Toshiba BiCD Process Integrated Crcuit Silicon Monolithic TB67S549FTG

BiCD Constant-Current Two-Phase Bipolar Stepping Motor Driver IC

The TB67S549FTG is a PWM chopper type 2-phase bipolar stepping motor drive. Owing to the BiCD process, the output withstand voltage of 40 V and a maximum output current of 1.5 A are realized. The motor can be driven by a single VM power supply with a built-in regulator for the device operation.

Features

- Monolithic device using BiCD process

P-VQFN24-0404-0.50-004
Weight:0.0417g (typ.)

- Device for driving a bipolar stepping motor
- A PWM constant current drive is realized without external current detection resistors owing to the built-in function of Advanced Current Detect System (ACDS).
- A high efficiency PWM constant-current drive is realized owing to the built-in function of Advanced Dynamic Mixed Decay (ADMD).
- Clock input control
- Full, Half, Quarter, $1 / 8,1 / 16$, and $1 / 32$ step resolutions are available.
- BiCD process : DMOSFETs are integrated for output power transistors
- High withstand voltage and high output current: $40 \mathrm{~V} / 1.5 \mathrm{~A}$ (absolute maximum rating)
- Over-temperature detection (TSD), over-current detection (ISD), and low supply voltage detection (UVLO) are built-in.
- Reduced external components for charge pump
- Package: QFN24 (4mm $\times 4 \mathrm{~mm})$

Pin Assignment

TB67S549FTG

(Top View)

Block Diagram

Functional blocks/circuits/constants in the block diagram have been partially omitted or simplified to explain their functions.

Note: For the layout design of this device, the ground wiring should be a solid connection, and the part taken out from the board should be grounded at a single point, and heat dissipation should be also considered.

The output line, VM line, and GND line should be designed carefully because the device may be destroyed in the event of a short circuit between outputs or in the event of power or ground fault.

When the power supply related pins (VM, OUTA1, OUTA2, OUTB1, OUTB2, AGND, PGND, RSGND_A, RSGND_B), through which particularly a large current is flown, are not wired correctly, problems may occur, including destruction.

In addition when the logic input pins are not wired correctly, incorrect operation may occur and the device may be destroyed. In this case, the device may be destroyed due to a higher current than the specified value, or etc..
Please be careful when designing the pattern and mounting the device.

Pin Function Description

TB67S549FTG

Pin number	Pin name	Function
1	OUTA1	Motor A channel output pin
2	RSGND_A	Motor A channel ground pin
3	OUTA2	Motor A channel output pin
4	OUTB2	Motor B channel output pin
5	RSGND_B	Motor B channel ground pin
6	OUTB1	Motor B channel output pin
7	VREF	Reference power supply pin for setting current value of A channel output and B channel output
8	AGND	Ground pin
9	RESET	RESET signal input pin. The electric angle is initialized.
10	SLEEP_X	SLEEP signal input pin
11	LO	Reset signal output pin when a failure is detected
12	DECAY	Switching pin for constant current chopping control
13	CW_CCW	Switching pin for rotation direction
14	ENABLE	ENABLE signal input pin for controlling output ON/OFF of A channel and channel B.
15	CLK	Clock signal input pin. Electric angle advances at the rising edge.
16	TRQ0	Torque switching pin
17	TRQ1	Torque switching pin
18	DMODE0	Setting pin for excitation mode
19	DMODE1	Setting pin for excitation mode
20	DMODE2	Setting pin for excitation mode
21	OSCM	Connection pin for the OSCM setting resistor
22	MO	Electric angle monitor pin
23	PGND	Ground pin for motor output
24	VM	VM voltage input pin

Input and Output Equivalent Circuit

Pin name	Equivalent circuit
CLK ENABLE RESET CW/CCW DMODE0 DMODE1 DMODE2 TRQ0 TRQ1 SLEEP_X DECAY	
$\begin{aligned} & \text { MO } \\ & \text { LO } \end{aligned}$	Logic Input pin
VREF	
OSCM	
VM OUTA1 OUTA2 OUTB1 OUTB2 RSGND_A RSGND_B	* Same as OUTB1 and OUTB2

Equivalent circuits have been partially omitted or simplified to explain their circuit.

Operation Description: TB67S549FTG

SLEEP_X Function

By setting the sleep mode once and then setting the normal operation mode again, the operation can be resumed from the forced OFF state due to the operation of the over-temperature detection (TSD) or the over-current detection circuit (ISD).
The power saving mode is entered after $100 \mu \mathrm{sec}$. by setting SLEEP_X=Low. The normal operation is resumed within 10 ms (max.) after inputting SLEEP_X=High.

SLEEP_X	Function
L	Power saving mode (Charge pump stopped, and VCC Reg. stopped.)
H	Normal operation

CLK Function

The electric angle is advanced by one for each CLK. The signal is captured on the Up edge.

CLK	Function
\uparrow	Transition to next step on the up edge
\downarrow	(The previous state is held.)

ENABLE Function

ON and OFF of stepping motor drive are switched. The normal constant current control is started by turning the motor drive ON, while by setting the motor drive OFF the outputs are turned high impedance because the MOSFETs are set to OFF.

ENABLE	Function
H	State of output MOSFETs: ON (normal operation)
L	State of output MOSFETs: OFF (operation stopped, high impedance)

CW/CCW Function

The directions of the stepping motor rotation are switched.

CW/CCW	Function
H	Forward rotation (CW)
L	Reverse rotation (CCW)

DMODE0, DMODE1, DMODE2 Function

Step resolutions are switched.

DMODE0	DMODE1	DMODE2	Function
L	L	L	setting of Full step resolution
L	L	H	setting of Half step resolution (a)
L	H	L	setting of Half step resolution (b)
L	H	H	setting of Quarter step resolution
H	L	L	setting of $1 / 8$ step resolution
H	L	H	setting of $1 / 16$ step resolution
H	H	L	setting of $1 / 32$ step resolution
H	H	H	setting of $1 / 32$ step resolution

Each sequence by step resolution in clock input control mode

[Setting of Full step resolution]

[Setting of Half step resolution (a)]

MO is a waveform of the pin output in pull-up state.
The timing chart has been simplified to explain the function and operation.
[Setting of Half step resolution (b)]

[Setting of Quarter step resolution]

MO is a waveform of the pin output in pull-up state.
The timing chart has been simplified to explain the function and operation.
[Setting of $\mathbf{1 / 8}$ step resolution]

MO is a waveform of the pin output in pull-up state.
The timing chart has been simplified to explain the function and operation.

[Setting of 1/16 step resolution]

MO is a waveform of the pin output in pull-up state.
The timing chart has been simplified to explain the function and operation.

[Setting of 1/32 step resolution]

MO is a waveform of the pin output in pull-up state.
The timing chart has been simplified to explain the function and operation.

Step resolution and set current value

Regarding the set current value of each step resolution, refer to the table below. The table shows the case of CW_CCW=High setting.

STEP	1/32		1/16		1/8		1/4		1/2(b)		1/2(a)		Full	
-	Ach (\%)	Bch (\%)	Ach (\%)	Bch (\%)	Ach (\%)	Bch (\%)	Ach (\%)	Bch (\%)	Ach (\%)	Bch (\%)	Ach (\%)	Bch (\%)	Ach (\%)	Bch (\%)
$\theta 0$	100	0	100	0	100	0	100	0	100	0	100	0		
$\theta 1$	100	5												
$\theta 2$	100	10	100	10										
$\theta 3$	99	15												
$\theta 4$	98	20	98	20	98	20								
$\theta 5$	97	24												
$\theta 6$	96	29	96	29										
$\theta 7$	94	34												
$\theta 8$	92	38	92	38	92	38	92	38						
$\theta 9$	90	43												
$\theta 10$	88	47	88	47										
011	86	51												
$\theta 12$	83	56	83	56	83	56								
$\theta 13$	80	60												
$\theta 14$	77	63	77	63										
$\theta 15$	74	67												
$\theta 16$	71	71	71	71	71	71	71	71	71	71	100	100	100	100
017	67	74												
$\theta 18$	63	77	63	77										
$\theta 19$	60	80												
$\theta 20$	56	83	56	83	56	83								
ө21	51	86												
$\theta 22$	47	88	47	88										
$\theta 23$	43	90												
024	38	92	38	92	38	92	38	92						
ө25	34	94												
$\theta 26$	29	96	29	96										
ө27	24	97												
$\theta 28$	20	98	20	98	20	98								
ө29	15	99												
$\theta 30$	10	100	10	100										
$\theta 31$	5	100												
$\theta 32$	0	100	0	100	0	100	0	100	0	100	0	100		
$\theta 33$	-5	100												
$\theta 34$	-10	100	-10	100										
$\theta 35$	-15	99												
$\theta 36$	-20	98	-20	98	-20	98								
$\theta 37$	-24	97												
$\theta 38$	-29	96	-29	96										
$\theta 39$	-34	94												
$\theta 40$	-38	92	-38	92	-38	92	-38	92						
$\theta 41$	-43	90												
$\theta 42$	-47	88	-47	88										
$\theta 43$	-51	86												

STEP	1/32		1/16		1/8		1/4		1/2(b)		1/2(a)		Full	
-	Ach (\%)	Bch (\%)	Ach (\%)	Bch (\%)	Ach (\%)	Bch (\%)	Ach (\%)	Bch (\%)	Ach (\%)	Bch (\%)	Ach (\%)	Bch (\%)	Ach (\%)	Bch (\%)
$\theta 44$	-56	83	-56	83	-56	83								
$\theta 45$	-60	80												
$\theta 46$	-63	77	-63	77										
$\theta 47$	-67	74												
$\theta 48$	-71	71	-71	71	-71	71	-71	71	-71	71	-100	100	-100	100
$\theta 49$	-74	67												
$\theta 50$	-77	63	-77	63										
$\theta 51$	-80	60												
$\theta 52$	-83	56	-83	56	-83	56								
$\theta 53$	-86	51												
$\theta 54$	-88	47	-88	47										
$\theta 55$	-90	43												
$\theta 56$	-92	38	-92	38	-92	38	-92	38						
$\theta 57$	-94	34												
$\theta 58$	-96	29	-96	29										
$\theta 59$	-97	24												
$\theta 60$	-98	20	-98	20	-98	20								
$\theta 61$	-99	15												
$\theta 62$	-100	10	-100	10										
$\theta 63$	-100	5												
$\theta 64$	-100	0	-100	0	-100	0	-100	0	-100	0	-100	0		
$\theta 65$	-100	-5												
$\theta 66$	-100	-10	-100	-10										
$\theta 67$	-99	-15												
$\theta 68$	-98	-20	-98	-20	-98	-20								
$\theta 69$	-97	-24												
$\theta 70$	-96	-29	-96	-29										
$\theta 71$	-94	-34												
$\theta 72$	-92	-38	-92	-38	-92	-38	-92	-38						
$\theta 73$	-90	-43												
$\theta 74$	-88	-47	-88	-47										
$\theta 75$	-86	-51												
$\theta 76$	-83	-56	-83	-56	-83	-56								
$\theta 77$	-80	-60												
$\theta 78$	-77	-63	-77	-63										
$\theta 79$	-74	-67												
$\theta 80$	-71	-71	-71	-71	-71	-71	-71	-71	-71	-71	-100	-100	-100	-100
$\theta 81$	-67	-74												
$\theta 82$	-63	-77	-63	-77										
$\theta 83$	-60	-80												
$\theta 84$	-56	-83	-56	-83	-56	-83								
$\theta 85$	-51	-86												
$\theta 86$	-47	-88	-47	-88										
$\theta 87$	-43	-90												
$\theta 88$	-38	-92	-38	-92	-38	-92	-38	-92						
$\theta 89$	-34	-94												
$\theta 90$	-29	-96	-29	-96										
091	-24	-97												

STEP	1/32		1/16		1/8		1/4		1/2(b)		1/2(a)		Full	
-	Ach (\%)	Bch (\%)												
$\theta 92$	-20	-98	-20	-98	-20	-98								
$\theta 93$	-15	-99												
$\theta 94$	-10	-100	-10	-100										
$\theta 95$	-5	-100												
$\theta 96$	0	-100	0	-100	0	-100	0	-100	0	-100	0	-100		
$\theta 97$	5	-100												
$\theta 98$	10	-100	10	-100										
$\theta 99$	15	-99												
$\theta 100$	20	-98	20	-98	20	-98								
$\theta 101$	24	-97												
$\theta 102$	29	-96	29	-96										
$\theta 103$	34	-94												
$\theta 104$	38	-92	38	-92	38	-92	38	-92						
$\theta 105$	43	-90												
$\theta 106$	47	-88	47	-88										
$\theta 107$	51	-86												
$\theta 108$	56	-83	56	-83	56	-83								
$\theta 109$	60	-80												
$\theta 110$	63	-77	63	-77										
$\theta 111$	67	-74												
$\theta 112$	71	-71	71	-71	71	-71	71	-71	71	-71	100	-100	100	-100
$\theta 113$	74	-67												
$\theta 114$	77	-63	77	-63										
$\theta 115$	80	-60												
$\theta 116$	83	-56	83	-56	83	-56								
$\theta 117$	86	-51												
$\theta 118$	88	-47	88	-47										
$\theta 119$	90	-43												
$\theta 120$	92	-38	92	-38	92	-38	92	-38						
$\theta 121$	94	-34												
$\theta 122$	96	-29	96	-29										
$\theta 123$	97	-24												
$\theta 124$	98	-20	98	-20	98	-20								
$\theta 125$	99	-15												
$\theta 126$	100	-10	100	-10										
$\theta 127$	100	-5												
$\theta 128$	100	0	100	0	100	0	100	0	100	0	100	0		

Selectable Mixed Decay Function

The Selectable Mixed Decay is a function that the amount of current recirculation during the current recirculation (Decay) period can be adjusted by the DECAY pin.

The control of Mixed Decay itself is realized by switching among three controls: Charge, Slow, and Fast. The constant current control can be selected from two settings by the DECAY pin. When this setting is switched during the constant current operation, the new setting is applied from the next chopping cycle.

DECAY pin	Function
L	Mixed Decay
H	ADMD

Note: The timing chart has been simplified to explain functions and operations.

Mixed Decay Waveform (Current Waveform)

Note: The timing chart has been simplified to explain functions and operations.

Each period of the constant current PWM operation

The Charge period (the time required for the current flowing in the motor to reach the set current value) varies depending on drive conditions.
The timing of NF detection (the motor current reaches the set current value) during the mixed decay chopping cycle (fcнор) varies from time to time. As shown in the example above, when the NF detected is performed at a relatively early timing of the fснор cycle, the period of Slow Decay is longer, and when it is performed later of the fchop cycle, the period of Slow Decay is shorter.

Note: Basically, fchop period - (Charge + Fast decay period) = Slow decay period. (Fast decay period is fixed at 37.5\% (OSCM: 6 clocks)).
Note: The timing chart has been simplified to explain functions and operations.

Mixed Decay Current Waveform

-When the set current value is in the increasing direction

-When the Charge period is longer than one $f_{\text {снор }}$ cycle
When the period until the motor current reaches the next set value (Charge period) exceeds one cycle of the set chopping cycle (fснор), such as when the set current values (steps) are switched, Charge continues for the next fcнор cycle, and the control mode is shifted to Mixed Decay control after reaching NF.

-When the set current value is in the decreasing direction

The timing chart has been simplified to explain functions and operations.

ADMD (Advanced Dynamic Mixed Decay) Constant Current Control

In ADMD both the current flowing from the power supply to the motor and the current re-circulated from the motor to the power supply are monitored to perform constant current PWM control. The basic sequence of ADMD is shown below.

Note: The timing chart has been simplified to explain functions and operations.
The values in the timing chart are for reference only.

Each filter is provided as shown in the figure below to avoid current mis-detection caused by external jumping noise, etc.. When the L value of the motor in use is small and the current value reaches ADMDth (ADMD current value) within the ADMDtblank period, the mode is switched to Slow operation after the ADMDtblank period. In this case, the ADMD current value (ADMDth) is smaller than the set current value (NFth) $\times 0.95$ (typ.).

Note: The timing chart has been simplified to explain functions and operations.
The values in the timing chart are for reference only.

Auto Decay Mode Waveform

Note: The timing chart has been simplified to explain functions and operations.

Auto Decay Mode Waveform

\bullet When the set current value is in the increasing direction

-When the Charge period is longer than one $\mathrm{f}_{\mathrm{chop}}$ cycle

When the period until the motor current reaches the next set value (Charge period) exceeds one cycle of the set chopping cycle (fснор), such as when the set current value (step) is switched, Charge continues for the next fcнор сусle, and the control mode is shifted to Mixed Decay control after reaching NF.

Note: The timing chart has been simplified to explain functions and operations.
-When the set current value is in the decreasing direction

-When the Fast period is longer than one fснор cycle
(The output current does not reach the ADMD threshold within one $\mathrm{f}_{\mathrm{CHOP}}$ cycle.)

Note: The timing chart has been simplified to explain functions and operations.

RESET Function

The internal electric angle can be initialized.

RESET	Function
H	Initialization of Electric angle
L	Normal operation

The current in each channel when RESET is turned on is designed as follows.

Step resolution	A channel current	B channel current	Initial electric angle
Full step resolution	100%	100%	45°
Half step resolution (a)	100%	100%	45°
Half step resolution (b)	71%	71%	45°
Quarter step resolution	71%	71%	45°
$1 / 8$ step resolution	71%	71%	45°
$1 / 16$ step resolution	71%	71%	45°
$1 / 32$ step resolution	71%	71%	45°

Torque Function

The torque of motor is set

TRQ1 pin input	TRQ0 pin input	Function
L	L	Torque setting: 100%.
L	H	Torque setting: 75%.
H	L	Torque setting: 50%.
H	H	Torque setting: 25%.

MO Function

Internal electrical angle can be checked by connecting the output of the MO pin to 3.3 V or 5 V power supply through a pull-up resistor in the range of 10 k to $100 \mathrm{k} \Omega$.

MO	Function
H (pill-up)	Electric angle is other than the initial value
L	Electric angle is the initial value

LO (Error Detection Flag Output) Function

The LO is a function to output an external signal when the error detection function is activated.
In use of this function, the output of the LO pin should be connected to 3.3 V or 5 V power supply through a pull-up resistor in the range of 10 k to $100 \mathrm{k} \Omega$ due to an open drain internal structure of this pin.

In normal operation, the LO pin level is Hi-Z (the internal MOSFET is OFF). When the error detection function (over-temperature detection (TSD) or over-current detection (ISD)) is activated, the LO pin level is turned Low (internal MOSFET is ON).
When the error detection is canceled by re-turning the VM power supply on or by the sleep mode, the LO pin is returned to the "normal state (normal operation)" again. When the LO function is not used, leave this pin open.

LO pin output	Function
H (pull-up)	Normal state (normal operation)
L	Over-temperature detection (TSD)
	Over-current detection (ISD)

Equivalent circuits have been partially omitted or simplified to explain the circuit.

Action of output transistors in each mode (Advanced Dynamic Mixed Decay)

Charge mode
Current is fed into the coil.

Fast mode
Energy of the coil is returned to the power supply.

Slow mode
Current is flown between the coil and the device.
*A shoot through-current prevention period (dead time) is provided inside the device to prevent shoot through-current when switching outputs.

Action of output transistors in each mode

Mode	U1	U2	L1	L2
CHARGE	ON	OFF	OFF	ON
FAST	OFF	ON	ON	OFF
SLOW	OFF	OFF	ON	ON

Note: The above table shows the case where the current flows in the direction of the arrow in the above figure as an example. In the opposite direction, the table below shows the case.

Mode	U1	U2	L1	L2
CHARGE	OFF	ON	ON	OFF
FAST	ON	OFF	OFF	ON
SLOW	OFF	OFF	ON	ON

In this device the three modes shown in the above figure are automatically switched to perform constant current control. Equivalent circuits have been partially omitted or simplified to explain the circuit.

Set current value (lout)

The set current value for constant current PWM control can be determined by setting the reference voltage ($\mathrm{V}_{\text {REF }}$).

The set current value (Iоит) can be calculated by the following formula.
lout $=\mathrm{V}_{\text {ReF }} \times 0.556$
Example: When $\mathrm{V}_{\text {REF }}=2.0 \mathrm{~V}$, lout $=1.11 \mathrm{~A}$

Chopping frequency (fснор)

The chopping frequency of the constant current control (of the motor current) can be set by the resistor ROSC connected to the OSCM pin. And the device can be used with a fixed value chopping frequency without connecting any external components to the OSCM pin. And use of a fixed chopping frequency with no external components to the OSCM pin is also available.

Equivalent circuits have been partially omitted or simplified to explain the circuit.

The chopping frequency (fснор) can be calculated using the following formula.
In general, it is recommended that the frequency is set in the range of 40 kHz to 100 kHz , with a frequency of approximately 70 kHz as a center value.
$\mathrm{f}_{\mathrm{CHOP}}=$ foscm $/ 16$
foscm $=1 /(\alpha \times$ Rosc $+\beta)[\mathrm{MHz}] \quad * \alpha=1.7 \times 10^{-5}, \beta=0.0285$
Example: When Rosc $=47 \mathrm{k} \Omega$, foscm $=1.2 \mathrm{MHz}$ (typ.), fchор $=75 \mathrm{kHz}$ (typ.)
When the OSCM pin is left open or shorted the ground, this device is operated at the frequency that fоsсм2 $=914 \mathrm{kHz}$ (typ.) and $\mathrm{f}_{\mathrm{ch}} \mathrm{P}=57.1 \mathrm{kHz}$ (typ.) those are automatically generated inside the device.

Power consumption of the device

The power consumed in the device is roughly divided into two parts : the power consumed by the transistors in the output block and the power consumed by the logic block.

1. Power consumption of the power transistor block

The power in the output section is consumed by the high-side MOSFETs and the low-side MOSFETs of the H -bridge.

The power consumption in the MOSFET section of one H -bridge (one axis) can be calculated by the following formula.

$$
\begin{equation*}
P(\text { out })=\operatorname{lout}(A) \times \operatorname{VDS}(V)=\operatorname{lout}(A)^{2} \times \operatorname{Ron}(\Omega) \tag{1}
\end{equation*}
$$

\qquad

The average power dissipation of the output block when the output current waveform is a perfect square in the full step excitation is calculated as follows.

$$
\begin{align*}
& \text { When Ron }=0.8 \Omega \text {, lout (peak: Max.) }=0.7 \mathrm{~A} \text {, and } \mathrm{VM}=24 \mathrm{~V}, \\
& \begin{aligned}
& \mathrm{P}(\text { out })=2(\mathrm{Tr}) \times 0.7(\mathrm{~A})^{2} \times 1.5(\Omega) \ldots \ldots \ldots \ldots \ldots \ldots . ~ \\
&(2) \\
&=1.47(\mathrm{~W})
\end{aligned} \tag{2}
\end{align*}
$$

2. Power consumption of logic block and IM system

The power consumptions of the logic block and IM system are calculated separately for operating and stand-by conditions.

$$
\begin{array}{ll}
\text { I (IM3) }=5.4 \mathrm{~mA} \text { (typ.) } & \text { : in operation / axis } \\
\text { I (IM2) }=4.8 \mathrm{~mA} \text { (typ.) } & \text { : in non-operation / axis } \\
\text { I (IM1) }=0.03 \mu \text { (typ.) } & \text { : stand-by / axis }
\end{array}
$$

The output system is connected to $\mathrm{VM}(24 \mathrm{~V})$. (Output system : the combined currents which is consumed by the circuit connected to VM and consumed by switching the output stage.)

Power consumption can be estimated as follows

$$
\begin{aligned}
P(\mathrm{IM} 3) & =24(\mathrm{~V}) \times 0.0054(\mathrm{~A}) \\
& =0.13(\mathrm{~W})
\end{aligned}
$$

3. Total power consumption

From the results of 1 and 2 , the overall power consumption P is calculated as follows.

$$
\mathrm{P}=\mathrm{P}(\text { out })+\mathrm{P}(\mathrm{IM} 3)=1.6(\mathrm{~W})
$$

In addition, the power consumption for one axis during stand-by mode is as follows.

$$
\mathrm{P}(\text { stand-by })=24(\mathrm{~V}) \times 0.03(\mu \mathrm{~A})=0.72(\mu \mathrm{~W})
$$

For thermal design of the board, etc., please design with a margin after thorough mounted evaluation.

Detection Functions

The following detection functions are built-in.

Detection Function	Detection point	Detection level	Operation at detection	Method of recovery from detection state
Over- temperature detection (TSD)	Die temperature	$160^{\circ} \mathrm{C}$ (typ.) or higher $5.0 \mu \mathrm{~s}$ (typ.) of dead band time provided	The all outputs forced OFF.	These functions are a latch type that maintains the operation at the time of detection. The operation is resumed by one of the following processes.
Over-current detection (ISD)	To turn on power supply again. current	3 A (typ.) or more $1.25 \mu \mathrm{sec}$. (typ.) of dead band time provided	The all outputs forced OFF.	To set the SLEEP mode once and then set the normal operation mode again.
Under-voltage lockout (UVLO)	VM pin voltage	4.0V (typ.) or less $1.41 \mu \mathrm{~s}$ (typ.) of dead band time provided	The all outputs forced OFF. Internal circuits are reset.	VM voltage is raised to 4.2V (typ.) or higher.

Over-temperature detection (This function is a latch type that maintains operation at the time of detection.)

Over-temperature detection is a function to force the device operation temporarily stop when an abnormal over-heating of the device is detected. A dead band time is provided for the over-temperature detection to prevent false detection caused by external noise. When an over-heating is detected, all the channels are turned off.

The timing chart has been simplified to explain functions and operations. The values in the timing chart are for reference only.

$※ X=A$ or B

Over-current detection (This function is a latch type that maintains operation at the time of detection.)

Over-current detection is a function to force the device operation temporarily stop in the event of failure conditions such as a short-circuit between motor outputs or a power/ground fault. For over-current detection, a dead band time is provided to prevent false detection caused by spike current during switching or noise jumped in. When an over-current is detected, not only the corresponding channels but also all the channels are turned off.

The timing chart has been simplified to explain functions and operations. The values in the timing chart are for reference only.

- When an over-current is detected in the low-side DMOS of the H -bridge caused by a power fault of the output pins.

-When an over-current is detected in the high-side DMOS of the H -bridge caused by a ground fault of the output pins.

Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Characteristics	Symbol	Rating	Unit
Motor power supply	V_{M}	35	V
Motor output voltage	$\mathrm{V}_{\text {ouT }}$	40	V
Moto output current (Note1)	$\mathrm{I}_{\mathrm{ouT}}$	1.5	A
Voltage for internal regulator	V_{CC}	6.0	V
Logic input pin voltage	$\mathrm{V}_{\text {IN }}$	6.0	V
$\mathrm{~V}_{\text {ref }}$ reference voltage	$\mathrm{V}_{\text {ref }}$	6.0	V
MO and LO pins voltage	$\mathrm{V}_{\text {MO }}$	6.0	V
Poe dissipation (Note2)	P_{D}	0.374	W
Operating temperature	$\mathrm{T}_{\text {opr }}$	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$
Junction temperature	$\mathrm{T}_{\mathrm{j}(\mathrm{MAX})}$	150	${ }^{\circ} \mathrm{C}$

Note 1: The maximum current value under normal conditions should be 1.2 A or less per phase after thermal calculation. This current may be more limited than normal conditions of the heat generation depending on the ambient temperature and board conditions.

Note 2 : IC standalone ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)
When Ta exceeds $25^{\circ} \mathrm{C}\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$, a derating with $2.992 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ is required.
$\mathrm{T}_{\mathrm{a}} \quad:$ Ambient temperature of the device
Topr : The ambient temperature of the device in operation
$\mathrm{T}_{\mathrm{j}} \quad$: Die temperature of the device in operation. the maximum value of T_{j} is limited by the temperature of TSD (thermal shutdown circuit).

It is recommended that the maximum value of Tj be designed considering the maximum current used, which should be approximately $120^{\circ} \mathrm{C}$.

Absolute Maximum Ratings

Absolute maximum ratings are the specifications that must not be exceeded even momentarily.
Exceeding the absolute maximum ratings may cause destruction, degradation, or damage to the device, may also cause destruction, damage, or deterioration of other than this device. Design in a manner that none of the parameter exceeds the absolute maximum ratings under any operating conditions.

In addition, as no over-voltage detection circuit is integrated in the TB67S549FTG, the device is destroyed when an excessive voltage above the specified is applied. Therefore, please be sure to use this device within each specified voltage range, including the supply voltage.

Please also refer to the precautions section on the following page for more information on this precaution.

-PD-Ta graph (reference)

Operating Ranges（ $\mathbf{T a}=-20$ to $85^{\circ} \mathrm{C}$ ）

Characteristics	Symbol	Min．	Typ．	Max．	Unit	Remarks
Motor power supply（Note1）	V_{M}	4.5	24.0	33	V	－
Motor output current	lout	－	－	1.2	A	Per channel（Note2）
Logic input voltage	$\mathrm{V}_{\text {IN（H）}}$	2.0	－	5.5	V	Logic input High level
	$\mathrm{V}_{\text {IN（L）}}$	－0．5	－	0.8	V	Logic input Low level
Chopping frequency	fснор	40	70	150	kHz	－
Clock frequency	fclk	－	－	250	kHz	－
$\mathrm{V}_{\text {ref }}$ reference voltage	$V_{\text {REF }}$	0	－	3.6	V	－

Note1：For a slew rate of 0 V to 10 V when the power is turned on，use it under the condition of 1 ms or more．
If you use it under different conditions，please evaluate it thoroughly for your product alone or for the entire system， and decide whether or not it is applicable at your own risk．
Note 2：The actual maximum current may be limited by the operating environment（the operating conditions such as excitation mode and operating time，and the heat generating conditions such as ambient temperature conditions and board conditions）．Please confirm the maximum current value that can actually be used after a thermal calculation under the operating environment．

Electrical Characteristics $1\left(\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{VM}=24 \mathrm{~V}\right.$ unless otherwise specified）

Characteristics		Symbol	Test condition	Min．	Typ．	Max．	Unit
Logic input pin Input voltage	High	$\mathrm{VIN}(\mathrm{H})$	Logic input pin（Note）	2.0	－	5.5	V
	Low	$\mathrm{V}_{\text {IN（L）}}$	Logic input pin（Note）	－0．5	－	0.8	V
Input hysteresis		$\mathrm{V}_{\operatorname{IN}(\mathrm{HYS})}$	Logic input pin（Note）		150	－	mV
Logic input pin input current	High	$\underline{\operatorname{liN}(\mathrm{H})}$	Test logic pin： 5 V	35	50	75	$\mu \mathrm{A}$
	Low	$\operatorname{lin}(\mathrm{L})$	Test logic pin： 0 V	－	－	1	$\mu \mathrm{A}$
LO and MO pins output voltage		Vol（MO）	IOL＝5 mA，Output：Low		0.2	0.5	V
Power consumption		lm1	Output：Open，Sleep mode	－	0.03	1	$\mu \mathrm{A}$
		Ім2	Output：Open SLEEP＝H，ENABLE＝L	－	4.8	5.5	mA
		Імз	Output：Open（Full step resolution） SLEEP＝H，ENABLE＝H Chopping frequency： 40 kHz	－	5.4	7	mA
Motor output leakage current	上側	Іон	$\mathrm{V}_{\mathrm{M}}=35 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$	－	－	1	$\mu \mathrm{A}$
	下側	loL	$\mathrm{V}_{\mathrm{M}}=\mathrm{V}_{\text {OUt }}=35 \mathrm{~V}$	1	－	－	$\mu \mathrm{A}$
Output current differential between channels		$\Delta \mathrm{lout1}$	Output current differential between channels lout $=1.0 \mathrm{~A}$	－5	0	5	\％
Output set current accuracy		Δ lout2	lout $=1.0 \mathrm{~A}$	－5	0	5	\％
Output transistor between drain and source On resistance （upper＋lower）		$\operatorname{Ron(D-S)}$	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \text { lout }=2.0 \mathrm{~A} \end{aligned}$	－	1.2	1.5	Ω

Note：The V_{IN} voltage applied to the measurement pin is increased from 0 V ，and the $\mathrm{V}_{\mathbb{N}}$ voltage where the motor output pin voltage changes is defined as $\mathrm{V}_{\operatorname{IN}(\mathrm{H})}$ ．And this $\mathrm{V}_{\text {IN }}$ voltage is lowered，and the $\mathrm{V}_{\text {IN }}$ voltage where the motor output pin voltage changes is defined as $\mathrm{V}_{\mathrm{IN}(\mathrm{L})}$ ．
Furthermore，the difference between $\mathrm{V}_{\operatorname{IN}(H)}$ and $\mathrm{V}_{\operatorname{IN}(L)}$ is defined as $\mathrm{VIN}_{\operatorname{IN}(H Y S)}$ ．

Electrical Characteristics $2\left(\mathrm{Ta}=\mathbf{2 5 ^ { \circ }} \mathrm{C}, \mathrm{VM}=24 \mathrm{~V}\right.$ unless otherwise specified)

Characteristics	Symbol	Test condition	Min.	Typ.	Max.	Unit
Vref input current	$I_{\text {REF }}$	$\mathrm{V}_{\text {ref }}=3.6 \mathrm{~V}$	-	0	1	$\mu \mathrm{~A}$
$\mathrm{~V}_{\text {ref }}$ decay ratio	$\mathrm{V}_{\text {REF(GAIN })}$	$\mathrm{V}_{\text {ref }}=2.0 \mathrm{~V}$	0.528	0.556	0.584	-
TSD threshold	$\mathrm{T}_{\text {jTSD }}$	-	145	160	175	${ }^{\circ} \mathrm{C}$
VM power on reset voltage	$\mathrm{V}_{\text {MPOR }}$	-	3.8	4.0	4.2	V
VM power on reset hysteresis	$\mathrm{V}_{\text {MPOR(HYS) }}$	-	-	200	-	mV
Over-current detection threshold	$\mathrm{I}_{\text {SD }}$	-	2.1	3.0	3.6	A

Regarding Back EMF

Power re-circulation timing occurs while a motor is rotating, at which point the motor current is re-circulated to the power supply due to the back EMF of the motor.
In case of insufficient sink capability of the power supply, the power supply pins and the outputs pin of the device may be raised above the rated value.
Since the back EMF of the motor varies depending on the conditions of application and the characteristics of motor, please confirm thoroughly that there is no destruction or no operational problems of the device, and no malfunction or no destruction of peripheral circuits, etc. caused by the back EMF.

Over-current Detection and Over-temperature Detection

-These detection functions are intended to temporarily avoid abnormal conditions such as output short-circuits, and are not intended to guarantee that the device is not destroyed.
-Those detection function do not work outside the guaranteed operating range, and the device may destroyed when the outputs are short-circuited.
-The over-current detection function is intended to detect a temporary short-circuit. When a short-circuit is continued for a long period of time, the device is over-stressed and may be destroyed. The system should be configured to release the over-current state immediately.

Mounting of the device

Do not mount the device incorrectly, including rotated mounting, as this may result in destruction, damage, or deterioration of the device or the peripheral circuits.

AC electrical characteristics $\left(\mathbf{T a}=25^{\circ} \mathrm{C}, \mathrm{Vm}=24 \mathrm{~V}\right)$

Characteristics	Symbol	Test condition	Min.	Typ.	Max.	Unit
Minimum clock pulse width	tclk(H)	-	600	-	-	ns
	tclk(L)	-	600	-	-	ns
Minimum pulse width 1 of logic input signal	trs(H)	RESET, SLEEP_X, DECAY	1.5	-	-	$\mu \mathrm{S}$
	$t_{\text {RS }(L)}$	RESET, SLEEP_X, DECAY	1.5	-	-	$\mu \mathrm{S}$
Minimum pulse width 2 of logic input signal	tDTE(H)	TRQ0/1, ENABLE	600	-	-	ns
	tdte(L)	TRQ0/1, ENABLE	600	-	-	ns
Set-up time	tsu(STEP)	CW_CCW, DMODE0/1/2	600	-	-	ns
Hold time	th(STEP)	CW_CCW, DMODE0/1/2	600	-	-	ns
Output transistor switching characteristics	tr	-	40	70	100	ns
	tf	-	50	80	110	ns
	$\mathrm{t}_{\text {pLH }}$ (CLK)	-	-	1000	-	ns
	$\mathrm{t}_{\text {pHL }}$ (CLK)	-	-	1000	-	ns
OSCM oscillation frequency	foscm1	Rosc $=47 \mathrm{k} \Omega$	1020	1200	1380	kHz
	foscm2	OSCM pin: Open or connecting to ground	777	914	1051	
Chppling frequency	$\mathrm{f}_{\text {chop }}$	foscm $=1200 \mathrm{kHz}$	-	75	-	kHz

AC Electrical Characteristics Timing Chart

TB67S549FTG (Relationship between CLK and output)

Timing charts are simplified to explain functions and operations.

TB67S549FTG (Relationship between CLK and other control signals)

Timing charts are simplified to explain functions and operations.

Application Circuit Example

Heat dissipation PAD (the center part) on the back of the package is recommended to connect to the ground of the board for improved heat dissipation.

The application circuit example has been partially omitted or simplified to explain the circuit.

Package Dimensions

P-VQFN24-0404-0.50-004

Weight: 0.0417 g (typ.)

Note on Contents

Block Diagrams

Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for explanatory purposes.

Timing Charts

Timing charts may be simplified for explanatory purposes.

Application Circuit Example

The application circuits shown in this document are provided for reference purposes only. Thorough evaluation is required, especially at the mass production design stage.
Providing these application circuit examples does not grant a license for industrial property rights.

IC Usage Considerations

Notes on handling of ICs

(1) The absolute maximum ratings of a semiconductor device are a set of ratings that must not be exceeded, even for a moment. Do not exceed any of these ratings.
Exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion.
(2) Do not insert devices in the wrong orientation or incorrectly.

Make sure that the positive and negative terminals of power supplies are connected properly.
Otherwise, the current or power consumption may exceed the absolute maximum rating, and exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion.
In addition, do not use any device that is applied the current with inserting in the wrong orientation or incorrectly even just one time.
(3) Use an appropriate power supply fuse to ensure that a large current does not continuously flow in case of over-current and/or IC failure. The IC will fully break down when used under conditions that exceed its absolute maximum ratings, when the wiring is routed improperly or when an abnormal pulse noise occurs from the wiring or load, causing a large current to continuously flow and the breakdown can lead smoke or ignition. To minimize the effects of the flow of a large current in case of breakdown, appropriate settings, such as fuse capacity, fusing time and insertion circuit location, are required.
(4) If your design includes an inductive load such as a motor coil, incorporate a protection circuit into the design to prevent device malfunction or breakdown caused by the current resulting from the inrush current at power ON or the negative current resulting from the back electromotive force at power OFF. IC breakdown may cause injury, smoke or ignition.
Use a stable power supply with ICs with built-in protection functions. If the power supply is unstable, the protection function may not operate, causing IC breakdown. IC breakdown may cause injury, smoke or ignition.
(5) Carefully select external components (such as inputs and negative feedback capacitors) and load components (such as speakers), for example, power amp and regulator.
If there is a large amount of leakage current such as input or negative feedback condenser, the IC output DC voltage will increase. If this output voltage is connected to a speaker with low input withstand voltage, over-current or IC failure can cause smoke or ignition. (The over-current can cause smoke or ignition from the IC itself.) In particular, please pay attention when using a Bridge Tied Load (BTL) connection type IC that inputs output DC voltage to a speaker directly.

Points to remember on handling of ICs

Over-current detection circuit

Over-current detection circuits (referred to as current limiter circuits) do not necessarily protect ICs under all circumstances. If the over-current protection circuits operate against the over-current, clear the over-current status immediately.
Depending on the method of use and usage conditions, such as exceeding absolute maximum ratings can cause the over-current protection circuit to not operate properly or IC breakdown before operation. In addition, depending on the method of use and usage conditions, if over-current continues to flow for a long time after operation, the IC may generate heat resulting in breakdown.

Thermal shutdown circuit
Thermal shutdown circuits do not necessarily protect ICs under all circumstances. If the thermal shutdown circuits operate against the over temperature, clear the heat generation status immediately.
Depending on the method of use and usage conditions, such as exceeding absolute maximum ratings can cause the thermal shutdown circuit to not operate properly or IC breakdown before operation.

Heat radiation design
In using an IC with large current flow such as power amp, regulator or driver, please design the device so that heat is appropriately radiated, not to exceed the specified junction temperature (Tj) at any time and condition. These ICs generate heat even during normal use. An inadequate IC heat radiation design can lead to decrease in IC life, deterioration of IC characteristics or IC breakdown. In addition, please design the device taking into considerate the effect of IC heat radiation with peripheral components.

Back-EMF

When a motor reverses the rotation direction, stops or slows down abruptly, a current flow back to the motor's power supply due to the effect of back-EMF. If the current sink capability of the power supply is small, the device's motor power supply and output pins might be exposed to conditions beyond absolute maximum ratings. To avoid this problem, take the effect of back-EMF into consideration in system design.

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA".
Hardware, software and systems described in this document are collectively referred to as "Product".

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, and devices related to power plant. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative or contact us via our website.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

TOSHIBA ELECTRONIC DEVICES \& STORAGE CORPORATION

https://toshiba.semicon-storage.com/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Motor/Motion/Ignition Controllers \& Drivers category:
Click to view products by Toshiba manufacturer:
Other Similar products are found below :
MC33931EKR2 FSB50550TB2 FSBF15CH60BTH MSVCPM2-63-12 MSVGW45-14-2 MSVGW54-14-3 NTE7043 LA6565VR-TLM-E LB11650-E LB1837M-TLM-E LB1845DAZ-XE LC898300XA-MH SS30-TE-L-E 26700 LV8281VR-TLM-H TB6643KQ(O,8) MC33932EK BA5839FP-E2 IRAM236-1067A LA6584JA-AH LB11847L-E NCV70501DW002R2G AH293-PL-B TND315S-TL-2H FNA23060 FSB50250AB BD6920FP-E2 FNA41060 MSVBTC50E MSVCPM3-54-12 MSVCPM3-63-12 MSVCPM4-63-12 FSB50550AB NCV70501DW002G LC898301XA-MH LV8413GP-TE-L-E MSVGW45-14-3 MSVGW45-14-4 MSVGW54-14-4 STK984-091A-E LB11651-E IRSM515-025DA4 LV8127T-TLM-H MC33812EKR2 IKCM10H60GA IKCM20L60GA NCP81382MNTXG TDA21801 LB11851FA-BH LB1938FAGEVB

