TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74LCX16646AFT

Low-Voltage 16-Bit Bus Transceiver/Register with 5-V Tolerant Inputs and Outputs

The TC74LCX16646AFT is a high-performance CMOS 16-bit bus transceiver/register. Designed for use in $3.3-\mathrm{V}$ systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.

The device is designed for low-voltage (3.3 V) VCC applications, but it could be used to interface to $5-\mathrm{V}$ supply environment for both inputs and outputs.

This device is bus transceiver with 3 -state outputs, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the internal registers.

All inputs are equipped with protection circuits against static discharge.

Features (Note)

- Low-voltage operation: $\mathrm{VCC}_{\mathrm{CC}}=2.0$ to 3.6 V
- High-speed operation: $\mathrm{t}_{\mathrm{pd}}=6.0 \mathrm{~ns}(\max)(\mathrm{VCC}=3.0$ to 3.6 V$)$
- Ouput current: $|\mathrm{IOH}| / \mathrm{IOL}=24 \mathrm{~mA}(\mathrm{~min})(\mathrm{VCC}=3.0 \mathrm{~V})$
- Latch-up performance: -500 mA
- Package: TSSOP
- Bidirectional interface between 5.0 V and 3.3 V signals
- Power-down protection provided on all inputs and outputs

Note: Do not apply a signal to any bus pins when it is in the output mode. Damage may result. All floating (high impedance) bus pins must have their input levels fixed by means of pull-up or pull-down

Pin Assignment (top view)

IEC Logic Symbol

Truth Table

Qn: The data stored into the internal flip-flops by most recent low to high transition of the clock inputs.
*: The clocks are not internally with either OE or DIR.
Therefore, data on the A and/or B busses may be clocked into the storage flip-flops at any time.

System Diagram

Timing Chart

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Power supply voltage	V_{CC}	-0.5 to 7.0	V
DC input voltage (DIR, $\overline{O E}, ~ C A B, ~ C B A, ~ S A B, ~ S B A) ~(~) ~$	V_{IN}	-0.5 to 7.0	V
DC bus I/O voltage	VI/O	-0.5 to 7.0 (Note 2)	V
		$-0.5 \text { to } V_{\mathrm{CC}}+0.5$ (Note 3)	
Input diode current	IIK	-50	mA
Output diode current	IOK	± 50 (Note 4)	mA
DC output current	IOUT	± 50	mA
Power dissipation	PD	400	mW
DC $\mathrm{V}_{\text {Cc }} /$ ground current	$\mathrm{I}_{\text {CC }} / \mathrm{I}_{\text {GND }}$	± 100	mA
Storage temperature	$\mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.
Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).
Note 2: Output in OFF state
Note 3: High or low state. IOUT absolute maximum rating must be observed.
Note 4: VOUT < GND, VOUT > VCC

Operating Ranges (Note 1)

Note 1: The operating ranges must be maintained to ensure the normal operation of the device.
Unused inputs must be tied to either VCC or GND.
Note 2: Data retention only
Note 3: Output in OFF state
Note 4: High or low state
Note 5: $\mathrm{V} \mathrm{CC}=3.0$ to 3.6 V
Note 6: $\quad \mathrm{VCC}=2.7$ to 3.0 V
Note 7: $\mathrm{V}_{\mathrm{IN}}=0.8$ to $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$

Electrical Characteristics

DC Characteristics ($\mathbf{T a}=-40$ to $85^{\circ} \mathrm{C}$)

Characteristics		Symbol	Test Condition			Min	Max	Unit	
Input voltage	H-level	V_{IH}	-		2.7 to 3.6	2.0	-	V	
	L-level	VIL	-		2.7 to 3.6	-	0.8		
Output voltage	H-level	V_{OH}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{IOH}^{\prime}=-100 \mu \mathrm{~A}$	$2.7 \text { to } 3.6$	$\begin{array}{r} V_{C C} \\ -0.2 \end{array}$	-	V	
				$\mathrm{IOH}=-12 \mathrm{~mA}$	2.7	2.2	-		
				$\mathrm{IOH}=-18 \mathrm{~mA}$	3.0	2.4	-		
				$\mathrm{IOH}=-24 \mathrm{~mA}$	$\checkmark 3.0$	2.2	-		
	L-level	VOL	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{lOL}=100 \mu \mathrm{~A}$	2.7 to 3.6		0.2		
				$\mathrm{I} \mathrm{OL}=12 \mathrm{~mA}$	2.7	E	0.4		
				$\mathrm{IOL}=16 \mathrm{~mA}$	3.0		0.4		
				$\mathrm{IOL}=24 \mathrm{~mA}$	3.0	$)$	0.55		
Input leakage current		IIN	$\mathrm{V}_{\text {IN }}=0$ to 5.5 V		2.7 to 3.6		± 5.0	$\mu \mathrm{A}$	
3-state output OFF state current		Ioz	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{OUT}}=0 \text { to } 5.5 \mathrm{~V} \end{aligned}$		$2.7 \text { to } 3.6$		± 5.0	$\mu \mathrm{A}$	
Power-off leakage current		IOFF	$\mathrm{V}_{\text {IN }} / \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$		0	-	10.0	$\mu \mathrm{A}$	
Quiescent supply current		ICC	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$ or GN		2.7 to 3.6	-	20.0	$\mu \mathrm{A}$	
		$\mathrm{V}_{\text {IN }} / \mathrm{V}$ OUT $=3.6$	\square	2.7 to 3.6	-	± 20.0			
Increase in Icc per input			$\Delta \mathrm{l}$ CC	$\mathrm{V}_{\mathrm{IH}}=\mathrm{VCC}-0.6$	S	2.7 to 3.6	-		500

AC Characteristics ($\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Condition	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Min	Max	Unit
Maximum clock frequency	$f_{\text {max }}$	Figure 1, Figure 2	2.7	-	-	MHz
			3.3 ± 0.3	170	-	
Propagation delay time (An, Bn-Bn, An)	$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \end{aligned}$	Figure 1, Figure 2	2.7	-	6.6	ns
			3.3 ± 0.3	1.5	6.0	
Propagation delay time (CAB, CBA-Bn, An)	$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \end{aligned}$	Figure 1, Figure 5	2.7	-	8.3	ns
			3.3 ± 0.3	1.5	7.5	
Propagation delay time (SAB, SBA-Bn, An)	$\mathrm{t}_{\mathrm{pLH}}$	Figure 1, Figure 2	2.7	-	8.3	ns
	$\mathrm{t}_{\mathrm{pHL}}$		3.3 ± 0.3	1.5	7.5	
Output enable time$(\overline{\mathrm{OE}}, \mathrm{DIR}-\mathrm{An}, \mathrm{Bn})$	$\mathrm{t}_{\mathrm{pZL}}$	Figure 1, Figure 3, Figure 4	2.7	-	8.3	ns
	tPZH		3.3 ± 0.3	1.5	7.5	
Output disable time$(\overline{O E}, D I R-A n, B n)$	$t_{p L Z}$	Figure 1, Figure 3, Figure 4	2.7		8.3	ns
	$\mathrm{t}_{\mathrm{pHZ}}$		\| 3.3 ± 0.3	1.5	7.5	
Minimum pulse width	$t_{W}(H)$	Figure 1, Figure 5	3.3 ± 0.3	4.0	-	ns
				3.0	-	
Minimum setup time	$t_{\text {s }}$	Figure 1, Figure 5	$2.7)$	2.5	-	ns
			3.3 ± 0.3	2.5	-	
Minimum hold time	th	Figure 1, Figure 5	2.7	1.5	-	ns
		-	3.3 ± 0.3	1.5	-	
Output to output skew	$\mathrm{t}_{\mathrm{osLH}}$	\square	2.7	-	-	ns
	$\mathrm{t}_{\mathrm{osHL}}$		3.3 ± 0.3	-	1.0	

Note: Parameter guaranteed by design.
$\left(\mathrm{t}_{\mathrm{osLH}}=\left|\mathrm{t}_{\mathrm{pLH}}-\mathrm{t}_{\mathrm{pLHn}}\right|, \mathrm{t}_{\mathrm{osHL}}=\left|\mathrm{t}_{\mathrm{pHL}} \mathrm{m}-\mathrm{t}_{\mathrm{pHLn}}\right|\right)$

Dynamic Switching Characteristics

($\mathrm{Ta}=25^{\circ} \mathrm{C}$, input: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.5 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$)

Capacitive Characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Condition			Typ.	Unit
				$V_{\text {cc }}(\mathrm{V})$		
Input capacitance	$\mathrm{ClN}_{\mathrm{N}}$			3.3	7	pF
Bus input capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$	An, Bn		3.3	8	pF
Power dissipation capacitance	$\mathrm{C}_{\text {PD }}$	$\mathrm{f}_{\mathrm{IN}}=10 \mathrm{MHz}$	(Note)	3.3	25	pF

Note: $\quad C_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.
Average operating current can be obtained by the equation:

$$
I_{C C}(\mathrm{opr})=\mathrm{C}_{P D} \cdot \mathrm{~V}_{\mathrm{CC}} \cdot \mathrm{fi}_{\mathrm{N}}+\mathrm{I}_{\mathrm{CC}} / 16 \text { (per bit) }
$$

AC Test Circuit

Parameter	Switch
$\mathrm{t}_{\mathrm{pLH}}, \mathrm{t}_{\mathrm{pHL}}$	Open
$\mathrm{t}_{\mathrm{pLZ}}, \mathrm{t}_{\mathrm{pZL}}$	6.0 V
$\mathrm{t}_{\mathrm{pHZ}}, \mathrm{t}_{\mathrm{pZH}}$	GND
$\mathrm{t}_{\mathrm{w}}, \mathrm{t}_{\mathrm{s}}, \mathrm{t}_{\mathrm{h}}, \mathrm{f}_{\max }$	Open

Figure 1

AC Waveform

Figure $2 \mathrm{t}_{\mathrm{pLH}}, \mathrm{t}_{\mathrm{pHL}}$

Figure $3 \mathbf{t}_{\mathrm{pLZ}}, \mathrm{t}_{\mathrm{pHz}}, \mathrm{t}_{\mathrm{pzL}}, \mathrm{t}_{\mathrm{pzH}}$

Input (DIR)

Output (An)

Output
(An)

Output
(Bn)

Output
(Bn)

Figure $4 \quad t_{p L Z}, t_{p H Z}, t_{p z L}, t_{p Z H}$

Input
(CAB, CBA)

Figure $5 \mathrm{t}_{\mathrm{pLH}}, \mathrm{t}_{\mathrm{pHL}}, \mathrm{t}_{\mathrm{w}}, \mathrm{t}_{\mathbf{s}}, \mathrm{t}_{\mathbf{h}}$

Package Dimensions

Weight: 0.25 g (typ.)

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE ANDIOR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF RROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU ROHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bus Transceivers category:
Click to view products by Toshiba manufacturer:
Other Similar products are found below :
74LS645N DS8838 FXL4TD245UMX IDT74CBTLV3257PGG 74LVT245BBT20-13 5962-8683401DA PCA9617ADMR2G 5962-
8953501KA 5962-86834012A 5962-7802301Q2A 5962-7802002MFA 5962-7802001MFA 74VHCV245FT(BJ) NCV7349D13R2G
TC74VCX164245(EL,F MC74LCX245MNTWG TC7WPB8306L8X,LF(S TC7WPB9307FC(TE85L 74FCT16245CTPVG8
74FCT16543CTPVG 74FCT245CTPYG8 MM74HC245AMTCX 74LVCH16245APVG 74LVX245MTC 5962-9221405M2A NTS0102DP-
Q100H 74ALVC16245MTDX 74ALVCH32245BF 74FCT163245APVG 74FCT245ATPYG8 74FCT245CTQG 74FCT3245AQG
74LCXR162245MTX 74VHC245M 74VHC245MX TC7WPB9306FC(TE85L TC7WPB9306FK(T5L,F JM38510/65553BRA ST3384EBDR
74LVC1T45GF,132 74AVC4TD245BQ,115 PQJ7980AHN/C0JL,51 MC100EP16VBDG FXL2TD245L10X 74LVC1T45GM,115
TC74AC245P(F) PSB21150F S LLHR SNJ54LS245FK SNJ54AHC245J SNJ54ABT245AFK

