mathrm{CL}=10 \mu \mathrm{~F} \times 2(\mathrm{LMK} 212 \mathrm{ABJ} 106 \mathrm{KG})$

XC9247B
$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA} \rightarrow 500 \mathrm{~mA}$
$\mathrm{L}=4.7 \mu \mathrm{H}(\mathrm{XFL} 4020-472 \mathrm{MEB})$, $\mathrm{SBD}=\mathrm{XBS} 204 \mathrm{~S} 19 \mathrm{R}$

XC9247B
$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=200 \mathrm{~mA} \rightarrow 800 \mathrm{~mA}$
$\mathrm{L}=4.7 \mu \mathrm{H}$ (XFL4020-472MEB), SBD=XBS204S19R

XC9247B
$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=200 \mathrm{~mA} \rightarrow 10 \mathrm{~mA}$
$\mathrm{L}=4.7 \mu \mathrm{H}$ (XFL4020-472MEB), SBD=XBS204S19R $\mathrm{C}=10 \mathrm{\vec{N}}$ F(TMK316BJ106KL), CL=10 $\mathrm{HF} \times 2$ (LMK212ABJ106KG)

XC9247B

$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=500 \mathrm{~mA} \rightarrow 10 \mathrm{~mA}$
$L=4.7 \mu \mathrm{H}$ (XFL4020-472MEB), SBD=XBS204S19R

XC9247B
$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=800 \mathrm{~mA} \rightarrow 200 \mathrm{~mA}$
L=4.7 $\mu \mathrm{H}$ (XFL4020-472MEB), SBD=XBS204S19R $\mathrm{C}=10 \mu \mathrm{~F}(\mathrm{TMK} 316 \mathrm{BJ} 106 \mathrm{KL}), \mathrm{CL}=10 \mu \mathrm{~F} \times 2(\mathrm{LMK} 212 \mathrm{ABJ106KG})$

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(16) Load Transient Response (Continued)

XC9246B
$\mathrm{VIN}=12 \mathrm{~V}, \mathrm{VOUT}=5.0 \mathrm{~V}, 10 U T=10 \mathrm{~mA} \rightarrow 200 \mathrm{~mA}$
$\mathrm{L}=6.8 \mu \mathrm{H}(\mathrm{VLP} 4045 \mathrm{LT}-6 R 8 \mathrm{M}), \mathrm{SBD}=\mathrm{XBS} 204 \mathrm{~S} 19 \mathrm{R}$

XC9246B
$\mathrm{VIN}=12 \mathrm{~V}, \mathrm{VOUT}=5.0 \mathrm{~V}, 1 \mathrm{OUT}=10 \mathrm{~mA} \rightarrow 500 \mathrm{~mA}$
$\mathrm{L}=6.8 \mu \mathrm{H}$ (VLP4045LT-6R8M), SBD=XBS204S19R

XC9246B
$\mathrm{VIN}=12 \mathrm{~V}$, VOUT $=5.0 \mathrm{~V}, 10 U T=200 \mathrm{~mA} \rightarrow 800 \mathrm{~mA}$

XC9246B
$\mathrm{VIN}=12 \mathrm{~V}, \mathrm{VOUT}=5.0 \mathrm{~V}, \mathrm{IOUT}=200 \mathrm{~mA} \rightarrow 10 \mathrm{~mA}$

XC9246B
$\mathrm{VIN}=12 \mathrm{~V}$, $\mathrm{VOUT}=5.0 \mathrm{~V}, \mathrm{IOUT}=500 \mathrm{~mA} \rightarrow 10 \mathrm{~mA}$
$\mathrm{L}=6.8 \mu \mathrm{H}$ (VLP4045LT-6R8M), SBD=XBS204S19R

XC9246B
$\mathrm{VIN}=12 \mathrm{~V}$, VOUT $=5.0 \mathrm{~V}, 1 O U T=800 \mathrm{~mA} \rightarrow 200 \mathrm{~mA}$

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(16) Load Transient Response (Continued)

XC9247B
$\mathrm{VIN}=12 \mathrm{~V}, \mathrm{VOUT}=5.0 \mathrm{~V}, 10 U T=10 \mathrm{~mA} \rightarrow 200 \mathrm{~mA}$
L=6.8 μ H(VLP4045LT-6R8M), SBD=XBS204S19R

XC9247B
$\mathrm{VIN}=12 \mathrm{~V}, \mathrm{VOUT}=5.0 \mathrm{~V}, \mathrm{IOUT}=10 \mathrm{~mA} \rightarrow 500 \mathrm{~mA}$

XC9247B
VIN $=12 \mathrm{~V}$, VOUT $=5.0 \mathrm{~V}$, $\mathrm{IOUT}=200 \mathrm{~mA} \rightarrow 800 \mathrm{~mA}$

XC9247B
$\mathrm{VIN}=12 \mathrm{~V}, \mathrm{VOUT}=5.0 \mathrm{~V}, \mathrm{IOUT}=200 \mathrm{~mA} \rightarrow 10 \mathrm{~mA}$
L=6.8 $\mu \mathrm{H}$ (VLP4045LT-6R8M), SBD=XBS204S19R $\mathrm{C}_{\mathrm{N}}=10 \mathrm{HF}(\mathrm{TMK} 3168 \mathrm{~J} 106 \mathrm{~K} \mathrm{~L}), \mathrm{CL}=10 \mu \mathrm{~F} \times 2$ (LMK212ABU106KG)

XC9247B
$\mathrm{VIN}=12 \mathrm{~V}$, $\mathrm{VOUT}=5.0 \mathrm{~V}, \mathrm{IOUT}=500 \mathrm{~mA} \rightarrow 10 \mathrm{~mA}$

XC9247B
$\mathrm{VIN}=12 \mathrm{~V}$, VOUT $=5.0 \mathrm{~V}, \mathrm{IOUT}=800 \mathrm{~mA} \rightarrow 200 \mathrm{~mA}$

PACKAGING INFORMATION

-SOT-26W (unit: mm)
(unit: mm)

-USP-6C (unit: mm)

- SOT-26W Reference Pattern Layout (unit: mm)

-USP-6C Reference Pattern Layout (unit: mm)

-USP-6C Reference Metal Mask Design (unit: mm)

PACKAGING INFORMATION (Continued)

SOT-26W Power Dissipation (40mm x 40mm Standard board)

Power dissipation data for the SOT-26W is shown in this page.
The value of power dissipation varies with the mount board conditions.
Please use this data as the reference data taken in the following condition.

1. Measurement Condition
```
    Condition: Mount on a board
    Ambient: Natural convection
    Soldering: Lead (Pb) free
        Board: Dimensions 40 x 40 mm
            (1600 mm2 in one side)
            Copper (Cu) traces occupy 50% of the board
            area In top and back faces
            Package heat-sink is tied to the copper traces
        Material: Glass Epoxy (FR-4)
    Thickness: 1.6mm
Through-hole: 4 x 0.8 Diameter
```


2.Power Dissipation vs. Ambient Temperature

Board Mount (Tj max $=125^{\circ} \mathrm{C}$)

Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Power Dissipation Pd (mW)	Thermal Resistance $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
25	600	166.67
85	240	

PACKAGING INFORMATION (Continued)

OUSP-6C Power Dissipation (40mm x 40mm Standard board)

Power dissipation data for the USP-6C is shown in this page.
The value of power dissipation varies with the mount board conditions.
Please use this data as the reference data taken in the following condition.

1. Measurement Condition

Condition :	Mount on a board
Ambient :	Natural convection
Soldering :	Lead (Pb) free
Board :	Dimensions $40 \times 40 \mathrm{~mm}$
	$(1600 \mathrm{~mm} 2$ in one side $)$
	Copper (Cu) traces occupy 50% of the board
	area In top and back faces
	Package heat-sink is tied to the copper traces
Material :	Glass Epoxy (FR-4)
Thickness :	1.6 mm
Through-hole :	4×0.8 Diameter

Evaluation Board (Unit: mm)

2.Power Dissipation vs. Ambient Temperature

Board Mount (Tj max $=125^{\circ} \mathrm{C}$)

Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Power Dissipation Pd (mW)	Thermal Resistance $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
25	1000	100.00
85	400	

PACKAGING INFORMATION (Continued)

OUSP-6C Power Dissipation (JEDEC board)

Power dissipation data for the USP-6C is shown in this page.
The value of power dissipation varies with the mount board conditions.
Please use this data as one of reference data taken in the described condition.

```
1. Measurement Condition (Reference data)
    Condition : Mount on a board
    Ambient: Natural convection
    Soldering: Lead ( Pb ) free
        Board: The board using 4 copper layer.
                    ( \(76.2 \mathrm{~mm} \times 114.3 \mathrm{~mm} \cdots\) Area: about \(8700 \mathrm{~mm}^{2}\) )
                    1st layer: No copper foil (Signal layer)
                    2nd layer: 70mm \(\times 70 \mathrm{~mm}\) _Connected to heat-sink.
            3rd layer: \(70 \mathrm{~mm} \times 70 \mathrm{~mm}\) _Connected to heat-sink.
            4th layer: No copper foil (Signal layer)
        Material : Glass Epoxy (FR-4)
    Thickness: 1.6 mm
    Through-hole : \(\varphi 0.2 \mathrm{~mm} \times 60 \mathrm{pcs}\)
```


Evaluation Board (Unit:mm)

2.Power Dissipation vs. Ambient Temperature

Board Mount (T max $=125^{\circ} \mathrm{C}$)

Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Power Dissipation Pd(mW)	Thermal Resistance $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
25	1250	80.00
85	500	

MARKING RULE

SOT-26W
(1) represents products series

MARK	PRODUCT SERIES
6	XC9246B*****-G
7	XC9247B****-G

(2) represents products type

MARK	TYPE	PRODUCT SERIES
(2)	UVLO Voltage $=4.15 \mathrm{~V}$	XC9246B42***-G XC9247B42**-G
4	UVLO Voltage $=5.65 \mathrm{~V}$	XC9246B65**-G XC9247B65**-G
6	UVLO Voltage $=7.65 \mathrm{~V}$	XC9246B75***-G XC9247B75**-G
7		

(3)4) represents production lot number

$$
01 ~ 09,0 A \sim 0 Z, 11 \sim 9 Z, A 1 \sim A 9, A A \sim A Z, B 1 \sim Z Z \text { in order. }
$$

(G, I, J, O, Q, W excluded)

* No character inversion used.
(1) represents products series

MARK	PRODUCT SERIES
6	XC9246B
7	XC9247*******-G

(2)(3) represents products type

MARK		TYPE	PRODUCT SERIES
(2)	(3)	UVLO Voltage=4.15V	XC9246B42**-G XC9247B42**-G
4	2	UVLO Voltage=5.65V	XC9246B65**-G XC9247B65***-G
6	5	UVLO Voltage=7.65V	XC9246B75**-G XC9247B75***-G
7			

(4)5) represents production lot number

01~09, 0A~0Z, 11~9Z, A1~A9, AA~AZ, B1~ZZ in order.
(G, I, J, O, Q, W excluded)

* No character inversion used.

1. The product and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
2. The information in this datasheet is intended to illustrate the operation and characteristics of our products. We neither make warranties or representations with respect to the accuracy or completeness of the information contained in this datasheet nor grant any license to any intellectual property rights of ours or any third party concerning with the information in this datasheet.
3. Applicable export control laws and regulations should be complied and the procedures required by such laws and regulations should also be followed, when the product or any information contained in this datasheet is exported.
4. The product is neither intended nor warranted for use in equipment of systems which require extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss of human life, bodily injury, serious property damage including but not limited to devices or equipment used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and other transportation industry and 5) safety devices and safety equipment to control combustions and explosions. Do not use the product for the above use unless agreed by us in writing in advance.
5. Although we make continuous efforts to improve the quality and reliability of our products; nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal injury and/or property damage resulting from such failure, customers are required to incorporate adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention features.
6. Our products are not designed to be Radiation-resistant.
7. Please use the product listed in this datasheet within the specified ranges.
8. We assume no responsibility for damage or loss due to abnormal use.
9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex Semiconductor Ltd in writing in advance.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Torex Semiconductor manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614 FAN53611AUC12X MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 NCP81241MNTXG LTM8064IY LT8315EFE\#TRPBF LTM4664EY\#PBF LTM4668AIY\#PBF NCV1077CSTBT3G XCL207A123CR-G MPM54304GMN-0002 MPM54304GMN-0004 MPM54304GMN-0003 AP62300Z6-7 MP8757GL-P MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM+ XC9236D08CER-G MP3416GJ-P MP5461GC-Z MPQ4590GS-Z MAX38640BENT18+T MAX77511AEWB+ MAX20406AFOD/VY+ MAX20408AFOC/VY+

[^0]: ${ }^{(* 1)}$ For the coil value（L），use a component with 20% accuracy or less．

