TC62D776CFNAG

16-Channel Constant-Current LED Driver of the 3.3-V and 5-V Power Supply

The TC62D776CFNAG is a constant-current driver for LED and LED display lighting applications.

The output current from each of the 16 outputs is programmable via a single external resistor.

The TC62D776CFNAG contains a 16-channel shift register, a 16 -channel latch, a 16-channel AND gate and a 16-channel constant-current output.

Fabricated with a CMOS process, the TC62D776CFNAG allows high-speed data transfer.

It operates with a 3.3- or 5-V power supply.

Weight : 0.14 g (typ.)

Features

- Supply voltage
: $\mathrm{VDD}=3.0$ to 5.5 V
- 16-output built-in
- Output current setup range
: IOUT = 1.5 to 90 mA
- Constant current output accuracy (@ REXT = $1.2 \mathrm{k} \Omega$, VOUT = 1.0 V , VDD $=3.3 \mathrm{~V}, 5.0 \mathrm{~V}$)
: S rank; between outputs $\pm 1.5 \%$ (max)
: S rank; between devices $\pm 1.5 \%$ (max)
: N rank; between outputs $\pm 2.5 \%$ (max)
: N rank; between devices $\pm 2.5 \%$ (max)
-Output voltage
: VOUT = 17 V (max)
- I/O interface
: CMOS interfaces (Schmitt trigger input)
- Data transfer frequency $:$ fSCK $=25 \mathrm{MHz}$ (max)
- Operation temperature range : Topr $=-40$ to $85^{\circ} \mathrm{C}$
- 8-bit (256 steps) current correction function built-in.

1 bit (HC) by the MSB side: Selects the output current range.
7 bit by the LSB side: Output current is adjusted at 128 steps in the range of 11% to 45%. (In the case of HC=1)
Output current is adjusted at 128 steps in the range of 50% to 200%. (In the case of $\mathrm{HC}=0$)

- Thermal shutdown function (TSD) built-in.
- Output error detection function built-in.

Auto-output error detection and manual-output error detection using commands
Output open detection function (OOD) and output short detection function (OSD) built-in.

- Power-on-reset function built-in. (When the power supply is turned on, internal data is reset)
- Stand-by function built-in. (IDD $=1 \mu \mathrm{~A}$ at standby mode)
- Output delay function built-in. (Output switching noise is reduced)
- Package
: P-SSOP24-0409-0.64-001

For detailed part naming conventions, contact your local Toshiba sales representative or distributor.

Block Diagram

Pin Assignment (top view)

Terminal Description

Pin No.	Pin Name	Function
1	GND	GND terminal
2	SIN	Serial data input terminal
3	SCK	Serial data transfer clock input terminal
4	TRANS	Data transfer command input terminal
5	$\overline{\text { OUTO }}$	Constant-current output terminal
6	$\overline{\text { OUT1 }}$	Constant-current output terminal
7	$\overline{\text { OUT2 }}$	Constant-current output terminal
8	$\overline{\text { OUT3 }}$	Constant-current output terminal
9	$\overline{\text { OUT4 }}$	Constant-current output terminal
10	$\overline{\text { OUT5 }}$	Constant-current output terminal
11	$\overline{\text { OUT6 }}$	Constant-current output terminal
12	$\overline{\text { OUT7 }}$	Constant-current output terminal
13	$\overline{\text { OUT8 }}$	Constant-current output terminal
14	$\overline{\text { OUT9 }}$	Constant-current output terminal
15	OUT10	Constant-current output terminal
16	$\overline{\text { OUT11 }}$	Constant-current output terminal
17	OUT12	Constant-current output terminal
18	OUT13	Constant-current output terminal
19	$\overline{\text { OUT14 }}$	Constant-current output terminal
20	OUT15	Constant-current output terminal
21	$\overline{\text { ENABLE }}$	An output current enable signal input terminal In "H" level input, outputs are turned off compulsorily. In "L" level input, outputs are ON/OFF controlled according to serial data.
22	SOUT	Serial data output terminal.
23	R-EXT	An external resistance for an output current setup is connected between this terminal and ground.
24	VDD	Power supply terminal

Equivalent Circuits for Inputs and Outputs

1. ENABLE Terminal

SCK and SIN Terminals

4. $\overline{\text { OUTO }}$ to OUT15 Terminals

2. TRANS Terminal

3. SOUT Terminal

Timing Diagram

The TC62D776CFNAG can operate with a 3.3- or 5.0-V power supply. The same voltage must be supplied to the power and signal (SCK/SIN/TRANS/ENABLE) domains.

The explanation of the function (Basic data input pattern)

Data is serially loaded into the TC62D776CFNAG using the SIN and SCK inputs. Command selection is done via the SCK and TRANS inputs.

About the operation of each command

Symbol	Num of SCK at TRANS="H" (Note2)	Operation
S0	0,1	Input of output ON/OFF data.
S1	5,6	Executes output open/short detection manually. (Note1) Transfers the result of open/short detection to the 16-bit Shift Register. (Note1)
S2	7,8	Input of state setting data (1).
S3	9,10	Input of state setting data (2).

Note 1: When output open/short detection is enabled.
Note 2: SCK pulse trains other than those shown above are not recognized as commands.

-S0 command (Input of output ON/OFF data.)

sck ЛЛЛЛЛЛЛЛЛЛЛЛొ \qquad
TRANS \qquad The number of SCK pulses at TRANS=" H " is 0 or 1.

SIN

-S1 command (Output open/short detection function manual operation is executed.)
 \qquad

-S2 command (Input of state setting data (1).)

-S3 command (Input of state setting data (2).)

SC
 TRANS \qquad
 d

SIN \qquad

About the operation of each command

S0 command (Input of output ON/OFF data.)

Description

If SCK pulses High zero or one time while TRANS is High, it is interpreted as the S0 command, which acts as follows.

Basic input pattern of $\mathbf{S O}$ command

Input form of output ON/OFF data
MSB

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
$\overline{\text { OUT15 }}$	$\overline{\text { OUT14 }}$	$\overline{\text { OUT13 }}$	$\overline{\text { OUT12 }}$	$\overline{\text { OUT11 }}$	$\overline{\text { OUT10 }}$	$\overline{\text { OUT9 }}$	$\overline{\text { OUT8 }}$	$\overline{\text { OUT7 }}$	$\overline{\text { OUT6 }}$	$\overline{\text { OUT5 }}$	$\overline{\text { OUT4 }}$	$\overline{\text { OUT3 }}$	$\overline{\text { OUT2 }}$	$\overline{\text { OUT1 }}$	$\overline{\text { OUT0 }}$

Input in MSB first.
Output ON/OFF data setting

Input Data	Setting
1	Output turn on
0	Output turn off

Default after power-on

Data	Setting
0	Output turn off

Automatic Error Detection Mode

If output open/short detection is enabled, its result is automatically transferred from the Error Detection Result register to the 16 -bit Shift Register, which can be shifted out from the SOUT pin.
Output open/short detection can be enabled with the S3 command.
Open/short errors can be detected only for output channels that are enabled for at least 800 ns (note 1) and are configured to be turned on. For the disabled output channels, the detection result will be 1 (normal). If the output channels stay on for no longer than 800 ns , the automatic error detection result will be invalid; in this case, the detection results of all channels will be 1 (normal).

Note 1: Automatic error detection is triggered by the falling edge of the ENABLE signal. Thus, this feature can not be used when ENABLE is tied Low.
In the figure shown below, the outputs are enabled for over 800 ns during the Terr2 period, but the automatic error detection result is invalid; thus, it should be kept in mind that the detection results will be 1 (normal) for all channels.

Output form of output opening/short detection result data
The result of output open/short detection is transferred to the 16-bit Shift Register in the format shown below.
MSB

E15	E14	E13	E12	E11	E10	E9	E8	E7	E6	E5	E4	E3	E2	E1	E0
$\overline{\text { OUT15 }}$	$\overline{\text { OUT14 }}$	$\overline{\text { OUT13 }}$	$\overline{\text { OUT12 }}$	$\overline{\text { OUT11 }}$	$\overline{\text { OUT10 }}$	$\overline{\text { OUT9 }}$	$\overline{\text { OUT8 }}$	$\overline{\text { OUT7 }}$	$\overline{\text { OUT6 }}$	$\overline{\text { OUT5 }}$	$\overline{\text { OUT4 }}$	$\overline{\text { OUT3 }}$	$\overline{\text { OUT2 }}$	$\overline{\text { OUT1 }}$	$\overline{\text { OUT0 }}$

Error code (when output open detection function is effective)

Judging in error detection	Error code	Condition of output terminal
$\mathrm{V}_{\text {OOD }} \geq \mathrm{V}_{\text {OUT }}$	0	Open
$\mathrm{V}_{\text {OOD }}<\mathrm{V}_{\text {OUT }}$	1	Normal

Error code (when output short detection function is effective)

Judging in error detection	Error code	Condition of output terminal
$\mathrm{V}_{\text {OSD }} \leq \mathrm{V}_{\text {OUT }}$	0	short-circuit
$\mathrm{V}_{\text {OSD }}>\mathrm{V}_{\text {OUT }}$	1	Normal

Error code (when output open/short detection function is effective)

Judging in error detection	Error code	Condition of output terminal
$V_{\text {OOD }} \geq V_{\text {OUT }}$ or $\mathrm{V}_{\text {OSD }} \leq \mathrm{V}_{\text {OUT }}$	0	Open or short-circuit
$\mathrm{V}_{\text {OOD }}<\mathrm{V}_{\text {OUT }}$ or $\mathrm{V}_{\text {OSD }}>\mathrm{V}_{\text {OUT }}$	1	Normal
$*$ When		

*When both output error detection function is effective, Open and short-circuit are undistinguishable.

Basic input pattern of SO command (When output opening/short detection is effective.)

After the S0 command is loaded, the first SCK pulse (marked X above) is used to transfer an error detection result to the 16-bit Shift Register. At this time, the TC62D776CFNAG ignores the SIN input.

S1 command (Output open/short detection function manual operation is executed.)

Description

If SCK pulses High five or six times while TRANS is High, it is interpreted as the S1 command, which acts as follows.
If output open/short detection is enabled, a current of approximately $60 \mu \mathrm{~A}$ is forced to flow to all the outputs during the ton(S1) period in order to perform open/short detection. ton(S1) is approximately 800 ns long.
Its result is immediately transferred to the 16-bit Shift Register, which can be shifted out from the SOUT pin. The format used to transfer the detection result is the same as for the S0 command.
Output open/short detection can be enabled with the S3 command.

Note: The S1 command should be loaded when the outputs are off. The S1 command is not executed if it is loaded when $\overline{\operatorname{ENABLE}}=$ Low. The S1 command is not also executed when output open/short detection is disabled.
SCK should not be applied during the ton(S1) period.

Basic input pattern of S1 command

After the S1 command is loaded, the first SCK pulse (marked X above) is used to transfer an error detection result to the 16-bit Shift Register. At this time, the TC62D776CFNAG ignores the SIN input.

S2 command (Input of state setting data (1).)

Description

If SCK pulses High seven or eight times while TRANS is High, it is interpreted as the S0 command, which acts as follows.
The TC62D776CFNAG transfers the state control data (1) from the 16-bit Shift Register to the State Control register.
The states that can be programmed with the S 2 command are shown below.

Basic input pattern of $\mathbf{S 2}$ command)

Input form of state setting data (1)
MSB

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
A7	A6	A5	A4	A3	A2	A1	A0	R0	S0	T0	U0	-	-	H0	L0

*Input in MSB first.
*Please input "L" data to D7 to D2.

State setting data (1) setting

Setting bit	Outline of command	Input data		Default after power-on
		0	1	
A7	Setting of current correction range	High set mode 50\% to 200\%	Low set mode 11\% to 45\%	High set mode 50\% to 200\%
A6 to A0	Setting of current correction data	Refer to attached table.		100\%
R0 to U0	TEST Mode setting. Please input "L" data.			"L"
H0	Data Initialization	Normal	Initialization	Normal
LO	Setting of standby mode (1)	Normal	Active	Normal

Details of each setting

A setting (setting of current correction data)

1. In the case of a high setting mode (50% to 200%)

A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Current gain(\%)
1	1	1	1	1	1	1	200.00
1	1	1	1	1	1	0	198.82
1	1	1	1	1	0	1	197.64
1	1	1	1	1	0	0	196.46
1	1	1	1	0	1	1	195.28
1	1	1	1	0	1	0	194.09
1	1	1	1	0	0	1	192.91
1	1	1	1	0	0	0	191.73
1	1	1	0	1	1	1	190.55
1	1	1	0	1	1	0	189.37
1	1	1	0	1	0	1	188.19
1	1	1	0	1	0	0	187.01
1	1	1	0	0	1	1	185.83
1	1	1	0	0	1	0	184.65
1	1	1	0	0	0	1	183.46
1	1	1	0	0	0	0	182.28
1	1	0	1	1	1	1	181.10
1	1	0	1	1	1	0	179.92
1	1	0	1	1	0	1	178.74
1	1	0	1	1	0	0	177.56
1	1	0	1	0	1	1	176.38
1	1	0	1	0	1	0	175.20
1	1	0	1	0	0	1	174.02
1	1	0	1	0	0	0	172.83
1	1	0	0	1	1	1	171.65
1	1	0	0	1	1	0	170.47
1	1	0	0	1	0	1	169.29
1	1	0	0	1	0	0	168.11
1	1	0	0	0	1	1	166.93
1	1	0	0	0	1	0	165.75
1	1	0	0	0	0	1	164.57
1	1	0	0	0	0	0	163.39
1	0	1	1	1	1	1	162.20
1	0	1	1	1	1	0	161.02
1	0	1	1	1	0	1	159.84
1	0	1	1	1	0	0	158.66
1	0	1	1	0	1	1	157.48
1	0	1	1	0	1	0	156.30
1	0	1	1	0	0	1	155.12
1	0	1	1	0	0	0	153.94
1	0	1	0	1	1	1	152.76
1	0	1	0	1	1	0	151.57
1	0	1	0	1	0	1	150.39
1	0	1	0	1	0	0	149.21
1	0	1	0	0	1	1	148.03
1	0	1	0	0	1	0	146.85
1	0	1	0	0	0	1	145.67
1	0	1	0	0	0	0	144.49
1	0	0	1	1	1	1	143.31
1	0	0	1	1	1	0	142.13
1	0	0	1	1	0	1	140.94
1	0	0	1	1	0	0	139.76
1	0	0	1	0	1	1	138.58
1	0	0	1	0	1	0	137.40
1	0	0	1	0	0	1	136.22
1	0	0	1	0	0	0	135.04
1	0	0	0	1	1	1	133.86
1	0	0	0	1	1	0	132.68
1	0	0	0	1	0	1	131.50
1	0	0	0	1	0	0	130.31
1	0	0	0	0	1	1	129.13
1	0	0	0	0	1	0	127.95
1	0	0	0	0	0	1	126.77
1	0	0	0	0	0	0	125.59

A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Current gain(\%)
0	1	1	1	1	1	1	124.41
0	1	1	1	1	1	0	123.23
0	1	1	1	1	0	1	122.05
0	1	1	1	1	0	0	120.87
0	1	1	1	0	1	1	119.69
0	1	1	1	0	1	0	118.50
0	1	1	1	0	0	1	117.32
0	1	1	1	0	0	0	116.14
0	1	1	0	1	1	1	114.96
0	1	1	0	1	1	0	113.78
0	1	1	0	1	0	1	112.60
0	1	1	0	1	0	0	111.42
0	1	1	0	0	1	1	110.24
0	1	1	0	0	1	0	109.06
0	1	1	0	0	0	1	107.87
0	1	1	0	0	0	0	106.69
0	1	0	1	1	1	1	105.51
0	1	0	1	1	1	0	104.33
0	1	0	1	1	0	1	103.15
0	1	0	1	1	0	0	101.97
0	1	0	1	0	1	1	$\begin{gathered} 100.79 \\ \text { (Default) } \end{gathered}$
0	1	0	1	0	1	0	99.61
0	1	0	1	0	0	1	98.43
0	1	0	1	0	0	0	97.24
0	1	0	0	1	1	1	96.06
0	1	0	0	1	1	0	94.88
0	1	0	0	1	0	1	93.70
0	1	0	0	1	0	0	92.52
0	1	0	0	0	1	1	91.34
0	1	0	0	0	1	0	90.16
0	1	0	0	0	0	1	88.98
0	1	0	0	0	0	0	87.80
0	0	1	1	1	1	1	86.61
0	0	1	1	1	1	0	85.43
0	0	1	1	1	0	1	84.25
0	0	1	1	1	0	0	83.07
0	0	1	1	0	1	1	81.89
0	0	1	1	0	1	0	80.71
0	0	1	1	0	0	1	79.53
0	0	1	1	0	0	0	78.35
0	0	1	0	1	1	1	77.17
0	0	1	0	1	1	0	75.98
0	0	1	0	1	0	1	74.80
0	0	1	0	1	0	0	73.62
0	0	1	0	0	1	1	72.44
0	0	1	0	0	1	0	71.26
0	0	1	0	0	0	1	70.08
0	0	1	0	0	0	0	68.90
0	0	0	1	1	1	1	67.72
0	0	0	1	1	1	0	66.54
0	0	0	1	1	0	1	65.35
0	0	0	1	1	0	0	64.17
0	0	0	1	0	1	1	62.99
0	0	0	1	0	1	0	61.81
0	0	0	1	0	0	1	60.63
0	0	0	1	0	0	0	59.45
0	0	0	0	1	1	1	58.27
0	0	0	0	1	1	0	57.09
0	0	0	0	1	0	1	55.91
0	0	0	0	1	0	0	54.72
0	0	0	0	0	1	1	53.54
0	0	0	0	0	1	0	52.36
0	0	0	0	0	0	1	51.18
0	0	0	0	0	0	0	50.00

2. In the case of a low setting mode (11\% to 45\%)

A[6]	A[5]	A[4]	A[3]	A[2]	A [1]	A[0]	Current gain(\%)
1	1	1	1	1	1	1	45.00
1	1	1	1	1	1	0	44.73
1	1	1	1	1	0	1	44.46
1	1	1	1	1	0	0	44.20
1	1	1	1	0	1	1	43.93
1	1	1	1	0	1	0	43.66
1	1	1	1	0	0	1	43.39
1	1	1	1	0	0	0	43.13
1	1	1	0	1	1	1	42.86
1	1	1	0	1	1	0	42.59
1	1	1	0	1	0	1	42.32
1	1	1	0	1	0	0	42.06
1	1	1	0	0	1	1	41.79
1	1	1	0	0	1	0	41.52
1	1	1	0	0	0	1	41.25
1	1	1	0	0	0	0	40.98
1	1	0	1	1	1	1	40.72
1	1	0	1	1	1	0	40.45
1	1	0	1	1	0	1	40.18
1	1	0	1	1	0	0	39.91
1	1	0	1	0	1	1	39.65
1	1	0	1	0	1	0	39.38
1	1	0	1	0	0	1	39.11
1	1	0	1	0	0	0	38.84
1	1	0	0	1	1	1	38.57
1	1	0	0	1	1	0	38.31
1	1	0	0	1	0	1	38.04
1	1	0	0	1	0	0	37.77
1	1	0	0	0	1	1	37.50
1	1	0	0	0	1	0	37.24
1	1	0	0	0	0	1	36.97
1	1	0	0	0	0	0	36.70
1	0	1	1	1	1	1	36.43
1	0	1	1	1	1	0	36.17
1	0	1	1	1	0	1	35.90
1	0	1	1	1	0	0	35.63
1	0	1	1	0	1	1	35.36
1	0	1	1	0	1	0	35.09
1	0	1	1	0	0	1	34.83
1	0	1	1	0	0	0	34.56
1	0	1	0	1	1	1	34.29
1	0	1	0	1	1	0	34.02
1	0	1	0	1	0	1	33.76
1	0	1	0	1	0	0	33.49
1	0	1	0	0	1	1	33.22
1	0	1	0	0	1	0	32.95
1	0	1	0	0	0	1	32.69
1	0	1	0	0	0	0	32.42
1	0	0	1	1	1	1	32.15
1	0	0	1	1	1	0	31.88
1	0	0	1	1	0	1	31.61
1	0	0	1	1	0	0	31.35
1	0	0	1	0	1	1	31.08
1	0	0	1	0	1	0	30.81
1	0	0	1	0	0	1	30.54
1	0	0	1	0	0	0	30.28
1	0	0	0	1	1	1	30.01
1	0	0	0	1	1	0	29.74
1	0	0	0	1	0	1	29.47
1	0	0	0	1	0	0	29.20
1	0	0	0	0	1	1	28.94
1	0	0	0	0	1	0	28.67
1	0	0	0	0	0	1	28.40
1	0	0	0	0	0	0	28.13

A[6]	A[5]	A[4]	A[3]	A[2]	$\mathrm{A}[1]$	A[0]	Current gain(\%)
0	1	1	1	1	1	1	27.87
0	1	1	1	1	1	0	27.60
0	1	1	1	1	0	1	27.33
0	1	1	1	1	0	0	27.06
0	1	1	1	0	1	1	26.80
0	1	1	1	0	1	0	26.53
0	1	1	1	0	0	1	26.26
0	1	1	1	0	0	0	25.99
0	1	1	0	1	1	1	25.72
0	1	1	0	1	1	0	25.46
0	1	1	0	1	0	1	25.19
0	1	1	0	1	0	0	24.92
0	1	1	0	0	1	1	24.65
0	1	1	0	0	1	0	24.39
0	1	1	0	0	0	1	24.12
0	1	1	0	0	0	0	23.85
0	1	0	1	1	1	1	23.58
0	1	0	1	1	1	0	23.31
0	1	0	1	1	0	1	23.05
0	1	0	1	1	0	0	22.78
0	1	0	1	0	1	1	22.51
0	1	0	1	0	1	0	22.24
0	1	0	1	0	0	1	21.98
0	1	0	1	0	0	0	21.71
0	1	0	0	1	1	1	21.44
0	1	0	0	1	1	0	21.17
0	1	0	0	1	0	1	20.91
0	1	0	0	1	0	0	20.64
0	1	0	0	0	1	1	20.37
0	1	0	0	0	1	0	20.10
0	1	0	0	0	0	1	19.83
0	1	0	0	0	0	0	19.57
0	0	1	1	1	1	1	19.30
0	0	1	1	1	1	0	19.03
0	0	1	1	1	0	1	18.76
0	0	1	1	1	0	0	18.50
0	0	1	1	0	1	1	18.23
0	0	1	1	0	1	0	17.96
0	0	1	1	0	0	1	17.69
0	0	1	1	0	0	0	17.43
0	0	1	0	1	1	1	17.16
0	0	1	0	1	1	0	16.89
0	0	1	0	1	0	1	16.62
0	0	1	0	1	0	0	16.35
0	0	1	0	0	1	1	16.09
0	0	1	0	0	1	0	15.82
0	0	1	0	0	0	1	15.55
0	0	1	0	0	0	0	15.28
0	0	0	1	1	1	1	15.02
0	0	0	1	1	1	0	14.75
0	0	0	1	1	0	1	14.48
0	0	0	1	1	0	0	14.21
0	0	0	1	0	1	1	13.94
0	0	0	1	0	1	0	13.68
0	0	0	1	0	0	1	13.41
0	0	0	1	0	0	0	13.14
0	0	0	0	1	1	1	12.87
0	0	0	0	1	1	0	12.61
0	0	0	0	1	0	1	12.34
0	0	0	0	1	0	0	12.07
0	0	0	0	0	1	1	11.80
0	0	0	0	0	1	0	11.54
0	0	0	0	0	0	1	11.27
0	0	0	0	0	0	0	11.00

R, S, T, U setting (Setting of Test Mode)

$R, S, T, U[0]$	Setting of Test Mode
$\mathbf{0}$	Normal operation mode. (Default after power-on)
1	Test Mode.

H setting (Setting of Initialization)

$\mathrm{H}[0]$	Setting of Initialization
$\mathbf{0}$	Normal operation mode (Default after power-on)
1	Initializes all the internal data of the IC. After initialization, the TC62D776CFNAG returns to normal operation mode.

L setting (Setting of standby mode (1))

$\mathrm{L}[0]$	Setting of standby mode (1)
$\mathbf{0}$	Normal operation mode (Default after power-on)
1	Standby mode Disables all circuits except digital logic, reducing the supply current of the IC. (All data in the TC62D776CFNAG is retained, and data can be loaded into the
TC62D776CFNAG.) Loading the S0 command in Standby mode causes the TC62D776CFNAG to return to normal operation mode.	

S3 command (Input of state setting data (2).)

Description

If SCK pulses High nine or ten times while TRANS is High, it is interpreted as the S3 command, which acts as follows.
The TC62D776CFNAG transfers the state control data (2) from the 16 -bit Shift Register to the State Control register.
The states that can be programmed with the S3 command are shown below.

Basic input pattern of S3 command)

Input form of state setting data (2)

MSB

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
C0	D0	E0	F0	G0	I0	J0	K0	M0	N0	O0	P0	Q0	-	-	-

*Input in MSB first.
*Please input "L" data to D8 to D0.

State setting data (2) setting

Setting bit	Outline of command	Input data		Default after power-on
		0	1	
C0	Setting of thermal shutdown function (TSD)	Active	Not Active	Active
D0	Setting of output open detection function (OOD)	Not Active	Active	Not Active
E0	Setting of output short detection function (OSD)	Not Active	Active	Not Active
F0	Setting of standby mode (2)	Normal Operation	Active	Normal Operation
G0	Setting of output short detection voltage	VosD1	VosD2	VosD1
10	Setting of output delay function of output terminal	Active	Not Active	Active
J0	Setting of SCK trigger of SOUT	Up \uparrow	Down \downarrow	Up \uparrow
K0 to Q0	TEST Mode setting. Please input "L" data.			"L"

Details of each setting
C setting (Setting of thermal shutdown function (TSD))

Thermal shutdown function (TSD)

If the internal temperature of the IC exceeds $150^{\circ} \mathrm{C}$, the thermal shutdown (TSD) circuitry trips, turning off all constant-current outputs. When the temperature drops below the TSD release threshold, the TC62D776CFNAG restarts constant-current output.
Since TSD is not intended to protect the IC against permanent damage. it should not be employed actively to monitor chip temperature.

Output delay function

In order to reduce di/dt caused by simultaneously switching outputs, the TC62D776CFNAG allows for delays (tdLY (ON), tDLY (OFF)) between contiguous outputs.

Switching time difference between outputs are provided in order as follows;

```
\(\overline{\mathrm{OUT0}} \rightarrow \overline{\mathrm{OUT15}} \rightarrow \overline{\mathrm{OUT7}} \rightarrow \overline{\mathrm{OUT}} \rightarrow \overline{\mathrm{OUT1}} \rightarrow \overline{\mathrm{OUT} 14} \rightarrow \overline{\mathrm{OUT}} \rightarrow \overline{\mathrm{OUT9}} \rightarrow \overline{\mathrm{OUT} 2} \rightarrow \overline{\mathrm{OUT13}} \rightarrow\)
\(\overline{\mathrm{OUT5}} \rightarrow \overline{\mathrm{OUT} 10} \rightarrow \overline{\mathrm{OUT} 3} \rightarrow \overline{\mathrm{OUT12}} \rightarrow \overline{\mathrm{OUT} 4} \rightarrow \overline{\text { OUT11 }}\)
```


Power on reset function (POR)

The TC62D776CFNAG provides a power-on reset to reset all internal data in order to prevent malfunctions. The POR circuitry works properly only when $V_{D D}$ rises from 0 V . To re-activate the POR circuitry, $\mathrm{V}_{D D}$ must be brought to less than 0.1 V . Internal data is guaranteed to be retained after VDD exceeds 3.0 V .

Absolute Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristics	Symbol	Rating	Unit
Supply voltage	VDD	6.0	V
Output current	lout	95	mA
Logic input voltage	Vin	-0.3 to VDD +0.3 (Note 1)	V
Output voltage	Vout	-0.3 to 17	V
Operating temperature	Topr	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$
Thermal resistance	$\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{a})}$	80.07	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Power dissipation	PD	1.56 (Notes 2)	W

Note 1: However, do not exceed 6.0 V .
Note 2: Substrate mounting (condition: $76.2 \times 114.3 \times 1.6 \mathrm{~mm}, \mathrm{Cu}=30 \%$, thickness $/ 35 \mu \mathrm{~m}$, SEMI standard)
Note 3: Power dissipation is reduced by $1 /$ Rth (j-a) for each ${ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ ambient.
Operating Ranges (unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=3.0$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Conditions	Min	Typ.	Max	Unit
Supply voltage	V_{DD}	-	3.0	-	5.5	V
High level logic input voltage	$\mathrm{V}_{\text {IH }}$	Test terminal are SIN, SCK, TRANS, $\overline{\text { ENABLE }}$	$0.7 \times \mathrm{V}_{\mathrm{DD}}$	-	V_{DD}	V
Low level logic input voltage	V_{IL}	Test terminal are SIN, SCK, TRANS, $\overline{\text { ENABLE }}$	GND	-	$0.3 \times \mathrm{V}_{\mathrm{DD}}$	V
High level SOUT output current	IoH	-	-	-	-1	mA
Low level SOUT output current	loL	-	-	-	1	mA
Constant current output	lout	Test terminal is $\overline{\text { OUTn }}$	1.5	-	90	mA

AC Characteristics (Unless otherwise noted, $\mathrm{VDD}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Conditions	Min	Typ.	Max	Unit
Serial data transfer frequency	fsck	Cascade connect	-	-	25	MHz
SCK pulse width	twsck	SCK="H" or "L"	20	-	-	ns
TRANS pulse width	twTRANS	TRANS="H"	20	-	-	ns
ENABLE pulse width	twENA	```ENABLE ="H" or "L", Rexxt =200 \Omega to 12 k\Omega```	25	-	-	ns
Serial data setup time	tsetupi	Test terminal are SIN-SCK	1	-	-	ns
	tsetup2	Test terminal are TRANS-SCK	5	-	-	
Serial data hold time	thold1	Test terminal are SIN-SCK	3	-	-	ns
	thold 2	Test terminal are TRANS-SCK	7	-	-	

AC Characteristics (Unless otherwise noted, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Conditions	Min	Typ.	Max	Unit
Serial data transfer frequency	fsck	Cascade connect	-	-	25	MHz
SCK pulse width	twsck	SCK="H" or "L"	20	-	-	ns
TRANS pulse width	twTRANS	TRANS="H"	20	-	-	ns
ENABLE pulse width	twENA	$\begin{aligned} & \operatorname{ENABLE}=" H \text { " or "L", REXT }=200 \Omega \text { to } 12 \\ & \mathrm{k} \Omega \end{aligned}$	25	-	-	ns
Serial data setup time	tsetup1	Test terminal are SIN-SCK	1	-	-	ns
	tsetup2	Test terminal are TRANS-SCK	5	-	-	
Serial data hold time	thold1	Test terminal are SIN-SCK	3	-	-	ns
	thold2	Test terminal are TRANS-SCK	7	-	-	

Electrical Characteristics (Unless otherwise specified, $\mathrm{V} \mathrm{DD}=5.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Circuit	Test Conditions		Min	Typ.	Max	Unit
High level SOUT output voltage	Vor	1	$\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$	Іон=-1mA	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}- \\ 0.3 \end{gathered}$	-	Vdd	V
Low level SOUT output voltage	Vol	1		$\mathrm{loL}=+1 \mathrm{~mA}$	GND	-	0.3	V
High level logic input current	Інн	2	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ Test terminal are ENABLE, SIN, SCK		-	-	1	$\mu \mathrm{A}$
Low level logic input current	IIL	3	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ Test terminal are SIN, SCK, TRANS		-	-	-1	$\mu \mathrm{A}$
Power supply current	IdD1	4	Stand-by mode, Vout=1V, SCK="L"		-	-	1.0	$\mu \mathrm{A}$
	IdD2	4	$\mathrm{V}_{\text {OUT }}=1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{EXT}}=1.2 \mathrm{k} \Omega,$ All output off		-	-	7.0	mA
Constant current error (IC to IC) (S rank)	$\Delta \mathrm{lout}$ (IC)	5	Vout $=1.0 \mathrm{~V}, \mathrm{ReXT}_{\mathrm{EX}}=1.2 \mathrm{k} \Omega$,$\overline{\text { OUT0 }}$ to $\overline{\text { OUT15 }}, 1 \mathrm{ch}$ output on		-	± 1.0	± 1.5	\%
Constant current error (Ch to Ch) (S rank)	$\Delta \mathrm{lout}$ (Ch)	5	Vout $=1.0 \mathrm{~V}, \mathrm{R}_{\text {EXT }}=1.2 \mathrm{k} \Omega$, $\overline{\text { OUT0 }}$ to $\overline{\text { OUT15 }}, 1 \mathrm{ch}$ output on		-	± 1.0	± 1.5	\%
Constant current error (IC to IC) (N rank)	Δ lout(IC)	5	$V_{\text {OUT }}=1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{EXT}}=1.2 \mathrm{k} \Omega$, $\overline{\text { OUTO }}$ to OUT15, 1ch output on		-	± 1.0	± 2.5	\%
Constant current error (Ch to Ch) (N rank)	$\Delta \mathrm{lout}$ (Ch)	5	$V_{\text {out }}=1.0 \mathrm{~V}, R_{\text {EXT }}=1.2 \mathrm{k} \Omega$, $\overline{\text { OUT0 }}$ to $\overline{\text { OUT15 }}, 1 \mathrm{ch}$ output on		-	± 1.0	± 2.5	\%
Output OFF leak current	Іок	5	$\mathrm{V}_{\text {OUT }}=17 \mathrm{~V}, \mathrm{R}_{\text {EXT }}=1.2 \mathrm{k} \Omega, \overline{\text { OUTn }}$ off		-	-	0.5	$\mu \mathrm{A}$
Constant current output power supply voltage regulation	\%VDD	5	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\mathrm{DD}}=4.5 \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.0 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{EXT}}=1.2 \mathrm{k} \Omega, \\ \overline{\mathrm{OUT0}} \text { to } \overline{\mathrm{OUT} 15}, 1 \mathrm{ch} \text { output on } \\ \hline \end{array} \end{aligned}$		-	± 1	± 5	\%/V
Constant current output output voltage regulation	\%Vout	5	$\begin{aligned} & \frac{V_{\text {out }}=1.0 \text { to } 3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{EXT}}=1.2 \mathrm{k} \Omega,}{\text { OUT0 } \text { to } \overline{\text { OUT } 15}, 1 \mathrm{ch} \text { output on }} \end{aligned}$		-	± 0.1	± 0.5	\%/V
Pull-up resistor	R (Up)	3	Test terminal is ENABLE		240	300	360	$\mathrm{k} \Omega$
Pull-down resistor	R (Down)	2	Test terminal is TRANS		240	300	360	k Ω
OOD voltage	Vood	7	Rext $=200 \Omega$ to $12 \mathrm{k} \Omega$		0.2	0.3	0.4	V
OSD voltage	VosD1	7	$\mathrm{R}_{\mathrm{EXT}}=200 \Omega$ to $12 \mathrm{k} \Omega$		$\begin{gathered} \text { VDD- } \\ 1.3 \end{gathered}$	$\begin{gathered} \text { VDD }- \\ 1.4 \end{gathered}$	$\begin{gathered} \text { VDD- } \\ 1.5 \end{gathered}$	
	VosD2	7	$\mathrm{R}_{\mathrm{EXT}}=200 \Omega$ to $12 \mathrm{k} \Omega$		$\begin{gathered} 0.5 \times \\ V_{D D} \end{gathered}$	$\begin{aligned} & 0.525 \\ & \times V_{D D} \end{aligned}$	$\begin{gathered} 0.55 \times \\ V_{D D} \end{gathered}$	
TSD start temperature	TtDS(ON)	-	Junction temperature		150	-	-	${ }^{\circ} \mathrm{C}$
Return time of normal mode from SHDN mode	ton	-	Time until output current after it becomes the Normal mode from SHDN mode flows		-	-	30	$\mu \mathrm{S}$

Electrical Characteristics (Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{Ta}=\mathbf{2 5}^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Circuit	Test Conditions		Min	Typ.	Max	Unit
High level SOUT output voltage	Vон	1	$\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$	$\mathrm{l}_{\text {он }}=-1 \mathrm{~mA}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}- \\ 0.3 \end{gathered}$	-	V ${ }_{\text {dD }}$	V
Low level SOUT output voltage	Vol	1		$\mathrm{loL}=+1 \mathrm{~mA}$	GND	-	0.3	V
High level logic input current	$\mathrm{IIH}^{\text {H}}$	2	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ Test terminal are ENABLE, SIN, SCK		-	-	1	$\mu \mathrm{A}$
Low level logic input current	IIL	3	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ Test terminal are SIN, SCK, TRANS		-	-	-1	$\mu \mathrm{A}$
Power supply current	IDD1	4	Stand-by mode, Vout=1.0V, SCK="L"		-	-	1.0	$\mu \mathrm{A}$
	IDD2	4	$\text { Vout=1.0V, Rext }=1.2 \mathrm{k} \Omega,$ All output off		-	-	7.0	mA
Constant current error (IC to IC) (S rank)	$\Delta \mathrm{lout}$ (IC)	5	$V_{\text {OUT }}=1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{EXT}}=1.2 \mathrm{k} \Omega$, $\overline{\text { OUT0 }}$ to $\overline{\text { OUT15, }}$ 1ch output on		-	± 1.0	± 1.5	\%
Constant current error (Ch to Ch) (S rank)	$\Delta \mathrm{lout}(\mathrm{Ch})$	5	Vout $=1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{EXT}}=1.2 \mathrm{k} \Omega$, $\overline{\text { OUTO }}$ to OUT15, 1ch output on		-	± 1.0	± 1.5	\%
Constant current error (IC to IC) (N rank)	$\Delta \mathrm{lout}$ (IC)	5	Vout $=1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{EXT}}=1.2 \mathrm{k} \Omega$, $\overline{\text { OUT0 }}$ to $\overline{\text { OUT15 }}, 1 \mathrm{ch}$ output on		-	± 1.0	± 2.5	\%
Constant current error (Ch to Ch) (N rank)	$\Delta \mathrm{lout}$ (Ch)	5	Vout $=1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{EXT}}=1.2 \mathrm{k} \Omega$, $\overline{\text { OUT0 }}$ to $\overline{\text { OUT15 }}, 1 \mathrm{ch}$ output on		-	± 1.0	± 2.5	\%
Output OFF leak current	Iok	5	Vout $=17 \mathrm{~V}, \mathrm{Rexx}^{\text {E }}=1.2 \mathrm{k} \Omega$, $\overline{\text { OUTn }}$ off		-	-	0.5	$\mu \mathrm{A}$
Constant current output power supply voltage regulation	\%VDD	5	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=3.0 \text { to } 3.6 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{EXT}}=1.2 \mathrm{k} \Omega, \\ & \overline{\text { OUT0 }} \text { to } \overline{\text { OUT15, }} \text {, ch output on } \\ & \hline \end{aligned}$		-	± 1	± 5	\%/V
Constant current output output voltage regulation	\%Vout	5	Vout=1.0 to $3.0 \mathrm{~V}, \mathrm{Rext}_{\mathrm{Ex}}=1.2 \mathrm{k} \Omega$, $\overline{\text { OUTO }}$ to $\overline{\text { OUT15, }}$, 1ch output on		-	± 0.1	± 0.5	\%/V
Pull-up resistor	R (Up)	3	Test terminal is ENABLE		240	300	360	k Ω
Pull-down resistor	R (Down)	2	Test terminal is TRANS		240	300	360	k Ω
OOD voltage	Vood	7	$\mathrm{R}_{\mathrm{EXT}}=200 \Omega$ to $12 \mathrm{k} \Omega$		0.2	0.3	0.4	\checkmark
OSD voltage	VosD1	7	$\mathrm{R}_{\mathrm{EXT}}=200 \Omega$ to $12 \mathrm{k} \Omega$		$\begin{gathered} \mathrm{V}_{\mathrm{DD}}- \\ 1.3 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}- \\ 1.4 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}- \\ 1.5 \end{gathered}$	
	Vosb2	7	$\mathrm{R}_{\mathrm{EXT}}=200 \Omega$ to $12 \mathrm{k} \Omega$		$\begin{aligned} & 0.5 \times \\ & V_{D D} \end{aligned}$	$\begin{aligned} & 0.525 \\ & \times V_{D D} \end{aligned}$	$\begin{gathered} 0.55 \times \\ V_{D D} \end{gathered}$	
TSD start temperature	Ttds(ON)	-	Junction temperature		150	-	-	${ }^{\circ} \mathrm{C}$
Return time of normal mode from SHDN mode	ton	-	Time until output current after it becomes the Normal mode from SHDN mode flows		-	-	30	$\mu \mathrm{S}$

Switching Characteristics (Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Characteristics		Symbol	Test Circ	Test Condition	Min	Typ.	Max	Unit
Propagation delay time	SCK \uparrow-SOUT	tpd1u	6	Up edge trigger mode	6	16	30	ns
	SCK \downarrow-SOUT	tpD1D	6	Down edge trigger mode	2	12	16	
	$\overline{\text { ENABLE - }} \overline{\text { OUTn }}$	tpD2	6	$\mathrm{R}_{\mathrm{EXT}}=1.2 \mathrm{k} \Omega$	-	30	40	
	TRANS- $\overline{\text { OUTn }}$	tpD3	6	$\overline{\text { ENABLE }}=$ "L"	-	30	40	
Output rise time		tor	6	10% to 90% points of $\overline{\text { OUTO to OUT15 voltage }}$ waveforms	-	10	20	
Output fall time		$\mathrm{t}_{\text {of }}$	6	90% to 10% points of $\overline{\text { OUTO }}$ to OUT15 voltage waveforms	-	10	20	
Output delay time		toLY (ON)	6	Reference timing waveforms $\mathrm{R}_{\mathrm{EXT}}=1.2 \mathrm{k} \Omega$	1	4	9	
		tdiy (OFF)	6	Reference timing waveforms $\mathrm{R}_{\mathrm{EXT}}=1.2 \mathrm{k} \Omega$	1	4	9	

Switching Characteristics (Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Characteristics		Symbol	Test Circ uit	Test Condition	Min	Typ.	Max	Unit
Propagation delay time	SCK \uparrow-SOUT	tpdiu	6	Up edge trigger mode	6	16	30	ns
	SCK \downarrow-SOUT	tpD1D	6	Down edge trigger mode	2	14	18	
	$\overline{\text { ENABLE }-\overline{O U T n}}$	tpD2	6	$\mathrm{R}_{\mathrm{EXT}}=1.2 \mathrm{k} \Omega$	-	30	40	
	TRANS- $\overline{\text { OUTn }}$	tpD3	6	ENABLE $=$ "L"	-	30	40	
Output rise time		tor	6	10% to 90% points of OUTO to OUT15 voltage waveforms	-	10	20	
Output fall time		tof	6	90% to 10% points of $\overline{\text { OUTO }}$ to OUT15 voltage waveforms	-	10	20	
Output delay time		tdLy (ON)	6	Reference timing waveforms $\mathrm{R}_{\mathrm{EXT}}=1.2 \mathrm{k} \Omega$	2	6	12	
		toly (OFF)	6	Reference timing waveforms $\mathrm{R}_{\mathrm{EXT}}=1.2 \mathrm{k} \Omega$	2	6	12	

Test Circuits

Test Circuit 1: High level SOUT output voltage / Low level SOUT output voltage

Test Circuit 2: High level logic input current / Pull-down resistor

Test Circuit 3: Low level logic input current / Pull-up resistor

Test Circuit 4: Supply Current

Test Circuit 5: Constant current error(IC to IC) / Constant current error(ch to ch) Output OFF leak current
Constant current output power supply voltage regulation
Constant current output voltage regulation

Test Circuit 6: Switching Characteristics

Test Circuit 7: ODD and OSD voltage

All outputs are configured to be on. One output is connected to VDS2, and the other outputs are connected to $V_{\text {DS1 }} . V_{\text {OOD }}$ and $V_{\text {OSD }}$ are measured by changing $\mathrm{V}_{\mathrm{DS} 2}$ and monitoring the other output voltages and error detection results from SOUT.

Timing Waveforms

1. SCK, SIN, SOUT

2.TRANS, SOUT, $\overline{\text { ENABLE, }} \overline{\text { OUTn }}$

3. OUTn

4. $\overline{\text { ENABLE }}, \overline{\text { OUTn }}$

$\overline{\text { OUTn }}$ are Voltage waveform.

Reference data

The above data is for reference only, not guaranteed. Careful evaluation is required prior to creating a production design.

Output Current vs. External Resistor

This graph shows the characteristics per channel when all the outputs are on.

Reference data

The above data is for reference only, not guaranteed. Careful evaluation is required prior to creating a production design.

Output current (lout) - Output voltage (Vout)

Notes on design of ICs

1. Decoupling capacitors between power supply and GND

It is recommended to place decoupling capacitors between power supply and GND as close to the IC as possible.
2. Output current setting resistors

When the output current setting resistors ($\mathrm{R}_{\mathrm{EXT}}$) are shared among multiple ICs, production design should be evaluated carefully.
3. Board layout

Ground noise generated by output switching might cause the IC to malfunction if the ground line exhibits inductance and resistance due to PC board traces and wire leads. Also, the inductance between the IC output pins and the LED cathode pins might cause large surge voltage, damaging LEDs and the IC outputs. To avoid this situation, PC board traces and wire leads should be carefully laid out.
4. Consult the latest technical information for mass production.

Package Dimensions

```
CFNAG Type
    P-SSOP24-0409-0.64-001
```


Weight: 0.14 g (typ.)

Notes on Contents

1. Block Diagrams

Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for explanatory purposes.

2. Equivalent Circuits

The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

3. Timing Charts

Timing charts may be simplified for explanatory purposes.

4. Application Circuits

The application circuits shown in this document are provided for reference purposes only. Thorough evaluation is required, especially at the mass production design stage.
Toshiba does not grant any license to any industrial property rights by providing these examples of application circuits.

5. Test Circuits

Components in the test circuits are used only to obtain and confirm the device characteristics. These components and circuits are not guaranteed to prevent malfunction or failure from occurring in the application equipment.

IC Usage Considerations

Notes on handling of ICs

The absolute maximum ratings of a semiconductor device are a set of ratings that must not be exceeded, even for a moment. Do not exceed any of these ratings.
Exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion.

Use an appropriate power supply fuse to ensure that a large current does not continuously flow in case of over current and/or IC failure. The IC will fully break down when used under conditions that exceed its absolute maximum ratings, when the wiring is routed improperly or when an abnormal pulse noise occurs from the wiring or load, causing a large current to continuously flow and the breakdown can lead smoke or ignition. To minimize the effects of the flow of a large current in case of breakdown, appropriate settings, such as fuse capacity, fusing time and insertion circuit location, are required.

If your design includes an inductive load such as a motor coil, incorporate a protection circuit into the design to prevent device malfunction or breakdown caused by the current resulting from the inrush current at power ON or the negative current resulting from the back electromotive force at power OFF. IC breakdown may cause injury, smoke or ignition.
Use a stable power supply with ICs with built-in protection functions. If the power supply is unstable, the protection function may not operate, causing IC breakdown. IC breakdown may cause injury, smoke or ignition.

Do not insert devices in the wrong orientation or incorrectly.
Make sure that the positive and negative terminals of power supplies are connected properly Otherwise, the current or power consumption may exceed the absolute maximum rating, and exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion.
In addition, do not use any device that is applied the current with inserting in the wrong orientation or incorrectly even just one time.

Carefully select external components (such as inputs and negative feedback capacitors) and load components (such as speakers), for example, power amp and regulator.
If there is a large amount of leakage current such as input or negative feedback condenser, the IC output DC voltage will increase. If this output voltage is connected to a speaker with low input withstand voltage, overcurrent or IC failure can cause smoke or ignition. (The over current can cause smoke or ignition from the IC itself.) In particular, please pay attention when using a Bridge Tied Load (BTL) connection type IC that inputs output DC voltage to a speaker directly.

Points to remember on handling of ICs

(1) Over current Protection Circuit

Over current protection circuits (referred to as current limiter circuits) do not necessarily protect ICs under all circumstances. If the Over current protection circuits operate against the over current, clear the over current status immediately.
Depending on the method of use and usage conditions, such as exceeding absolute maximum ratings can cause the over current protection circuit to not operate properly or IC breakdown before operation. In addition, depending on the method of use and usage conditions, if over current continues to flow for a long time after operation, the IC may generate heat resulting in breakdown.
(2) Back-EMF

When a motor rotates in the reverse direction, stops or slows down abruptly, a current flow back to the motor's power supply due to the effect of back-EMF. If the current sink capability of the power supply is small, the device's motor power supply and output pins might be exposed to conditions beyond absolute maximum ratings. To avoid this problem, take the effect of back-EMF into consideration in system design.
(3) Thermal Shutdown Circuit

Thermal shutdown circuits do not necessarily protect ICs under all circumstances. If the thermal shutdown circuits operate against the over temperature, clear the heat generation status immediately.
Depending on the method of use and usage conditions, such as exceeding absolute maximum ratings can cause the thermal shutdown circuit to not operate properly or IC breakdown before operation.

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE ANDIOR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Lighting Drivers category:
Click to view products by Toshiba manufacturer:

Other Similar products are found below :
LV5235V-MPB-H MB39C602PNF-G-JNEFE1 MIC2871YMK-T5 AL1676-10BS7-13 AL1676-20AS7-13 AP5726WUG-7 ICL8201 IS31BL3228B-UTLS2-TR IS31BL3506B-TTLS2-TR AL3157F-7 LV52204MTTBG AP5725WUG-7 STP4CMPQTR NCL30086BDR2G CAT4004BHU2-GT3 LV52207AXA-VH AP1694AS-13 TLE4242EJ AS3688 IS31LT3172-GRLS4-TR TLD2311EL KTD2694EDQ-TR KTZ8864EJAA-TR IS32LT3174-GRLA3-TR MP2488DN-LF-Z NLM0010XTSA1 AL1676-20BS7-13 ZXLD1370QESTTC MPQ7220GF-AEC1-P MPQ7220GR-AEC1-P MPQ4425BGJ-AEC1-P MPQ7220GF-AEC1-Z MPQ7220GR-AEC1-Z MPQ4425BGJ-AEC1-Z IS31FL3737B-QFLS4-TR IS31FL3239-QFLS4-TR KTD2058EUAC-TR KTD2037EWE-TR DIO5662ST6 IS31BL3508A-TTLS2-TR KTD2026BEWE-TR MAX20052CATC/V+ MAX25606AUP/V+ BD6586MUV-E2 BD9206EFV-E2 LYT4227E LYT6079C-TL MP3394SGF-P MP4689AGN-P MPQ4425AGQB-AEC1-Z

