CMOS Digital Integrated Circuits Silicon Monolithic

74HC393D

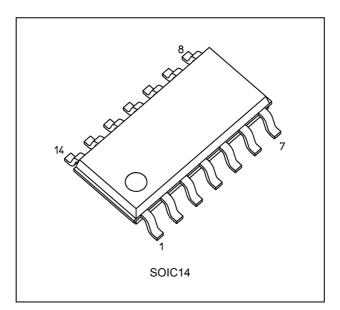
1. Functional Description

• Dual Binary Counter

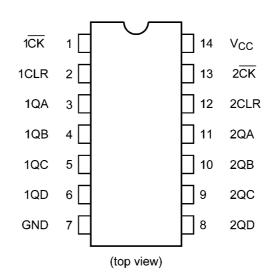
2. General

The 74HC393D is a high speed CMOS 4-BIT BINARY COUNTER fabricated with silicon gate C²MOS technology. It achieves the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.

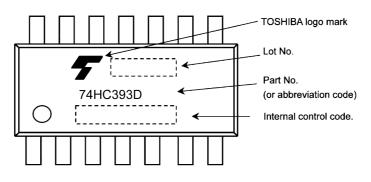
It contains two independent counter circuits in one package, so that counting or frequency division of eight binary bits can be achieved with one IC.


This device changes state on the negative going transition of the \overline{CK} pulse. The counter can be reset to "0" (QA to QD = "L") by a high at the CLR input regardless of other inputs.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.


3. Features

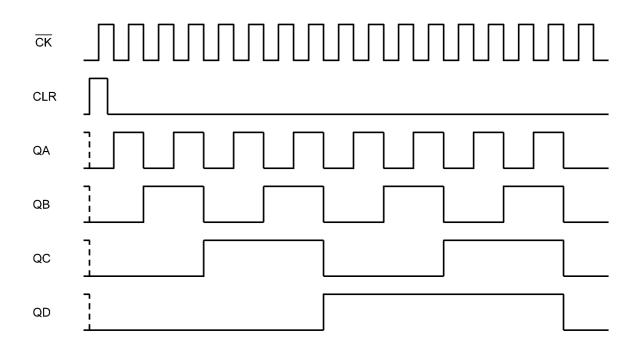
- (1) Wide operating temperature range: $T_{opr} = -40$ to 125 °C (Note 1)
- (2) High speed: f_{MAX} = 72 MHz (typ.) at V_{CC} = 5 V
- (3) Low power dissipation: $I_{CC} = 4.0 \ \mu A \ (max)$ at $T_a = 25 \ ^{\circ}C$
- (4) Balanced propagation delays: $t_{PLH} \approx t_{PHL}$
- (5) Wide operating voltage range: $V_{CC(opr)} = 2.0 \text{ V to } 6.0 \text{ V}$
- Note 1: Operating Range spec of $T_{opr} = -40$ °C to 125 °C is applicable only for the products which manufactured after July 2020.


4. Packaging

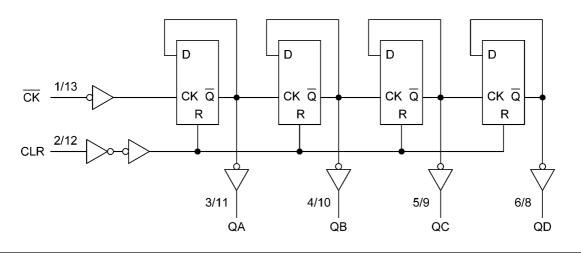
5. Pin Assignment

6. Marking

7. IEC Logic Symbol


1CLR <u>(2)</u> 1 CK <u>(1)</u> ►	CTRDIV 16 CT = 0 CT + CT 3	(3) 1QA (4) 1QB (5) 1QC (6) 1QD
2CLR <u>(12)</u> 2 CK (13) 		(11) 2QA (10) 2QB (9) 2QC (8) 2QC
		2QD

8. Truth Table


Inp	outs		Out	puts	
СК	CLR	QA	QD		
Х	Н	L	L	L	L
	L		Cou	nt up	
	L		No ch	nange	

X: Don't care

9. Timing Diagrams

10. System Diagram

11. Absolute Maximum Ratings (Note)

Characteristics	Symbol	Note	Rating	Unit
Supply voltage	V _{CC}		-0.5 to 7.0	V
Input voltage	V _{IN}		-0.5 to V _{CC} + 0.5	V
Output voltage	V _{OUT}		-0.5 to V _{CC} + 0.5	V
Input diode current	I _{IK}		±20	mA
Output diode current	I _{ОК}		±20	mA
Output current	I _{OUT}		±25	mA
V _{CC} /ground current	I _{CC}		±50	mA
Power dissipation	PD	(Note 1)	500	mW
Storage temperature	T _{stg}		-65 to 150	°C

Note: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 1: P_D derates linearly with -8 mW/°C above 85 °C

12. Operating Ranges (Note)

Characteristics	Symbol	Test Condition	Note	Rating	Unit
Supply voltage	V _{CC}	—		2.0 to 6.0	V
Input voltage	V _{IN}	—		0 to V _{CC}	V
Output voltage	V _{OUT}	—		0 to V _{CC}	V
Operating temperature	T _{opr}	—	(Note 1)	-40 to 125	°C
Input rise and fall times	t _r ,t _f	V _{CC} = 2.0 V		0 to 1000	ns
		V _{CC} = 4.5 V		0 to 500	
		V _{CC} = 6.0 V		0 to 400	

Note: The operating ranges must be maintained to ensure the normal operation of the device.

Unused inputs must be tied to either V_{CC} or GND.

Note 1: Operating Range spec of T_{opr} = -40 °C to 125 °C is applicable only for the products which manufactured after July 2020.

13. Electrical Characteristics

13.1. DC Characteristics (Unless otherwise specified, $T_a = 25$ °C)

Characteristics	Symbol	Test Conditio	n	V _{CC} (V)	Min	Тур.	Мах	Unit
High-level input voltage	V _{IH}	_		2.0	1.50	_	_	V
				4.5	3.15	_	_	1
				6.0	4.20	_	_	1
Low-level input voltage	VIL	_	—		_	_	0.50	V
				4.5	_	_	1.35	1
				6.0	_	_	1.80]
High-level output voltage	V _{OH}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OH} = -20 μA	2.0	1.9	2.0	_	V
				4.5	4.4	4.5	_]
				6.0	5.9	6.0	_]
			I _{OH} = -4 mA	4.5	4.18	4.31	_]
			I _{OH} = -5.2 mA	6.0	5.68	5.80	—	
Low-level output voltage	V _{OL}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 20 μA	2.0	_	0.0	0.1	V
				4.5		0.0	0.1]
				6.0	_	0.0	0.1	
			I _{OL} = 4 mA	4.5	_	0.17	0.26]
			I _{OL} = 5.2 mA	6.0	_	0.18	0.26	
Input leakage current	I _{IN}	V _{IN} = V _{CC} or GNE)	6.0	_	_	±0.1	μA
Quiescent supply current	I _{CC}	V _{IN} = V _{CC} or GNE)	6.0			4.0	μA

13.2. DC Characteristics (Unless otherwise specified, $T_a = -40$ to 85 °C)

Characteristics	Symbol	Test Cond	lition	V _{CC} (V)	Min	Мах	Unit
High-level input voltage	V _{IH}	—		2.0	1.50	—	V
				4.5	3.15	_	
				6.0	4.20	_	
Low-level input voltage	VIL	_		2.0	_	0.50	V
				4.5		1.35	
				6.0	_	1.80	
High-level output voltage	V _{OH}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OH} = -20 μA	2.0	1.9	—	V
				4.5	4.4	—	
				6.0	5.9	—	
			I _{OH} = -4 mA	4.5	4.13	—	
			I _{OH} = -5.2 mA	6.0	5.63	—	
Low-level output voltage	V _{OL}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 20 μA	2.0		0.1	V
				4.5		0.1	
				6.0	_	0.1	
			I _{OL} = 4 mA	4.5	_	0.33	
			I _{OL} = 5.2 mA	6.0	_	0.33	
Input leakage current	I _{IN}	V _{IN} = V _{CC} or GND		6.0	_	±1.0	μA
Quiescent supply current	I _{CC}	$V_{IN} = V_{CC}$ or GND		6.0		40.0	μA

13.3. DC Characteristics (Note) (Unless otherwise specified, T_a = -40 to 125 °C)

Characteristics	Symbol	Test Cond	dition	V _{CC} (V)	Min	Max	Unit
High-level input voltage	VIH	_		2.0	1.50	_	V
				4.5	3.15	_	
				6.0	4.20	_	1
Low-level input voltage	VIL	_		2.0	_	0.50	V
				4.5	_	1.35	
				6.0	_	1.80	1
High-level output voltage	V _{OH}	V _{IN} = V _{IH} or V _{IL}	I _{OH} = -20 μA	2.0	1.9	_	V
				4.5	4.4	_	
				6.0	5.9	_	1
			I _{OH} = -4 mA	4.5	3.7	_	
			I _{OH} = -5.2 mA	6.0	5.2	_	
Low-level output voltage	V _{OL}	V _{IN} = V _{IH} or V _{IL}	I _{OL} = 20 μA	2.0	_	0.1	V
				4.5	_	0.1	1
				6.0	_	0.1	
			I _{OL} = 4 mA	4.5	_	0.4	1
			I _{OL} = 5.2 mA	6.0	_	0.4	
Input leakage current	I _{IN}	V _{IN} = V _{CC} or GND		6.0	_	±1.0	μA
Quiescent supply current	I _{CC}	V _{IN} = V _{CC} or GND		6.0	_	80.0	μΑ

Note: Operating Range spec of T_{opr} = -40 °C to 125 °C is applicable only for the products which manufactured after July 2020.

13.4. Timing Requirements (Unless otherwise specified, $T_a = 25$ °C, Input: $t_r = t_f = 6$ ns)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Limit	Unit
M <u>ini</u> mum pulse width	$t_{w(L)}, t_{w(H)}$	_	2.0		75	ns
			4.5		15	
			6.0	_	13	
Minimum pulse width (CLR)	t _{w(H)}	—	2.0	_	75	ns
			4.5		15	
			6.0	_	13	
Minimum removal time	t _{rem}	_	2.0	_	25	ns
			4.5	_	5	
			6.0	_	5	
Clock frequency	f	_	2.0	_	6	MHz
			4.5	_	32	
			6.0	_	38	

13.5. Timing Requirements (Unless otherwise specified, T_a = -40 to 85 ℃, Input: t_r = t_f = 6 ns)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Limit	Unit
Minimum pulse width	t _{w(L)} ,t _{w(H)}		2.0	95	ns
(CK)			4.5	19	
			6.0	16	
Minimum pulse width	t _{w(H)}	_	2.0	95	ns
(CLR)			4.5	19	
			6.0	16	
Minimum removal time	t _{rem}		2.0	30	ns
			4.5	6	
			6.0	5	
Clock frequency	f		2.0	5	MHz
			4.5	27	
			6.0	32	

13.6. Timing Requirements (Note) (Unless otherwise specified, T_a = -40 to 125 °C, Input: t_r = t_f = 6 ns)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Limit	Unit
Minimum pulse width (\overline{CK})	$t_{w(L)}, t_{w(H)}$	—	2.0	110	ns
			4.5	22	
			6.0	18	
Minimum pulse width (CLR)	t _{w(H)}	_	2.0	110	ns
			4.5	22	
			6.0	18	
Minimum removal time	t _{rem}	_	2.0	35	ns
			4.5	7	
			6.0	5	
Clock frequency	f		2.0	5	MHz
			4.5	24]
			6.0	28	

Note: Operating Range spec of T_{opr} = -40 °C to 125 °C is applicable only for the products which manufactured after July 2020.

13.7. AC Characteristics (Unless otherwise specified, C_L = 15 pF, V_{CC} = 5 V, T_a = 25 °C, Input: t_r = t_f = 6 ns)

Characteristics	Symbol	Note	Test Condition	Min	Тур.	Max	Unit
Output transition time	t _{TLH} ,t _{THL}		—	—	4	8	ns
P <u>rop</u> agation delay time (CK-QA)	t _{PLH} ,t _{PHL}		_	—	12	20	ns
Propagation delay time (CK-QB)	t _{PLH} ,t _{PHL}		_	—	16	31	ns
Propagation delay time (CK-QC)	t _{PLH} ,t _{PHL}		_	—	21	38	ns
Propagation delay time (CK-QD)	t _{PLH} ,t _{PHL}		_	—	25	46	ns
Propagation delay time (CLR-Qn)	t _{PHL}		_	_	15	26	ns
Maximum clock frequency	f _{MAX}		—	35	72	_	MHz

13.8. AC Characteristics (Unless otherwise specified, C_L = 50 pF, T_a = 25 °C, Input: t_r = t_f = 6 ns)

Characteristics	Symbol	Note	Test Condition	V _{CC} (V)	Min	Тур.	Max	Unit
Output transition time	t _{TLH} ,t _{THL}		_	2.0	_	25	75	ns
				4.5		7	15	1
				6.0	_	6	13	
Propagation delay time	t _{PLH} ,t _{PHL}		—	2.0	—	45	120	ns
(CK-QA)				4.5		15	24	
				6.0	—	13	20	
Propagation delay time	t _{PLH} ,t _{PHL}		_	2.0	—	60	180	ns
(CK-QB)				4.5	—	20	36	
				6.0	—	17	31	
P <u>rop</u> agation delay time (CK-QC)	t _{PLH} ,t _{PHL}		—	2.0	_	80	220	ns
				4.5	—	25	44	
				6.0	—	21	37	
Propagation delay time	t _{PLH} ,t _{PHL}		—	2.0		100	260	ns
(CK-QD)				4.5		30	52	
				6.0	—	26	44	
Propagation delay time	t _{PHL}		_	2.0	_	55	150	ns
(CLR-Qn)				4.5	—	18	30	1
				6.0	—	15	26	
Maximum clock frequency	f _{MAX}		_	2.0	6	22	_	MHz
				4.5	32	67	—	
				6.0	38	77	_	
Input capacitance	C _{IN}		_		_	5	10	pF
Power dissipation capacitance	C _{PD}	(Note 1)	_			40		pF

Note 1: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation.

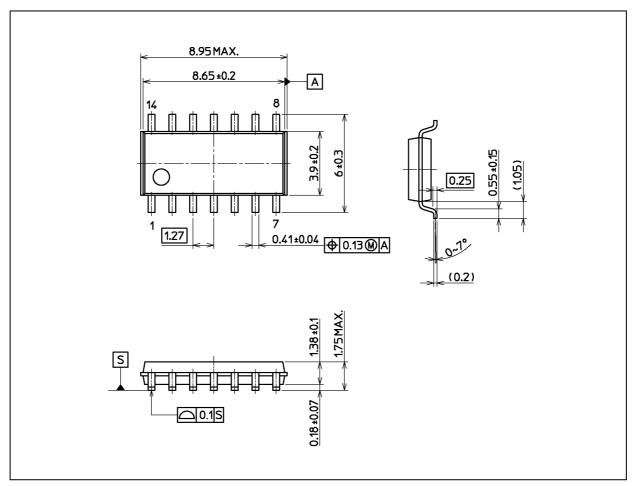
 $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/2$ (per circuit)

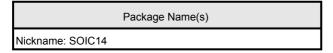
13.9. AC Characteristics (Unless otherwise specified, $C_L = 50$ pF, $T_a = -40$ to 85 °C, Input: $t_r = t_f = 6$ ns)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Min	Max	Unit
Output transition time	t _{TLH} ,t _{THL}	_	2.0	_	95	ns
			4.5	_	19	
			6.0	—	16	
Propagation delay time (CK-QA)	t _{PLH} ,t _{PHL}	_	2.0	_	150	ns
			4.5	_	30	
			6.0	_	26	
Propagation delay time (CK-QB)	t _{PLH} ,t _{PHL}	_	2.0	_	225	ns
			4.5	_	45]
			6.0	—	38	
P <u>rop</u> agation delay time (CK-QC)	t _{PLH} ,t _{PHL}	_	2.0	—	275	ns
			4.5	_	55	
			6.0	—	47	
P <u>rop</u> agation delay time (CK-QD)	t _{PLH} ,t _{PHL}	_	2.0	—	325	ns
			4.5		65	-
			6.0	_	55	
Propagation delay time (CLR-Qn)	t _{PHL}	_	2.0	—	190	ns
			4.5	—	38	
			6.0	—	33	
Maximum clock frequency	f _{MAX}		2.0	5	—	MHz
			4.5	27	_	
			6.0	32	_	
Input capacitance	C _{IN}			_	10	pF

13.10. AC Characteristics (Note) (Unless otherwise specified, C_L = 50 pF, T_a = -40 to 125 °C, Input: t_r = t_f = 6 ns)

•	•	- · ·		_		-
Characteristics	Symbol	Test Condition	V _{CC} (V)	Min	Max	Unit
Output transition time	t _{TLH} ,t _{THL}	—	2.0		110	ns
			4.5	_	22	
			6.0	_	18	ns
Propagation delay time (CK-QA)	t _{PLH} ,t _{PHL}	_	2.0	_	170	ns
			4.5	—	34	
			6.5		30	
Propagation delay time (CK-QB)	t _{PLH} ,t _{PHL}	_	2.0	_	255	ns
			4.5		51	
			6.0		43	
P <u>rop</u> agation delay time (CK-QC)	t _{PLH} ,t _{PHL}	_	2.0	—	315	ns
			4.5	_	63	
			6.0	_	54	
P <u>rop</u> agation delay time (CK-QD)	t _{PLH} ,t _{PHL}	_	2.0	—	370	ns
			4.5	—	74	
			6.0	—	63	
Propagation delay time (CLR-Qn)	t _{PHL}	_	2.0	—	220	ns
			4.5	—	44	
			6.0		38	
Maximum clock frequency	f _{MAX}	_	2.0	4	_	MHz
			4.5	24	_]
			6.0	28	_	
Input capacitance	C _{IN}			_	10	pF


Note: Operating Range spec of T_{opr} = -40 °C to 125 °C is applicable only for the products which manufactured after July 2020.


74HC393D

Package Dimensions

Unit: mm

Weight: 0.13 g (typ.)

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA". Hardware, software and systems described in this document are collectively referred to as "Product".

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE").

Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, and devices related to power plant.

IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative or contact us via our website.

- · Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
 applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION

https://toshiba.semicon-storage.com/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Counter ICs category:

Click to view products by Toshiba manufacturer:

Other Similar products are found below :

 CD4018BE
 CD4033BE
 CD4060BE
 NLV14040BDR2G
 NLV14017BDG
 74VHC163FT
 74HCT4040BQ-Q100X
 74VHC161FT(BJ)

 74VHC163FT(BJ)
 74HC393D.652
 74HCT4040D.653
 74HC191D.652
 74HC160D,652
 74HC390DB,118
 74HC163PW.112

 74HC191PW.112
 74HC393DB.118
 74HC4024D.652
 74HCT193DB.112
 74HCT390DB.112
 74HC193PW.112
 74HC390D.652

 74HC4017PW.112
 74HC4020DB.112
 74HC4020PW.112
 74HC4040DB.112
 74HC4060DB.112
 74HC4520D.112

 74HCT393DB.112
 74HC4020DB.112
 74HC4020PW.112
 74HC4060DB.112
 74HC4060DB.112
 74HC4520D.112

 74HCT393DB.112
 74HCT6323AD.112
 74LV393D.112
 74LV393PW.112
 74LV4060DB.112
 74LV4060PW.112

 74LVC161D.112
 74LVC161PW.112
 XD74LS90
 XD74LS93
 CD4017BE
 XD74LS161
 XD74LS193
 CD4060BE
 XD4553

 XD74LS163
 XD74LS190
 XD40192
 CD4040BE
 XD4553
 XD4553