# TOSHIBA BiCD Process Integrated Circuit Silicon Monolithic <br> <br> TB62D786FTG 

 <br> <br> TB62D786FTG}

## 9-channel constant current LED driver with single wire

The TB62D786FTG is a constant current driver designed for LED illumination. This product incorporates 7-bit PWM dimming controllers and 9-channel constant current drivers. 9-channel constant current drivers are divided into three blocks corresponding to LED luminescence colors, and each output current can be adjusted by external resistors.
This product is controlled using the only DATA-IN input signal. It can be configured up to 64 recognition addresses with the ID setting pin. This product includes a linear regulator ( 7.0 to 28 V ) function, which shares with the power supply of LEDs.
Additionally, data can be transferred at high speed with BiCD process.

## TB62D786FTG



P-VQFN24-0404-0.50-001
Weight: 0.037 g (typ.)

## Feature

- Power supply voltage : $\mathrm{VL}=7.0$ to 28 V (The case used by sharing with a power supply of LED)
$\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$ (The case that the power supply of LED and that of this IC separately. )
- Maximum output current capability: $80 \mathrm{~mA}(\mathrm{max}) \times 9$ channels
- Constant current output range: 5 to 40 mA
- Output voltage at constant-current drive: $0.4 \mathrm{~V}(\mathrm{~min}) @ I_{O U T}=5$ to 40 mA
- Designed for common-anode LEDs.
- The input interface is controlled by DATA-IN (Single wire)
- Thermal shut down (TSD) included.
- Input and output of logic circuit: 5 V CMOS Interface
- Maximum output voltage: 28 V
- PWM control circuit included: 7-bit PWM
- Driver recognition: Up to 64 driver ICs can be controlled individually
- Operating temperature range: $\mathrm{T}_{\mathrm{opr}}=-40$ to $85^{\circ} \mathrm{C}$
- Package:

P-VQFN24-0404-0.50-001

- Constant current accuracy

| Condition | Constant-current accuracy <br> between channels | Constant-current accuracy <br> between ICs |
| :---: | :---: | :---: |
| Output voltage: 0.5 V <br> Output current: 15 mA | $\pm 3.0 \%$ | $\pm 6.0 \%$ |

This product is very delicate because of elements of MOS structure. In handling, please take care of measures of static electricity, such as use of a ground band or an electric conduction mat, removal of static electricity by an ionizer, and management of temperature and humidity.

## Pin Assignment (top view)



Please be sure to connect the back radiation PAD of a QFN package to GND of a substrate.

Block diagram


Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for explanatory purposes.

## Pin Description

| Pin No. | Symbol | Function description |
| :---: | :---: | :---: |
| 1 | /OUTR1 | Constant current output pin. (Open-drain type) |
| 2 | /OUTG1 | Constant current output pin. (Open-drain type) |
| 3 | /OUTB1 | Constant current output pin. (Open-drain type) |
| 4 | /OUTR2 | Constant current output pin. (Open-drain type) |
| 5 | /OUTG2 | Constant current output pin. (Open-drain type) |
| 6 | /OUTB2 | Constant current output pin. (Open-drain type) |
| 7 | PGND | Power ground pin |
| 8 | REXT-R | External resistor pin for output current configuration (/OUTR0, /OUTR1, /OUTR2) |
| 9 | REXT-G | External resistor pin for output current configuration (/OUTG0, /OUTG1, /OUTG2) |
| 10 | REXT-B | External resistor pin for output current configuration (/OUTB0, /OUTB1, /OUTB2) |
| 11 | GND | Ground pin |
| 12 | ID0 | ID configuration pin |
| 13 | ID1 | ID configuration pin |
| 14 | ID2 | ID configuration pin |
| 15 | Vcc | 5 V of supply voltage input pin |
| 16 | DATA-OUT | Serial data output pin (DATA-in input signal is output to the buffer.) |
| 17 | DATA-IN | Serial data input pin |
| 18 | NC | Non-connection pin. Please connect to GND or Vcc. |
| 19 | VLOUT | 5V Regulator output pin. Please connect VLOUT and Vcc when it use included regulator. In case it inputs 5 V direct to Vcc pin please VLOUT connect to GND pin. |
| 20 | NC | Non-connection pin. Please connect to GND or open. (Note 1) |
| 21 | VL | Power supply input pin in the case of sharing a power supply of LED and the power supply of this product. |
| 22 | /OUTR0 | Constant current output pin. (Open-drain type) |
| 23 | /OUTG0 | Constant current output pin. (Open-drain type) |
| 24 | /OUTB0 | Constant current output pin. (Open-drain type) |

Note 1: Please pay attention to short circuiting between adjacent pins when pin 20 is connected to GND.

## Equivalent circuit for inputs and outputs



The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

## Programming the TB62D786FTG

This product is controlled with single wire data signal shown in the following. As compared with 2-wire data signal synchronous with the clock signal in conventional products, this product assigns each data to the transition of potential ( H to L or L to H ).

(1) Data setting format

Each command setting input to DATA-IN is set with the following format.
This product recognizes the communication frequency (rising interval of input data) by taking in the start command (the start condition of data input).

Start command : 1010101010101010=0xAA, 0xAA (original binary: 11111111)
Since this product continues to recognize the signal interval which recognizes at the start command until the period command, input the pulse width so that the period is not collapsed until completion of the period command.

Period command : 1001010101010110=0x95,0x56 (original binary: 10000001)
After the completion of the period command input, make sure to set the interval ("L") more than $10 \mu \mathrm{~s}$ just before next start command input.
<Input format>


Example 1) Start command setting 0xAA, 0xAA (original binary 11111111)


Example 2) Period command setting [original binary 10000001]


## <Block diagram of data setting>


(2) Normal programming mode

Normal input mode should be set as the following flow.
Start command -> Slave address -> Sub-address -> Data byte -> Period Command
Slave address: ID of IC, Sub-address: set to Output channel, Data byte: setting PWM

| Interval <br> $(" L "$ more <br> than $10 \mu \mathrm{~s})$ | Start <br> Command | Slave <br> Address | Sub-address <br> (channel select) | Data byte <br> (PWM configuration) | Period <br> Command | Interval <br> ("L" more <br> than $10 \mu \mathrm{~s})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

(3) Special programming mode

This is how to set when all channels are set individually.
-Special mode setting (In the case that all channels are set individually)
If the Special mode is set to sub-address, the illuminating data of all channels can be set.
Special mode: 0110100101010101=0x69, 0x55 (original binary: 01100000)

| Interval <br> $\left(" L{ }^{\prime \prime}\right.$ more <br> than $10 \mu \mathrm{~S})$ | Start <br> Command | Slave <br> Address | Sub-address <br> (Special mode) | Data <br> OUTRO | Data <br> OUTG0 | Data <br> OUTB0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| Data | Data | Data | Data | Data | Data | Period |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OUTR1 | OUTG1 | OUTB1 | OUTR2 | OUTG2 | OUTB2 | Command |

Please set 9 channels of data surely. (When the data more than 9 channels are input, the 10 th and subsequent data are invalid.).
-Channel setting to be output

| Start Command | Slave <br> Address | Sub-address <br> (channel setting) | Data setting <br> (Output which is set at sub- <br> address) | Period Command |
| :---: | :---: | :---: | :---: | :---: |

(4)Data settings
a) Slave address

Input voltages and logic states of the ID0, ID1, ID2 pins are determined as follows.
(MSB="0", LSB =0 (Except of all selections))
Vcc="1010" $=0 \times \mathrm{A}$, open=" 1001 " $=0 \times 9$, REXT-R/B/G(*) $=" 0110 "=0 \times 6, G N D=" 0101 "=0 \times 5$
Slave setting

| Slave address |  | Original binary | ID2 | ID1 | ID0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input with one wire | Hexadecimal |  |  |  |  |
| 0101010101010101 | 0x5555 | 00000000 | GND | GND | GND |
| 0101010101011001 | 0x5559 | 00000010 | GND | GND | REXT-R/G/B* |
| 0101010101100101 | 0x5565 | 00000100 | GND | GND | Open |
| 0101010101101001 | 0x5569 | 00000110 | GND | GND | Vcc |
| 0101010110010101 | 0x5595 | 00001000 | GND | REXT-R/G/B* | GND |
| 0101010110011001 | 0x5599 | 00001010 | GND | REXT-R/G/B* | REXT-R,G,B* |
| 0101010110100101 | 0x55A5 | 00001100 | GND | REXT-R/G/B* | Open |
| 0101010110101001 | 0x55A9 | 00001110 | GND | REXT-R/G/B* | Vcc |
| 0101011001010101 | 0x5655 | 00010000 | GND | Open | GND |
| 0101011001011001 | 0x5659 | 00010010 | GND | Open | REXT-R/G/B* |
| 0101011001100101 | 0x5665 | 00010100 | GND | Open | Open |
| 0101011001101001 | 0x5669 | 00010110 | GND | Open | Vcc |
| 0101011010010101 | $0 \times 5695$ | 00011000 | GND | Vcc | GND |
| 0101011010011001 | 0x5699 | 00011010 | GND | Vcc | REXT-R/G/B* |
| 0101011010100101 | 0x56A5 | 00011100 | GND | Vcc | Open |
| 0101011010101001 | 0x56A9 | 00011110 | GND | Vcc | Vcc |
| 0101100101010101 | 0x5955 | 00100000 | REXT-R/G/B* | GND | GND |
| 0101100101011001 | 0x5959 | 00100010 | REXT-R/G/B* | GND | REXT-R/G/B* |
| 0101100101100101 | 0x5965 | 00100100 | REXT-R/G/B* | GND | Open |
| 0101100101101001 | 0x5969 | 00100110 | REXT-R/G/B* | GND | Vcc |
| 0101100110010101 | $0 \times 5995$ | 00101000 | REXT-R/G/B* | REXT-R/G/B* | GND |
| 0101100110011001 | 0x5999 | 00101010 | REXT-R/G/B* | REXT-R/G/B* | REXT-R/G/B* |
| 0101100110100101 | 0x59A5 | 00101100 | REXT-R/G/B* | REXT-R/G/B* | Open |
| 0101100110101001 | 0x59A9 | 00101110 | REXT-R/G/B* | REXT-R/G/B* | Vcc |
| 0101101001010101 | 0x5A55 | 00110000 | REXT-R/G/B* | Open | GND |
| 0101101001011001 | 0x5A59 | 00110010 | REXT-R/G/B* | Open | REXT-R/G/B* |
| 0101101001100101 | 0x5A65 | 00110100 | REXT-R/G/B* | Open | Open |
| 0101101001101001 | 0x5A69 | 00110110 | REXT-R/G/B* | Open | Vcc |
| 0101101010010101 | 0x5A95 | 00111000 | REXT-R/G/B* | Vcc | GND |
| 0101101010011001 | 0x5A99 | 00111010 | REXT-R/G/B* | Vcc | REXT-R/G/B* |
| 0101101010100101 | $0 \times 5 \mathrm{AA5}$ | 00111100 | REXT-R/G/B* | Vcc | Open |
| 0101101010101001 | 0x5AA9 | 00111110 | REXT-R/G/B* | Vcc | Vcc |
| 0110010101010101 | 0x6555 | 01000000 | Open | GND | GND |
| 0110010101011001 | 0x6559 | 01000010 | Open | GND | REXT-R/G/B* |
| 0110010101100101 | 0x6565 | 01000100 | Open | GND | Open |
| 0110010101101001 | 0x6569 | 01000110 | Open | GND | Vcc |
| 0110010110010101 | 0x6595 | 01001000 | Open | REXT-R/G/B* | GND |
| 0110010110011001 | 0x6599 | 01001010 | Open | REXT-R/G/B* | REXT-R/G/B* |
| 0110010110100101 | 0x65A5 | 01001100 | Open | REXT-R/G/B* | Open |
| 0110010110101001 | 0x65A9 | 01001110 | Open | REXT-R/G/B* | Vcc |
| 0110011001010101 | 0x6655 | 01010000 | Open | Open | GND |
| 0110011001011001 | 0x6659 | 01010010 | Open | Open | REXT-R/G/B* |
| 0110011001100101 | 0x6665 | 01010100 | Open | Open | Open |
| 0110011001101001 | 0x6669 | 01010110 | Open | Open | Vcc |
| 0110011010010101 | 0x6695 | 01011000 | Open | Vcc | GND |
| 0110011010011001 | 0x6699 | 01011010 | Open | Vcc | REXT-R/G/B* |
| 0110011010100101 | 0x66A5 | 01011100 | Open | Vcc | Open |
| 0110011010101001 | 0x66A9 | 01011110 | Open | Vcc | Vcc |

TB62D786FTG

| 0110100101010101 | 0x6955 | 01100000 | Vcc | GND | GND |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0110100101011001 | $0 \times 6959$ | 01100010 | Vcc | GND | REXT-R/G/B* |
| 0110100101100101 | $0 \times 6965$ | 01100100 | Vcc | GND | Open |
| 0110100101101001 | 0x6969 | 01100110 | Vcc | GND | Vcc |
| 0110100110010101 | $0 \times 6995$ | 01101000 | Vcc | REXT-R/G/B* | GND |
| 0110100110011001 | 0x6999 | 01101010 | Vcc | REXT-R/G/B* | REXT-R/G/B* |
| 0110100110100101 | 0x69A5 | 01101100 | Vcc | REXT-R/G/B* | Open |
| 0110100110101001 | 0x69A9 | 01101110 | Vcc | REXT-R/G/B* | Vcc |
| 0110101001010101 | 0x6A55 | 01110000 | Vcc | Open | GND |
| 0110101001011001 | 0x6A59 | 01110010 | Vcc | Open | REXT-R/G/B* |
| 0110101001100101 | 0x6A65 | 01110100 | Vcc | Open | Open |
| 0110101001101001 | 0x6A69 | 01110110 | Vcc | Open | Vcc |
| 0110101010010101 | 0x6A95 | 01111000 | Vcc | Vcc | GND |
| 0110101010011001 | 0x6A99 | 01111010 | Vcc | Vcc | REXT-R/G/B* |
| 0110101010100101 | 0x6AA5 | 01111100 | Vcc | Vcc | Open |
| 0110101010101001 | 0x6AA9 | 01111110 | Vcc | Vcc | Vcc |
| 01XXXXXXXXXXXX10 | 0x4002** | 0XXXXXX1 | All selections |  |  |

* Please set it as a pin for one of REXT-R,G,B.
** The hexadecimal number display of all selections is a case which is defined as $X=0$.
b) Sub-address

Output channel setting/ All channels setting/ Special mode setting
In output channel setting, a channel which defines PWM configuration is selected. In all channels setting, PWM is configured for all channels. The special mode is the mode which sets all channels individually.

| Channel setting command |  | Original <br> binary | Channel setting |
| :---: | :---: | :---: | :---: |
| Input with one wire | Hexadecimal |  |  |
| 0101010101011001 | $0 \times 5559$ | 00000010 | /OUTR0 |
| 0101010101100101 | $0 \times 5565$ | 00000100 | /OUTG0 |
| 0101010101101001 | $0 \times 5569$ | 00000110 | /OUTB0 |
| 0101010110010101 | $0 \times 5595$ | 00001000 | /OUTR1 |
| 0101010110011001 | $0 \times 5599$ | 00001010 | /OUTG1 |
| 0101010110100101 | $0 \times 55$ A5 | 00001100 | /OUTB1 |
| 0101010110101001 | $0 \times 55$ A9 | 00001110 | /OUTR2 |
| 0101011001010101 | $0 \times 5655$ | 00010000 | /OUTG2 |
| 0101011001011001 | $0 \times 5659$ | 00010010 | /OUTB2 |
| 0101100101010101 | $0 \times 5955$ | 00100000 | All channels setting |
| 0110100101010101 | $0 \times 6955$ | 01100000 | Special mode setting |

c) Data byte (PWM setting)

Data bytes set PWM dimming.

| PWM setting command |  | Original | PWM dimming |
| :---: | :---: | :---: | :---: |
| Input with one wire | Hexadecimal | binary |  |
| 0101010101010101 | $0 \times 5555$ | 00000000 | $0 / 127$ |
| 0101010101011001 | $0 \times 5559$ | 00000010 | $1 / 127$ |
| 0101010101100101 | $0 \times 5565$ | 00000100 | $2 / 127$ |
| $\ldots$ |  | $\ldots$ | $\cdots$ |
| 1010101010100101 | 0xAAA5 | 11111100 | $126 / 127$ |
| 1010101010101001 | 0xAAA9 | 11111110 | $127 / 127$ |

Note: Any data other than those specified above must not be programed.
Default setting is $0 / 127$.
(5) Notes of data setting

This product has the specification of data recognition or processing with only a data signal (asynchronous input signal). The data period (communication speed) is read (learned) with the start command (data input start condition). Data are recognized according to this learning period, and reset the learning period with the period command (data input completion condition). Therefore, if the data period from the start command to the period command is collapsed, data are not recognized (see the following (a)). Then the period learned during an interval period is reset and it waits for next communication.
(a) Learning data period

changed between the Start command and Period command.
Example) Waveform disorder at the time of noise impression periodical disorder of MCU causes
(b) Data recognition

The data input of this product makes data 2 bits ( $H$, and $L$, or $L$ and $H$ ) on the basis of a Manchester code, and transitions of the potential in a detection window show logic. Including jitter, communication delay and others, data are received by potential transitions in the detection window.


## Reference: Example of control data input

(6) Example of data input to the same ID
a) In case data $A$ is input up to the rising edge of 127 internal PWM clocks.


Output data A starts at the rising edge of zero internal PWM clock.
Inputting is invalid from the rising edge of 127 internal PWM clocks to the rising edge of zero internal PWM clock which is just after these 127 PWM clocks.
b) In case data $A$ is input after the rising edge of 127 internal PWM clocks.


Outputting data A does not start at the rising edge of zero internal PWM clock just after the data A is input. It starts at the next rising edge of zero internal PWM clock.
Inputting is invalid from the data A (period) input to the rising edge of after the next zero internal PWM clock.
c) In case data $B$ is input after data of pattern 1 starts outputting.


Outputting data A starts at the rising edge of zero internal PWM clock just after the data A is input. Outputting data $B$ starts at the rising edge of zero internal PWM clock which is just after the data $B$ input.
Inputting is invalid in the following term.
From the rising edge of 127 internal PWM clocks which are just after the data $A$ is input to the rising edge of zero internal PWM clock which is just after these 127 clocks.
From the rising edge of 127 internal PWM clocks which is just after the data $B$ input to the rising edge of zero internal PWM clock which is just after these 127 clocks.

Pay attention that the IC does not operate according to the configuration while the following patterns (patterns 4 and 5) are input.
d) In case data $B$ is input before starting the output of pattern 2 .


Inputting is invalid from the data $A$ (period) input to the rising edge of the second internal clock. So, data B is invalid and data A is output.


Outputting data A does not start at the rising edge of zero internal clock which is just after the data A input. Outputting data $B$ starts at the rising edge of zero internal PWM clock which is just after the data $B$ input.
f) In case of matching asynchronously the timing between pattern end and internal data update


In case of matching asynchronously the timing between SCLK end and internal data update, the start command at the beginning of next pattern may not be received. That may occur in the pattern of first IC if there are patterns for two or more ICs. That does not occur if the pattern length is as follows.

1. Less than minimum $10.6 \mu \mathrm{~s}$ after inputting period command
2. Exceeding maximum 3 ms from point of 1 .

This time management is difficult. We recommend that the following measures are applied from initial state to avoid the occurrence of the event.
Dummy data are added to the beginning of the pattern, and 1 time or more SCLKs should be added.
The following figure shows the dummy data $=\mathrm{L}$. However, the dummy data $=\mathrm{H}$ is also possible.

(7) Example of data input to the different ID.
a) In case the data $B$ is input to slave $(=02 h)$ just after the data $A$ is input to slave $(=00 h)$.


Both data $A$ and data $B$ are output at the rising edge of zero internal PWM clock which is just after the data $A$ and the data $B$ inputs.

## (Reference)

Pay attention that the IC does not operate according to the configuration while following patterns (patterns 7 and 8) are input.
b) In case period command after inputting data $A$ to the slave ( $=00 \mathrm{~h}$ ) is missed or omitted, or in case period command after inputting data $B$ to the slave $(=02 h)$ is missed or omitted.

c) In case start command is input after data $B$ of pattern 7 is input.


Data $A$ is output. Data $B$ is not output.

## Power Supply Block

The power supply of this product can be set with the following 2 ways shown in (1) and (2).
(1) When the power supply of LEDs and those of this product are shared (The power supply function of this product is used.)
(2) When this product is operated with 5 V power supply input, not sharing the power supply of LEDs (The power supply function of this product is not used.)
Each setting is shown below.
(1) When the power supply of LEDs and those of this product are shared


As shown in the above, the power supply ( 7.0 to 28 V ) is applied to the VL pin, and VLOUT and Vcc pins are connected directly.
Connect VLOUT pin output (5V) to Vcc of this product, and also connect at within 15 mA .
(2) When 5 V power supply is input to Vcc directly


When 5V power supply is applied to this product without using the built-in power supply, ground VL pin and VLOUT pin to GND.

Note:
Add decoupling capacitors to VL pin and Vcc pin. The recommended values are as follows.
Recommended value of decoupling capacitors between VL (LED power supply) and GND: $1 \mu \mathrm{~F}$ of electrolytic capacitor

* Evaluate appropriately since it is dependent on the main power supply performance.

Recommended value of decoupling capacitors between Vcc ( 5 V power supply) and GND: $1 \mu \mathrm{~F}$ of electrolytic capacitor and $0.1 \mu \mathrm{~F}$ of ceramic capacitor

* Evaluate appropriately since it is dependent on the LED current to be set and current supply amount of VLOUT.


## Data buffer

Data buffer is built in between DATA-IN and DATA-OUT, and it can be used for the cascade connection of two or more these products.
In the case of cascade connection with this buffer, connect up to 5 pieces (@ 2 MHz communication) on the same board.


## Power on reset (POR)

It avoids the malfunction by the reset all internal data of IC and setting default in startup.
POR circuit operates only when VDD rises from 0 V . To restart POR, Vcc should be 0 V .
As for the voltage for holding internal data, it is guaranteed after Vcc reaches 4.5 V or more once.


## Thermal shutdown function (TSD)

When the temperature of internal IC exceeds $150^{\circ} \mathrm{C}$, all constant current outputs are turned off by this function. The constant current is output again when the temperature decreases to the rating.

TSD operation temperature $150^{\circ} \mathrm{C}$ to $180^{\circ} \mathrm{C}$
TSD reset temperature $\quad 20^{\circ} \mathrm{C}$ below TSD operation temperature

* TSD function aims at detecting abnormal heating of ICs. Please avoid positively using the TSD function.


## Notes of setting

1. Output load

This product is the driver in which loads are LEDs. Do not connect loads except LEDs to the output.
2. External resistor for LED drive current setting (REXT-R, REXT-G, REXT-B)

The external resistances to be connected to REXT-R, REXT-G, and REXTt-B pins should be connected separately. Three resistors must not be collected as one resister. If they are collected, current error is generated in each RGB.
3. Operation sequence of ID setting

The ID setting can be available when Vcc exceeds 4.5 V after turning on.
However, in order to prevent malfunction of the ID setting, the transitional input signals of less than 2-clock period of external input data (DATA-IN) are not received.

4. Data setting

The gradation signals should be input data for 9 channels in the special mode certainly.
When the data are input to over 9 channels, the data after 10th channel are invalid.
When the data are input to less than 9 channels, the data of channels to be input are held, and the data of channels not to be input are held data before the input.
Moreover, do not input data which are not indicated in this document.
Confirm "Programming the TB62D786FTG" and "(5) Notes of data setting."
5. Data setting timing

When data are input to same slave address, next data should be input with spacing the interval 3 ms or more (128 internal PWM clocks) because data may not be received.
When data are input to different slave address, the interval 3 ms ( 128 internal PWM clocks) or more is not required.
6. Decoupling capacitor

For the stabilization of power supply system, it is recommended that decoupling capacitor between power supply and GND should place as near IC as possible. For details, refer to "power supply block."

## State Transition Diagram

<With VL pin>
VLOUT pin and Vcc pin are wire-connected beforehand, and set each IC's ID (from ID0 to ID2 pin).
Turning on main power supply (VL pin)

VLOUT pin supplies IC operation voltage (4.5 V or more).


reaches 4.5 V or more, and minimum 15 ms passes.

## Normal mode

The data of each output is updated for every ID set by the DATA signals, and LED illuminating is controlled.

<Without VL pin>
VLOUT pin and VL pin are wire-connected to GND beforehand, and set each IC's ID (from ID0 to ID2 pin)
Turning on IC power supply (Vcc pin)


Data should be input after Vcc voltage reaches 4.5 V or more, and minimum 15 ms passes.

## Normal mode

The data of each output is updated for every ID set by the DATA signals, and LED illuminating is controlled.


## Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right)$

| Characteristics | Symbol | Rating | Unit |
| :---: | :---: | :---: | :---: |
| VL pin Supply Voltage | VL | 29 | V |
| Vcc pin Supply Voltage | Vcc | 6.0 | V |
| Input Voltage | $V_{\text {IN }}$ | -0.3 to Vcc +0.3 (Note 1) | V |
| Output Current | IOUT | 85 (Note 4) | $\mathrm{mA} / \mathrm{ch}$ |
| Output Voltage | VOUT | -0.3 to 29 | V |
| Power Dissipation | Pd | 2.4 (Note 2 and 3) | W |
| Thermal resistance | $R_{\text {th }}(j-a)$ | 51.5 (Note 2) | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Operating Temperature Rating | Topr | -40 to 85 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature Rating | $\mathrm{T}_{\text {stg }}$ | -55 to 150 | ${ }^{\circ} \mathrm{C}$ |
| Maximum junction Temperature | $\mathrm{T}_{\mathrm{j}}$ | 150 | ${ }^{\circ} \mathrm{C}$ |

Note 1: Do not exceed 6.0 V.
Note 2: When mounted on a PCB(Material: FR-4 compliant with JEDEC 4 layers board, Board size: $76.2 \times 114.3 \times 1.6 \mathrm{~mm}$ )
Note 3: Power dissipation is reduced by $1 / R_{\text {th(j-a) }}$ for each ${ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ ambient.
Note 4: Current may be further restricted due to ambient temperature or board condition.
$T_{a}$ : Ambient temperature of ICs
$\mathrm{T}_{\mathrm{opr}}$ : Ambient temperature of ICs to be operated
$T_{j}$ : IC chip temperature during operating
For the design, it is recommended that the maximum of $T_{j}$ is considered of the amount of use dissipation at about $120^{\circ} \mathrm{C}$.

## Power Dissipation



## Operating Ranges ( $\mathrm{T}_{\mathrm{a}}=-40$ to $85^{\circ} \mathrm{C}$, $\mathrm{Fin}=0.5$ to 2.0 MHz , unless otherwise specified)

| Characteristics | Symbol | Test Condition | Min | Typ. | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VL pin Supply voltage | VL | - | 7.0 | - | 28 | V |
| Vcc pin supply voltage | Vcc | - | 4.5 | - | 5.5 | V |
| Output Voltage | Vout(ON) | All outputs | 0.5 | - | 4 | V |
| Output Current | IOUT | All outputs | 5 | - | 40 | $\mathrm{mA} / \mathrm{ch}$ |
| Input DATA Frequency | Fin | - | 0.5 | - | 2.0 | MHz |
| DATA Detection window width | tW | - | 135 | - | - | ns |
| Input DATA allowable jitter width | tJIT | The transition of input DATA potential is the center. | - | - | $\pm 54$ | ns |
| Input DATA minimum pulse width | tHIGH, tLOW | - | 100 | - | - | ns |
| Input Voltage | $\mathrm{V}_{\mathrm{IH}}$ | DATA-IN | $\begin{aligned} & 0.7 \times \\ & \text { Vcc } \end{aligned}$ | - | Vcc | V |
|  | VIL |  | GND | - | $\begin{aligned} & 0.3 \times \\ & \text { Vcc } \end{aligned}$ |  |
|  | VIDO | $\begin{gathered} \text { ID0, ID1, ID2 } \\ \text { VREXT=1.128 V (typ.) } \end{gathered}$ | 0 | - | 0.1 |  |
|  | VID1 |  | $\begin{array}{\|c} \mid \text { VREXT } \\ -0.1 \end{array}$ | VREXT | $\begin{array}{\|c} \mid \text { VREXT } \\ +0.1 \end{array}$ |  |
|  | VID2 |  | $\begin{gathered} \text { Vcc - } \\ 0.1 \end{gathered}$ | - | Vcc |  |
| VLOUT load current | $\Delta \mathrm{VI}$ | Except Supply current | - | - | 15 | mA |

## Definition of input DATA (DATA-IN) and allowable width of jitter

The following figure shows representatively the allowable width of jitter because the transition of potential is monitored after Slave address communication after Start command. In all communications, if the jitter width is within tJIT, the receiving can be reliable.


Note: Output format of control signal port
CMOS push-pull type is recommended for the output port of the controller.
When the open-drain output is used, the potential transition of H communication and L communication may not be same Duty, and the duty narrows the allowable jitter width. Therefore, pay attention to the communication wave.

Electrical Characteristics ( $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{VL}=15 \mathrm{~V}$, $\mathrm{Vcc}=\mathrm{VLOUT}$, Unless otherwise specified )

| Characteristics | Symbol | Test Condition | Min | Typ. | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output Current | IOUT1 | $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}, \mathrm{REXT}=1.2 \mathrm{k} \Omega$ | 12.5 | 13.3 | 14.1 | mA |
| Output Current Accuracy between channels | $\Delta \mathrm{I}$ OUT2 | $\begin{aligned} & \text { VOUT }=0.5 \mathrm{~V}, \text { REXT }=1.2 \mathrm{k} \Omega \\ & \text { All output ON } \end{aligned}$ | - | - | $\pm 3.0$ | \% |
| Output leakage current | Ioz | $\mathrm{V}_{\text {OUT }}=28 \mathrm{~V}$ | - | - | 1 | $\mu \mathrm{A}$ |
| VLOUT pin voltage | VLout | - | 4.5 | - | 5.5 | V |
| Input current | $\mathrm{I}_{\mathrm{IH}}$ | DATAIN | - | - | 1 | $\mu \mathrm{A}$ |
|  | IIL | DATAIN | - | - | -1 |  |
|  | $\mathrm{I}_{\text {ID }}$ | ID0, ID1, ID2 | - | - | $\pm 10$ |  |
| Changes in constant output current dependent on Vcc | \%/Vcc | $\mathrm{Vcc}=4.5 \mathrm{~V}$ to 5.5 V | - | 1 | 2 | \% |
| Supply Current | Icc (VL) | When applied VL=15 V REXT $=1.2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$, | - | 7.8 | 15 | mA |
|  | Icc (Vcc) | When connected VL=GND REXT $=1.2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$, | - | 7.4 | 12 |  |
| H Level DATA OUT Pin Output Voltage | VOH | $\mathrm{IOH}=-1 \mathrm{~mA}$ | $\begin{gathered} \hline \mathrm{Vcc} \\ -0.4 \end{gathered}$ | - | - | V |
| L Level DATA OUT Pin Output Voltage | VOL | $\mathrm{IOL}=1 \mathrm{~mA}$ | - | - | 0.4 | V |
| DATAIN-DATAOUT <br> Propagation Delay Time (Note) | tpLH | $\mathrm{CL}=15 \mathrm{pF}, \mathrm{tr}=\mathrm{tf}=3 \mathrm{~ns}$ | - | - | 20 | ns |
|  | tpHL |  | - | - | 20 |  |
| PWM reference frequency | fPWM | Reference frequency of internal PWM counter | - | 70 | - | kHz |

Note: DATA IN - DATA OUT definition

DATA IN

DATA OUT


## Test Circuit

Test Circuit 1 Input Current (IIH)


Test Circuit 2 Input Current (IIL)


Test Circuit 3 Supply Current (VL)


Test Circuit 4 Supply Current(Vcc)


Test Circuit5 Output Current/ Output Leakage Current/ Output Current Accuracy/ Changes in Constant Output current dependent on Vcc


## Output current - derating (illuminating rate) graph

Board condition: Material: FR-4 (Compliant with JEDEC 4 layers board), Board size: $76.2 \times 114.3 \times 1.6 \mathrm{~mm}$ When the pulse width is 25 ms or more, it is regarded as DC.




Output current - external resistance characteristic (typ.)


## TOSHIBA

Application circuit example 1


## Application circuit example 2

When this product is controlled from same MCU ports of TB62781FNG, which is 2-wire input control LED driver, need to connect the Exclusive-OR gate (TC74VHC86) and D-Flip/Flop to preceding phase of the input of this product as shown below.
Since phase differences between DATA from MCU outputting and clock may occur, confirm the operation enough with the following configuration.

-Logic

$\operatorname{SCLK}(1.5 \mathrm{MHz})$


SDA


EX-OR


CR delay U3(10)


XOR U3(8)


XOR U4(11)
DATA-IN U5(5)


Note: When this circuit is used, the interval period should be fixed to SDA=SCLK=H.

## Package Dimensions

## P-VQFN24-0404-0.50-001



Weight: 0.037g (Typ.)

## Notes of Contents

## 1. Block diagram

Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for explanatory purposes.

## 2. Equivalent circuits

The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

## 3. Timing charts

Timing charts may be simplified for explanatory purposes.

## 4. Application circuit example

The application circuit examples shown in this document are provided for reference purposes only. Thorough evaluation is required, especially at the mass production design stage. Providing these application circuit examples does not grant a license for industrial property rights.

## 5. Test circuits

Components in the test circuits are used only to obtain and confirm the device characteristics. These components and circuits are not guaranteed to prevent malfunction or failure from occurring in the application equipment.

## IC Usage Considerations

## Notes on handling of ICs

(1) The absolute maximum ratings of a semiconductor device are a set of ratings that must not be exceeded, even for a moment. Do not exceed any of these ratings.
Exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion.
(2) Use an appropriate power supply fuse to ensure that a large current does not continuously flow in case of over current and/or IC failure. The IC will fully break down when used under conditions that exceed its absolute maximum ratings, when the wiring is routed improperly or when an abnormal pulse noise occurs from the wiring or load, causing a large current to continuously flow and the breakdown can lead smoke or ignition. To minimize the effects of the flow of a large current in case of breakdown, appropriate settings, such as fuse capacity, fusing time and insertion circuit location, are required.
(3) If your design includes an inductive load such as a motor coil, incorporate a protection circuit into the design to prevent device malfunction or breakdown caused by the current resulting from the inrush current at power ON or the negative current resulting from the back electromotive force at power OFF. IC breakdown may cause injury, smoke or ignition. Use a stable power supply with ICs with built-in protection functions. If the power supply is unstable, the protection function may not operate, causing IC breakdown. IC breakdown may cause injury, smoke or ignition.
(4) Do not insert devices in the wrong orientation or incorrectly. Make sure that the positive and negative pins of power supplies are connected properly. Otherwise, the current or power consumption may exceed the absolute maximum rating, and exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion. In addition, do not use any device that is applied the current with inserting in the wrong orientation or incorrectly even just one time.
(5) Carefully select external components (such as inputs and negative feedback capacitors) and load components (such as speakers), for example, power amp and regulator.
If there is a large amount of leakage current such as input or negative feedback condenser, the IC output DC voltage will increase. If this output voltage is connected to a speaker with low input withstand voltage, overcurrent or IC failure can cause smoke or ignition. (The over current can cause smoke or ignition from the IC itself.) In particular, please pay attention when using a Bridge Tied Load (BTL) connection type IC that inputs output DC voltage to a speaker directly.

## Points to remember on handling of ICs

(1) Heat Radiation Design

In using an IC with large current flow such as power amp, regulator or driver, please design the device so that heat is appropriately radiated, not to exceed the specified junction temperature ( $T_{j}$ ) at any time and condition. These ICs generate heat even during normal use. An inadequate IC heat radiation design can lead to decrease in IC life, deterioration of IC characteristics or IC breakdown. In addition, please design the device taking into considerate the effect of IC heat radiation with peripheral components.
(2) Back-EMF

When a motor reverses the rotation direction, stops or slows down abruptly, a current flow back to the motor's power supply due to the effect of back-EMF. If the current sink capability of the power supply is small, the device's motor power supply and output pins might be exposed to conditions beyond absolute maximum ratings. To avoid this problem, take the effect of back-EMF into consideration in system design.
(3) Thermal Shutdown Circuit

Thermal shutdown circuits do not necessarily protect ICs under all circumstances. If the thermal shutdown circuits operate against the over temperature, clear the heat generation status immediately. Depending on the method of use and usage conditions, such as exceeding absolute maximum ratings can cause the thermal shutdown circuit to not operate properly or IC breakdown before operation.

## RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA".
Hardware, software and systems described in this document are collectively referred to as "Product"

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY ANDIOR RELIABILITY, ANDIOR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE ANDIOR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, and devices related to power plant. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative or contact us via our website.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

TOSHIBA ELECTRONIC DEVICES \& STORAGE CORPORATION

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Lighting Drivers category:
Click to view products by Toshiba manufacturer:

Other Similar products are found below :
LV5235V-MPB-H MB39C602PNF-G-JNEFE1 MIC2871YMK-T5 AL1676-10BS7-13 AL1676-20AS7-13 AP5726WUG-7 ICL8201 IS31BL3228B-UTLS2-TR IS31BL3506B-TTLS2-TR AL3157F-7 LV52204MTTBG AP5725WUG-7 STP4CMPQTR NCL30086BDR2G CAT4004BHU2-GT3 LV52207AXA-VH AP1694AS-13 TLE4242EJ AS3688 IS31LT3172-GRLS4-TR TLD2311EL KTD2694EDQ-TR KTZ8864EJAA-TR IS32LT3174-GRLA3-TR MP2488DN-LF-Z NLM0010XTSA1 AL1676-20BS7-13 ZXLD1370QESTTC MPQ7220GF-AEC1-P MPQ7220GR-AEC1-P MPQ4425BGJ-AEC1-P MPQ7220GF-AEC1-Z MPQ7220GR-AEC1-Z MPQ4425BGJ-AEC1-Z IS31FL3737B-QFLS4-TR IS31FL3239-QFLS4-TR KTD2058EUAC-TR KTD2037EWE-TR DIO5662ST6 IS31BL3508A-TTLS2-TR KTD2026BEWE-TR MAX20052CATC/V+ MAX25606AUP/V+ BD6586MUV-E2 BD9206EFV-E2 LYT4227E LYT6079C-TL MP3394SGF-P MP4689AGN-P MPQ4425AGQB-AEC1-Z

