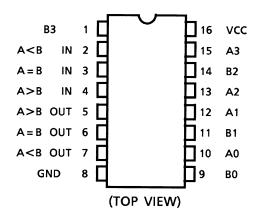
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74HC85AP,TC74HC85AF,TC74HC85AFN

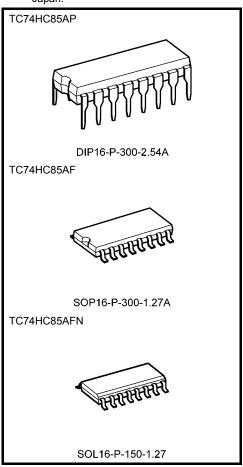
4-Bit Magnitude Comparator

The TC74HC85A is a high speed CMOS 4 BIT MAGNITUDE COMPARATOR fabricated with silicon gate C²MOS technology.

It achieves the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.


The TC74HC85A compares tow 4-bit words applied to inputs A0-A3 and B0-B3, and provides a high voltage level on one of three outputs: A > B, A < B, or A = B.

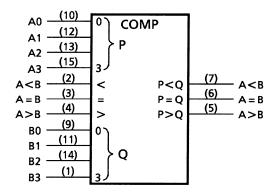
All inputs are equipped with protection circuits against static discharge or transient excess voltage.


Features

- High speed: $t_{pd} = 22 \text{ ns (typ.)}$ at $V_{CC} = 5 \text{ V}$
- Low power dissipation: $I_{CC} = 4 \mu A \text{ (max)}$ at $T_{a} = 25 \text{°C}$
- High noise immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (min)
- Output drive capability: 10 LSTTL loads
- Symmetrical output impedance: $|I_{OH}| = I_{OL} = 4 \text{ mA (min)}$
- Balanced propagation delays: $t_{pLH} \approx t_{pHL}$
- Wide operating voltage range: V_{CC} (opr) = 2~6 V
- Pin and function compatible with 74LS85

Pin Assignment

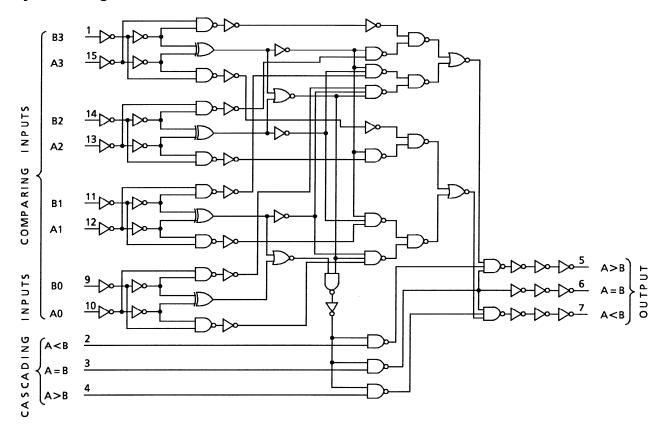
Note: xxxFN (JEDEC SOP) is not available in Japan.



Weight

DIP16-P-300-2.54A : 1.00 g (typ.) SOP16-P-300-1.27A : 0.18 g (typ.) SOL16-P-150-1.27 : 0.13 g (typ.)

IEC Logic Symbol


Truth Table

Comparing Inputs					cading Ir	puts	Outputs			
					A < B	A = B	A > B	A < B	A = B	
A3 > B3	Х	Х	Х	Х	Х	Х	Н	L	L	
A3 = B3	A2 > B2	X	Х	Х	Х	Х	Н	L	L	
A3 = B3	A2 = B2	A1 > B1	X	Х	Х	Х	Н	L	L	
A3 = B3	A2 = B2	A1 = B1	A0 > B0	Х	Х	Х	Н	L	L	
				L	L	L	Н	Н	L	
				Х	Х	Н	L	L	Н	
A3 = E	33, A2 = B2,	A1 = B1, A0	0 = B0	L	Н	L	L	Н	L	
						L	Н	L	L	
				Н	Н	L	L	L	L	
A3 = B3	A2 = B2	A1 = B1	A0 < B0	Х	Х	Х	L	Н	L	
A3 = B3	A2 = B2	A1 < B1	A1 < B1 X			Х	L	Н	L	
A3 = B3	A2 < B2	X	X	Х	Х	Х	L	Н	L	
A3 < B3	Х	Х	Х	Х	Х	Х	L	Н	L	

X: Don't care

2

System Diagram

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	-0.5~7	V
DC input voltage	V _{IN}	-0.5~V _{CC} + 0.5	V
DC output voltage	V _{OUT}	-0.5~V _{CC} + 0.5	V
Input diode current	I _{IK}	±20	mA
Output diode current	I _{OK}	±20	mA
DC output current	lout	±25	mA
DC V _{CC} /ground current	I _{CC}	±50	mA
Power dissipation	PD	500 (DIP) (Note 2)/180 (SOP)	mW
Storage temperature	T _{stg}	-65~150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: 500 mW in the range of Ta = -40 to $65^{\circ}C$. From Ta = 65 to $85^{\circ}C$ a derating factor of -10 mW/°C shall be applied until 300 mW.

Operating Ranges (Note)

Characteristics	Symbol	Rating	Unit
Supply voltage	V _{CC}	2~6	V
Input voltage	V _{IN}	0~V _{CC}	٧
Output voltage	V _{OUT}	0~V _{CC}	٧
Operating temperature	T _{opr}	-40~85	°C
		0~1000 (V _{CC} = 2.0 V)	
Input rise and fall time	t _r , t _f	0~500 (V _{CC} = 4.5 V)	ns
		0~400 (V _{CC} = 6.0 V)	

Note: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND.

Electrical Characteristics

DC Characteristics

		Test Condition V _{CC} (V)		Ta = 25°C			Ta = -40~85°C			
Characteristics	Symbol				Min	Тур.	Max	Min	Max	Unit
				2.0	1.50	_	_	1.50	_	
High-level input voltage	V_{IH}		_	4.5	3.15	_	_	3.15	_	V
, and the second				6.0	4.20	_	_	4.20	—	
				2.0	_	_	0.50	_	0.50	
Low-level input voltage	V _{IL}	_		4.5	_	_	1.35	_	1.35	V
, and the second				6.0	_	_	1.80	_	1.80	
	V _{ОН}	V _{IN} = V _{IH} or V _{IL}		2.0	1.9	2.0	_	1.9	_	
			I _{OH} = -20 μA	4.5	4.4	4.5	_	4.4	_	
High-level output voltage				6.0	5.9	6.0	_	5.9	_	V
			$I_{OH} = -4 \text{ mA}$	4.5	4.18	4.31	_	4.13	_	
			$I_{OH} = -5.2 \text{ mA}$	6.0	5.68	5.80	_	5.63	_	
		VIN		2.0	_	0.0	0.1	_	0.1	
			I _{OL} = 20 μA	4.5	_	0.0	0.1	_	0.1	
Low-level output voltage	V _{OL}	= V _{IH} or		6.0	_	0.0	0.1	_	0.1	V
Ŭ		V _{IL}	I _{OL} = 4 mA	4.5	_	0.17	0.26	_	0.33	
			I _{OL} = 5.2 mA	6.0	_	0.18	0.26	_	0.33	
Input leakage current	I _{IN}	V _{IN} = V _{CC} or GND		6.0		_	±0.1	_	±1.0	μА
Quiescent supply current	Icc	V _{IN} = V _{CC} or GND		6.0	_	_	4.0	_	40.0	μΑ

AC Characteristics (CL = 15 pF, V_{CC} = 5 V, Ta = 25°C, input: t_r = t_f = 6 ns)

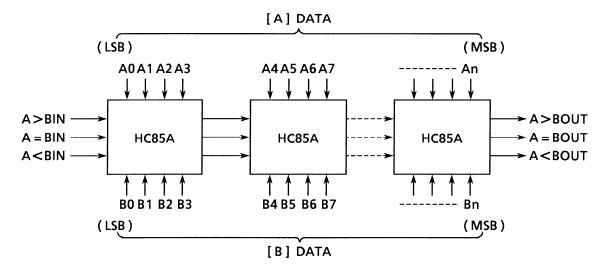
Characteristics	Symbol	ol Test Condition		Тур.	Max	Unit
Output transition time	t _{TLH}			4	8	ns
Output transition time	t _{THL}	_				115
Propagation delay time	t _{pLH}			22	34	20
(A, B-OUT)	t_{pHL}	_		22	34	ns
Propagation delay time	t _{pLH}			10	10	20
(CASCADE-OUT)	t _{pHL}			10	18	ns

AC Characteristics ($C_L = 50 \text{ pF}$, input: $t_r = t_f = 6 \text{ ns}$)

		Test Condition		Ta = 25°C			Ta = -4		
Characteristics	Symbol		V _{CC} (V)	Min	Тур.	Max	Min	Max	Unit
	4		2.0	_	30	75	_	95	
Output transition time	t _{TLH}	_	4.5	_	8	15	_	19	ns
	t _{THL}		6.0	_	7	13	_	16	
Propagation delay	t _{pLH}		2.0	_	90	195	_	245	
time		_	4.5	_	26	39	_	49	ns
(A, B-OUT)	t_{pHL}		6.0	_	22	33	_	42	
Propagation delay			2.0	_	40	110	_	140	
time	t _{pLH}	_	4.5	_	13	22	_	28	ns
(CASCADE-OUT)	t _{pHL}		6.0	_	11	19	_	24	
Input capacitance	C _{IN}	_		_	5	10	_	10	pF
Power dissipation capacitance	C _{PD} (Note)	_		_	25	_	_	_	pF

Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

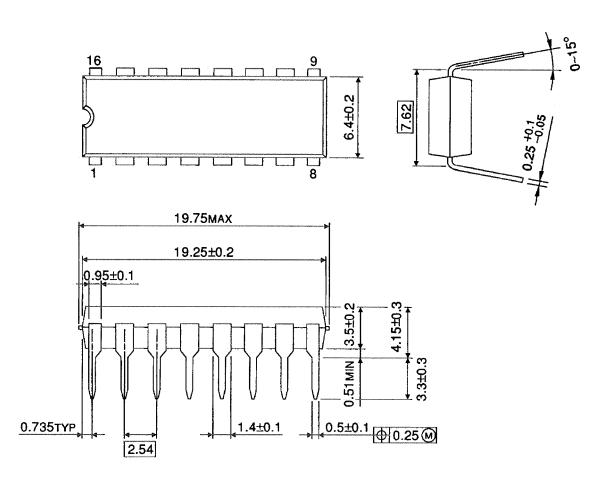
5


Average operating current can be obtained by the equation:

$$I_{CC}$$
 (opr) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$

Typical Application

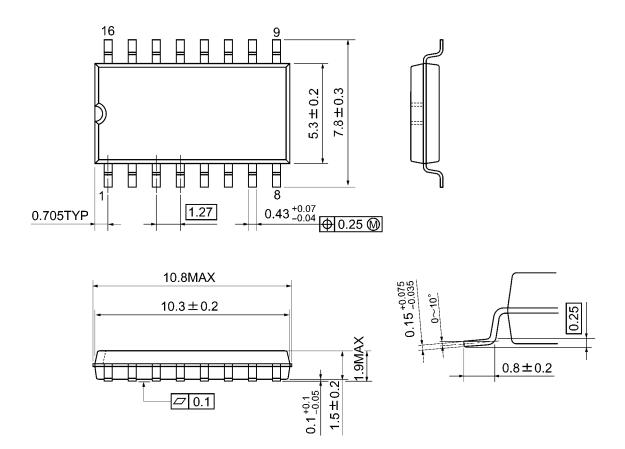
N - BIT CASCADING CONNECTION


Comparing Input	Caso	cading Ir	nputs	Outputs			
Comparing Input	A > B	A = B	A < B	A > B	A = B	A < B	
[A] > [B]	Х	Х	Х	Н	L	L	
[A] = [B]	Н	L	L	Н	L	L	
	Х	Н	Х	L	Н	L	
	L	L	Н	L	L	Н	
[A] < [B]	Х	Х	Х	L	L	Н	

X: Don't care

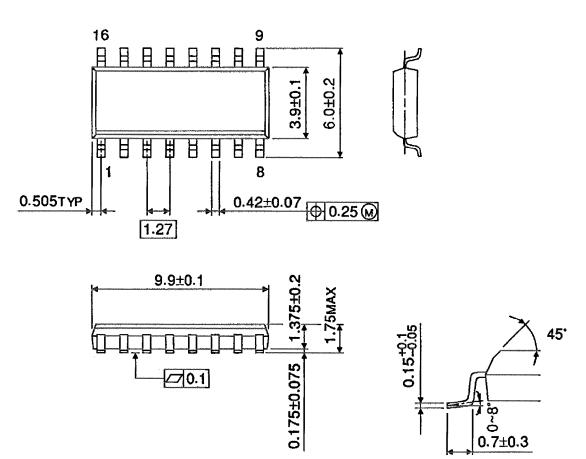
6

Package Dimensions


DIP16-P-300-2.54A Unit: mm

Weight: 1.00 g (typ.)

Package Dimensions


SOP16-P-300-1.27A Unit: mm

Weight: 0.18 g (typ.)

Package Dimensions (Note)

SOL16-P-150-1.27 Unit: mm

9

Note: This package is not available in Japan.

Weight: 0.13 g (typ.)

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before creating and producing designs and using, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application that Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- Product is intended for use in general electronics applications (e.g., computers, personal equipment, office equipment, measuring equipment, industrial robots and home electronics appliances) or for specific applications as expressly stated in this document. Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact ("Unintended Use"). Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for Unintended Use unless specifically permitted in this document
- · Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
 applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
 FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
 WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
 LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
 LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
 SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without
 limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile
 technology products (mass destruction weapons). Product and related software and technology may be controlled under the
 Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product
 or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
 Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.

10

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Comparators category:

Click to view products by Toshiba manufacturer:

Other Similar products are found below:

 742450X
 74FCT521ATQG
 LMC7221BIM5X/NOPB
 SC2903NG
 M38510/10301BHA
 74HC85D.652
 74HCT4046AD.112
 HEF4046BT.652

 HEF4541BT.512
 SN74ALS520NSR
 SN74LS682NSR
 ADCMP393ARUZ-RL7
 74HC280D.652
 74HC85DB.118
 74HCT9046AD.112

 74HC688DB.118
 74HCT85D.652
 74HC4046AD.652
 74HC4046ADB.112
 74HC4046APW.112
 74HC688PW.112
 74HC785DB.112

 AS339GTR-E1
 MC33298
 74FCT521ATSOG
 74FCT521ATSOG8
 74FCT521CTQG
 74FCT521CTSOG8
 74HC7688N
 004592X

 74HC785D
 74HC688D,652
 74HC688DB,118
 74HC688PW,112
 74HC688PW,118
 74HC85DB,112
 74HC85DB,118

 74HC85PW,118
 74HC688D
 74HCT85D,652
 74HCT85D,653
 MC14585BDG
 MC14585BDR2G
 MC14585BD
 HA17903APS-E

 MC3363DW
 LM239DG4
 CD74HCT688MG4
 SN74HC688DWRG4