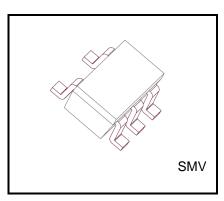


TOSHIBA CMOS Linear Integrated Circuit Silicon Monolithic

TC75S103F


Single Operational Amplifier Low supply current

Features

- Input, Output Full Range type (Rail to Rail)
- Low supply current 100μA (Typ.) @V_{DD}=1.8V
- Low Input offset voltage 1.5mV (Max) @V_{DD}=1.8V
- Wide Operating Voltage Range 1.8V to 5.5V

Absolute Maximum Ratings (Ta = 25°C)

Characteristics	Symbol	Rating	
Supply voltage	V _{DD} - V _{SS}	6	V
Differential input voltage	DVIN	±6	V
Input voltage	V _{IN}	V _{DD} to V _{SS}	V
Output voltage	Vout	V_{SS} -0.3V to V_{DD} +0.3V \leq V_{SS} + 6V	V
Output current	lout	±25	mA
Power dissipation	P_{D}	200	mW
Operating temperature	T _{opr}	-40 to 105	°C
Storage temperature	T _{stg}	-55 to 150	°C

Weight: SMV (SOT-25)(SC-74A) :14 mg (typ.)

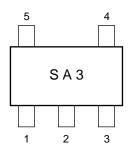
Note1: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

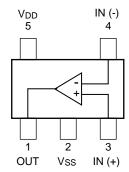
Operating Ratings ($Ta = -40 \text{ to } 105^{\circ}\text{C}$)

Characteristics	Symbol	Rating	Unit
Supply voltage	V _{DD} - V _{SS}	1.8 to 5.5	V

Note2: A higher load capacitance will increase the risk of voltage oscillation. Allow sufficient capacitance value when designing your circuit and using this product to prevent voltage oscillation.


Note3: This device is sensitive to electrostatic discharge.

Please ensure equipment, operator and tools are adequately earthed when handling.


Start of commercial production 2020-09

Marking (top view)

Pin Assignment (top view)

Electrical Characteristics

DC Characteristics (V_{DD} = 1.8V, V_{SS} = GND, Ta = 25°C, V_{IN} = V_{DD}/2, unless otherwise noted.)

•							
Characteristics	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Input offset voltage	Vio	4	R _S = 1 kΩ, R _F = 100kΩ Ta = -40 to 105°C	-1.85	0.3	1.85	mV
	VIO	1	Rs = 1 kΩ, Rf = 100kΩ Ta = 25°C	-1.5	0.3	1.5	mV
Input offset voltage drift	ViOdrift	1	$R_S = 1 \text{ k}\Omega, R_F = 100\text{k}\Omega$	-	1	-	μV/°C
Input offset current	lio	2	-	-	1	-	рА
Input bias current	lı	2	-	-	1	-	рА
Common mode input voltage	CMVIN	3	$R_S = 1 \text{ k}\Omega, R_F = 100\text{k}\Omega$	0	-	V _{DD}	V
Voltage gain (open loop)	Gv	-	-	85	100	-	dB
Maximum autout valtage	Voн	4	$R_L \ge 100 \text{ k}\Omega$	1.7	-	-	V
Maximum output voltage	VoL	5	$R_L \ge 100 \text{ k}\Omega$	-	-	0.1	V
Common mode input signal rejection ratio	CMRR	3	V _{IN} = 0 to 1.8V	60	80	-	dB
Supply voltage rejection ratio	SVRR	1	V _{DD} = 1.8 to 5.0V	70	85	-	dB
Supply current	I _{DD}	6	-	-	100	165	μА
Source current	I _{source}	7	-	1.2	2	-	mA
Sink current	I _{sink}	8	-	1	2	-	mA

AC Characteristics (VDD = 0.9 V, Vss = -0.9 V, Ta = 25°C)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Unity Gain Cross Frequency	f⊤	-	-	-	0.3	-	MHz
Phase margin	Фт	-	-	-	40	-	degrees
Slew Rate	SR	-	-	-	0.52	-	V/μs

DC Characteristics (V_{DD} = 3.3V, V_{SS} = GND, Ta = 25°C, V_{IN} = V_{DD}/2, unless otherwise noted.)

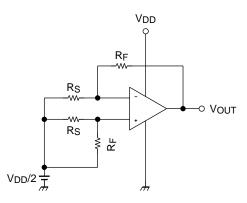
Characteristics	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Input offset voltage	Vio	4	$R_S = 1 \text{ k}\Omega, R_F = 100\text{k}\Omega$ $Ta = -40 \text{ to } 105^{\circ}\text{C}$	-2.15	0.4	2.15	mV
	Vio	1	Rs = 1 kΩ, R _F = 100kΩ Ta = 25°C	-1.85	0.4	1.85	mV
Input offset voltage drift	V _{IO} drift	1	$R_S = 1 \text{ k}\Omega, R_F = 100\text{k}\Omega$	-	2	-	μV/°C
Input offset current	lio	2	-	-	1	-	pА
Input bias current	lı .	2	-	-	1	-	pА
Common mode input voltage	CMVIN	3	$R_S = 1 \text{ k}\Omega, R_F = 100\text{k}\Omega$	0	-	VDD	V
Voltage gain (open loop)	GV	-	-	100	125	-	dB
Maximum autout valtage	Voн	4	$R_L \ge 100 \text{ k}\Omega$	3.2	-	-	V
Maximum output voltage	VoL	5	$R_L \ge 100 \text{ k}\Omega$	-	-	0.1	V
Common mode input signal rejection ratio	CMRR	3	V _{IN} = 0 to 3.3V	65	90	-	dB
Supply current	I _{DD}	6	-	-	100	165	μΑ
Source current	I _{source}	7	-	6	10	-	mA
Sink current	I _{sink}	8	-	6	10	-	mA

AC Characteristics (V_{DD} = 1.65 V, V_{SS} = -1.65 V, Ta = 25°C)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Unity Gain Cross Frequency	f⊤	-	-	1	0.36	-	MHz
Phase margin	Фт	-	-	-	60	-	degrees
Slew Rate	SR	-	-	-	0.4	-	V/μs

DC Characteristics (V_{DD} = 5.0V, V_{SS} = GND, Ta = 25°C, V_{IN} = V_{DD}/2, unless otherwise noted.)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Input offset voltage	Vio	4	R_S = 1 kΩ, R_F = 100kΩ T_A = -40 to 105°C	-2.15	0.4	2.15	mV
	VIO	1	Rs = 1 kΩ, R _F = 100kΩ Ta = 25°C	-1.85	0.4	1.85	mV
Input offset voltage drift	V _{IO} drift	1	Rs = 1 k Ω , RF = 100k Ω	-	2	-	μV/°C
Input offset current	lio	2	-	-	1	-	pА
Input bias current	lı	2	-	-	1	-	pА
Common mode input voltage	CMVIN	3	Rs = 1 k Ω , RF = 100k Ω	0	-	V _{DD}	V
Voltage gain (open loop)	G _V	-	-	100	125	-	dB
Maximum output voltage	Voн	4	$R_L \ge 100 \text{ k}\Omega$	4.9	-	-	V
iviaximum output voitage	V _{OL}	5	$R_L \ge 100 \ k\Omega$	-	-	0.1	V
Common mode input signal rejection ratio	CMRR	3	V _{IN} = 0 to 5.0V	68	90	-	dB
Supply current	I _{DD}	6	-	-	115	190	μА
Source current	I _{source}	7	-	17	-	-	mA
Sink current	I _{sink}	8	-	17	-	-	mA

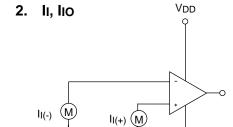

AC Characteristics (V_{DD} = 2.5 V, V_{SS} = -2.5 V, Ta = 25°C)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Unity Gain Cross Frequency	f⊤	-	-	-	0.37	-	MHz
Phase margin	Фт	-	-	ı	60	-	degrees
Slew Rate	SR	-	-	-	0.4	-	V/μs

Test Circuit

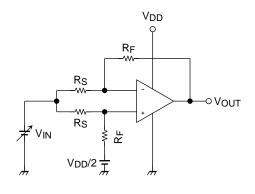
1. SVRR, Vio

- SVRR
- For each of the two V_{DD} values, measure the V_{OUT} value, as indicated below, and calculate the value of SVRR using the equation shown.


When
$$V_{DD} = 1.8 \text{ V}$$
, $V_{DD} = V_{DD1}$ and $V_{OUT} = V_{OUT1}$
When $V_{DD} = 5.0 \text{ V}$, $V_{DD} = V_{DD2}$ and $V_{OUT} = V_{OUT2}$

$$\text{SVRR=20log} \left[\left| \frac{V_{\text{DD1}} \text{-} V_{\text{DD2}}}{\left\{ V_{\text{OUT1}} \text{-} \left(\frac{V_{\text{DD1}}}{2} \right) \right\} \text{-} \left\{ V_{\text{OUT2}} \text{-} \left(\frac{V_{\text{DD2}}}{2} \right) \right\}} \right| \times \frac{R_{\text{F}} \text{+} R_{\text{S}}}{R_{\text{S}}} \right]$$

VIO


Measure the value of $V_{\mbox{\scriptsize OUT}}$ and calculate the value of $V_{\mbox{\scriptsize IO}}$ using the following equation.

$$V_{IO} = \left(V_{OUT} - \frac{V_{DD}}{2}\right) \times \frac{R_S}{R_F + R_S}$$

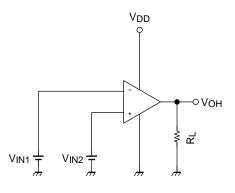
- $I_{I} = (|I_{I(-)}| + |I_{I(+)}|) / 2$
- $I_{IO} = |I_{I(-)}| |I_{I(+)}|$

3. CMRR, CMVIN

CMRR

Measure the V_{OUT} value, as indicated below, and calculate the value of the CMRR using the equation shown.

When $V_{IN} = 0 \text{ V}$, $V_{IN} = V_{IN1}$ and $V_{OUT} = V_{OUT1}$

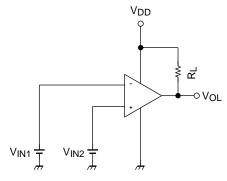

When $\mbox{V}_{\mbox{\scriptsize IN}}=3.3$ V, $\mbox{V}_{\mbox{\scriptsize IN}}=\mbox{V}_{\mbox{\scriptsize IN2}}$ and $\mbox{V}_{\mbox{\scriptsize OUT}}=\mbox{V}_{\mbox{\scriptsize OUT2}}$

$$\text{CMRR=20log}\left(\left|\frac{V_{\text{IN1}} - V_{\text{IN2}}}{V_{\text{OUT1}} - V_{\text{OUT2}}}\right| \times \frac{R_F + R_S}{R_S}\right)$$

CMV_{IN}

Input range within which the CMRR specification guarantees V_{OUT} value (as varied by the V_{IN} value).

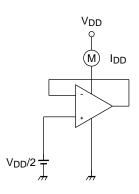
4. Voh


Vol

$$V_{IN1} = \frac{V_{DD}}{2} - 0.05V$$

$$V_{IN2} = \frac{V_{DD}}{2} + 0.05V$$

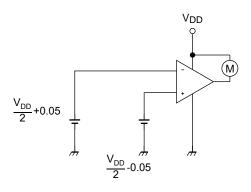
5. Vol



V_{OL}

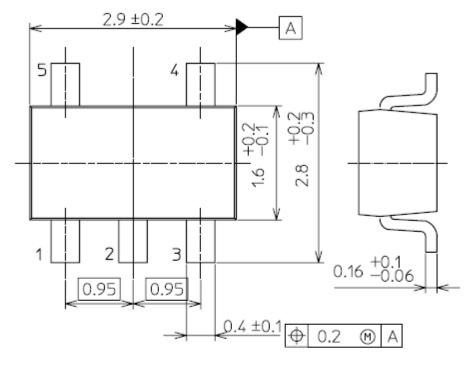

$$V_{IN1} = \frac{V_{DD}}{2} + 0.05V$$

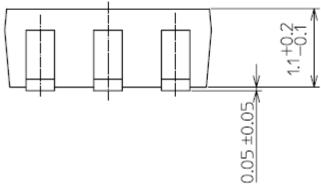
$$V_{IN2} = \frac{V_{DD}}{2} - 0.05V$$


IDD 6.

7. Isource

8. Isink


2020-09-22



Package Dimensions

SMV (SOT-25)(SC-74A)

Weight: 14 mg (typ.)

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA". Hardware, software and systems described in this document are collectively referred to as "Product".

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE
 EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH
 MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT
 ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without
 limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical
 equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to
 control combustions or explosions, safety devices, elevators and escalators, and devices related to power plant. IF YOU USE
 PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your
 TOSHIBA sales representative or contact us via our website.
- · Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
 applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
 FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
 WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
 LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
 LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
 SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
 Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION

https://toshiba.semicon-storage.com/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by Toshiba manufacturer:

Other Similar products are found below:

NCV33072ADR2G LM258AYDT LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC259G2-A UPC258G2-A NCV33202DMR2G NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17T-E/MNY MCP6V19-E/ST MXD8011HF MCP6V16UT-E/OT MCP6V17T-E/MS MCP6V19T-E/ST SCY6358ADR2G ADA4523-1BCPZ LTC2065HUD#PBF ADA4523-1BCPZ-RL7 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2177SR COS2353SR COS724TR LM2902M/TR